1
|
Mühlbäck A, Hoffmann R, Pozzi NG, Marziniak M, Brieger P, Dose M, Priller J. [Psychiatric symptoms of Huntington's disease]. DER NERVENARZT 2024; 95:871-884. [PMID: 39212681 PMCID: PMC11374876 DOI: 10.1007/s00115-024-01728-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/30/2024] [Indexed: 09/04/2024]
Abstract
Huntington's disease (HD) is an autosomal dominant inherited disease, which leads to motor, cognitive and psychiatric symptoms. The diagnosis can be confirmed by genetic testing for extended CAG repeats in the Huntingtin gene. Mental and behavioral symptoms are common in HD and can appear several years before the onset of motor symptoms. The psychiatric symptoms include apathy, depression, anxiety, obsessive-compulsive symptoms and, in some cases, psychoses and aggression. These are currently restricted to symptomatic treatment as disease-modifying treatment approaches are still under investigation. The current clinical practice is based on expert opinions as well as experience with the treatment of similar symptoms in other neurological and mental health diseases. This article provides an overview of the complex psychiatric manifestations of HD, the diagnostic options and the established pharmacological and nonpharmacological treatment approaches.
Collapse
Affiliation(s)
- Alzbeta Mühlbäck
- Huntington-Zentrum-Süd, kbo-Isar-Amper-Klinikum, Region München, Taufkirchen (Vils), Deutschland.
- Klinik und Poliklinik für Psychiatrie und Psychotherapie, Klinikum rechts der Isar, School of Medicine and Health, TU München, Ismaninger Str. 22, 81675, München, Deutschland.
| | - Rainer Hoffmann
- Huntington-Zentrum-Süd, kbo-Isar-Amper-Klinikum, Region München, Taufkirchen (Vils), Deutschland
| | - Nicolo Gabriele Pozzi
- Huntington-Zentrum-Süd, kbo-Isar-Amper-Klinikum, Region München, Taufkirchen (Vils), Deutschland
- Neurologische Klinik und Poliklinik, Universitätsklinikum Würzburg, Würzburg, Deutschland
| | - Martin Marziniak
- Klinik für Neurologie und Intensivmedizin, kbo-Isar-Amper-Klinikum, Region München, Akademisches Lehrkrankenhaus der LMU München, Haar, Deutschland
| | - Peter Brieger
- kbo-Isar-Amper-Klinikum, Region München, Akademisches Lehrkrankenhaus der LMU München, Haar, Deutschland
| | - Matthias Dose
- Huntington-Zentrum-Süd, kbo-Isar-Amper-Klinikum, Region München, Taufkirchen (Vils), Deutschland
| | - Josef Priller
- Klinik und Poliklinik für Psychiatrie und Psychotherapie, Klinikum rechts der Isar, School of Medicine and Health, TU München, Ismaninger Str. 22, 81675, München, Deutschland
- Deutsches Zentrum für Psychische Gesundheit (DZPG), Standort München, München, Deutschland
- Universität Edinburgh und UK DRI, Edinburgh, Großbritannien
- Neuropsychiatrie und Labor für Molekulare Psychiatrie, Charité-Universitätsmedizin Berlin, Berlin, Deutschland
- DZNE, Berlin, Deutschland
| |
Collapse
|
2
|
Nguyen QTR, Ortigoza Escobar JD, Burgunder JM, Mariotti C, Saft C, Hjermind LE, Youssov K, Landwehrmeyer GB, Bachoud-Lévi AC. Combining Literature Review With a Ground Truth Approach for Diagnosing Huntington's Disease Phenocopy. Front Neurol 2022; 13:817753. [PMID: 35222250 PMCID: PMC8866848 DOI: 10.3389/fneur.2022.817753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Abstract
One percent of patients with a Huntington's disease (HD) phenotype do not have the Huntington (HTT) gene mutation. These are known as HD phenocopies. Their diagnosis is still a challenge. Our objective is to provide a diagnostic approach to HD phenocopies based on medical expertise and a review of the literature. We employed two complementary approaches sequentially: a review of the literature and two surveys analyzing the daily clinical practice of physicians who are experts in movement disorders. The review of the literature was conducted from 1993 to 2020, by extracting articles about chorea or HD-like disorders from the database Pubmed, yielding 51 articles, and analyzing 20 articles in depth to establish the surveys. Twenty-eight physicians responded to the first survey exploring the red flags suggestive of specific disease entities. Thirty-three physicians completed the second survey which asked for the classification of paraclinical tests according to their diagnostic significance. The analysis of the results of the second survey used four different clustering algorithms and the density-based clustering algorithm DBSCAN to classify the paraclinical tests into 1st, 2nd, and 3rd-line recommendations. In addition, we included suggestions from members of the European Reference Network-Rare Neurological Diseases (ERN-RND Chorea & Huntington disease group). Finally, we propose guidance that integrate the detection of clinical red flags with a classification of paraclinical testing options to improve the diagnosis of HD phenocopies.
Collapse
Affiliation(s)
- Quang Tuan Rémy Nguyen
- AP-HP, Hôpital Henri Mondor-Albert Chenevier, Centre National de Référence Maladie de Huntington, Service de Neurologie, Créteil, France
- Univ Paris Est Creteil, INSERM U955, Institut Mondor de Recherche Biomédicale, Laboratoire de Neuropsychologie Interventionnelle, Creteil, France
- Département d'Etudes Cognitives, École normale supérieure, PSL University, Paris, France
- *Correspondence: Quang Tuan Rémy Nguyen
| | - Juan Dario Ortigoza Escobar
- Movement Disorders Unit, Institut de Recerca Sant Joan de Déu, CIBERER-ISCIII, Barcelona, Spain
- European Reference Network for Rare Neurological Diseases (ERN-RND), Tübingen, Germany
| | - Jean-Marc Burgunder
- European Reference Network for Rare Neurological Diseases (ERN-RND), Tübingen, Germany
- Siloah and Department of Neurology, Department of Clinical Research, Swiss Huntington's Disease Centre, University of Bern, Bern, Switzerland
| | - Caterina Mariotti
- European Reference Network for Rare Neurological Diseases (ERN-RND), Tübingen, Germany
- Unit of Genetics of Neurodegenerative and Metabolic Diseases, Carlo Besta Neurological Institute IRCCS Foundation, Milan, Italy
| | - Carsten Saft
- European Reference Network for Rare Neurological Diseases (ERN-RND), Tübingen, Germany
- Department of Neurology, Huntington Center North Rhine-Westphalia, Ruhr-University, St. Josef-Hospital, Bochum, Germany
| | - Lena Elisabeth Hjermind
- European Reference Network for Rare Neurological Diseases (ERN-RND), Tübingen, Germany
- Department of Neurology, Rigshospitalet, Danish Dementia Research Centre, Clinic of Neurogenetics, Copenhagen University Hospital, Copenhagen, Denmark
| | - Katia Youssov
- AP-HP, Hôpital Henri Mondor-Albert Chenevier, Centre National de Référence Maladie de Huntington, Service de Neurologie, Créteil, France
- Univ Paris Est Creteil, INSERM U955, Institut Mondor de Recherche Biomédicale, Laboratoire de Neuropsychologie Interventionnelle, Creteil, France
| | - G. Bernhard Landwehrmeyer
- European Reference Network for Rare Neurological Diseases (ERN-RND), Tübingen, Germany
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Anne-Catherine Bachoud-Lévi
- AP-HP, Hôpital Henri Mondor-Albert Chenevier, Centre National de Référence Maladie de Huntington, Service de Neurologie, Créteil, France
- Département d'Etudes Cognitives, École normale supérieure, PSL University, Paris, France
- European Reference Network for Rare Neurological Diseases (ERN-RND), Tübingen, Germany
- Anne-Catherine Bachoud-Lévi
| |
Collapse
|
3
|
Bailus BJ, Scheeler SM, Simons J, Sanchez MA, Tshilenge KT, Creus-Muncunill J, Naphade S, Lopez-Ramirez A, Zhang N, Lakshika Madushani K, Moroz S, Loureiro A, Schreiber KH, Hausch F, Kennedy BK, Ehrlich ME, Ellerby LM. Modulating FKBP5/FKBP51 and autophagy lowers HTT (huntingtin) levels. Autophagy 2021; 17:4119-4140. [PMID: 34024231 PMCID: PMC8726715 DOI: 10.1080/15548627.2021.1904489] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 03/01/2021] [Accepted: 03/12/2021] [Indexed: 12/14/2022] Open
Abstract
Current disease-modifying therapies for Huntington disease (HD) focus on lowering mutant HTT (huntingtin; mHTT) levels, and the immunosuppressant drug rapamycin is an intriguing therapeutic for aging and neurological disorders. Rapamycin interacts with FKBP1A/FKBP12 and FKBP5/FKBP51, inhibiting the MTORC1 complex and increasing cellular clearance mechanisms. Whether the levels of FKBP (FK506 binding protein) family members are altered in HD models and if these proteins are potential therapeutic targets for HD have not been investigated. Here, we found levels of FKBP5 are significantly reduced in HD R6/2 and zQ175 mouse models and human HD isogenic neural stem cells and medium spiny neurons derived from induced pluripotent stem cells. Moreover, FKBP5 interacts and colocalizes with HTT in the striatum and cortex of zQ175 mice and controls. Importantly, when we decreased FKBP5 levels or activity by genetic or pharmacological approaches, we observed reduced levels of mHTT in our isogenic human HD stem cell model. Decreasing FKBP5 levels by siRNA or pharmacological inhibition increased LC3-II levels and macroautophagic/autophagic flux, suggesting autophagic cellular clearance mechanisms are responsible for mHTT lowering. Unlike rapamycin, the effect of pharmacological inhibition with SAFit2, an inhibitor of FKBP5, is MTOR independent. Further, in vivo treatment for 2 weeks with SAFit2, results in reduced HTT levels in both HD R6/2 and zQ175 mouse models. Our studies establish FKBP5 as a protein involved in the pathogenesis of HD and identify FKBP5 as a potential therapeutic target for HD.Abbreviations : ACTB/β-actin: actin beta; AD: Alzheimer disease; BafA1: bafilomycin A1; BCA: bicinchoninic acid; BBB: blood brain barrier; BSA: bovine serum albumin; CoIP: co-immunoprecipitation; DMSO: dimethyl sulfoxide; DTT: dithiothreitol; FKBPs: FK506 binding proteins; HD: Huntington disease; HTT: huntingtin; iPSC: induced pluripotent stem cells; MAP1LC3/LC3:microtubule associated protein 1 light chain 3; MAPT/tau: microtubule associated protein tau; MES: 2-ethanesulfonic acid; MOPS: 3-(N-morphorlino)propanesulfonic acid); MSN: medium spiny neurons; mHTT: mutant huntingtin; MTOR: mechanistic target of rapamycin kinase; NSC: neural stem cells; ON: overnight; PD: Parkinson disease; PPIase: peptidyl-prolyl cis/trans-isomerases; polyQ: polyglutamine; PPP1R1B/DARPP-32: protein phosphatase 1 regulatory inhibitor subunit 1B; PTSD: post-traumatic stress disorder; RT: room temperature; SQSTM1/p62: sequestosome 1; SDS-PAGE: sodium dodecyl sulfate-polyacrylamide gel electrophoresis; TBST:Tris-buffered saline, 0.1% Tween 20; TUBA: tubulin; ULK1: unc-51 like autophagy activating kinase 1; VCL: vinculin; WT: littermate controls.
Collapse
Affiliation(s)
- Barbara J. Bailus
- The Buck Institute for Research on Aging, Novato, CA, USA
- School of Pharmacy and Health Sciences, Keck Graduate Institute, Claremont, CA, USA
| | - Stephen M. Scheeler
- The Buck Institute for Research on Aging, Novato, CA, USA
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Jesse Simons
- The Buck Institute for Research on Aging, Novato, CA, USA
| | | | | | | | - Swati Naphade
- The Buck Institute for Research on Aging, Novato, CA, USA
| | | | - Ningzhe Zhang
- The Buck Institute for Research on Aging, Novato, CA, USA
| | | | | | | | | | - Felix Hausch
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Brian K. Kennedy
- The Buck Institute for Research on Aging, Novato, CA, USA
- Departments of Biochemistry and Physiology, Yong Loo Lin School of Medicine, National University Singapore, Singapore
- Centre for Healthy Longevity, National University Health System, Singapore
| | - Michelle E. Ehrlich
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | |
Collapse
|
4
|
Neuropathology and pathogenesis of extrapyramidal movement disorders: a critical update. II. Hyperkinetic disorders. J Neural Transm (Vienna) 2019; 126:997-1027. [DOI: 10.1007/s00702-019-02030-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 06/14/2019] [Indexed: 12/14/2022]
|
5
|
Treatment of Tardive Dyskinesia: A General Overview with Focus on the Vesicular Monoamine Transporter 2 Inhibitors. Drugs 2019; 78:525-541. [PMID: 29484607 DOI: 10.1007/s40265-018-0874-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Tardive dyskinesia (TD) encompasses the spectrum of iatrogenic hyperkinetic movement disorders following exposure to dopamine receptor-blocking agents (DRBAs). Despite the advent of atypical or second- and third-generation antipsychotics with a presumably lower risk of complications, TD remains a persistent and challenging problem. Prevention is the first step in mitigating the risk of TD, but early recognition, gradual withdrawal of offending medications, and appropriate treatment are also critical. As TD is often a persistent and troublesome disorder, specific antidyskinetic therapies are often needed for symptomatic relief. The vesicular monoamine transporter 2 (VMAT2) inhibitors, which include tetrabenazine, deutetrabenazine, and valbenazine, are considered the treatment of choice for most patients with TD. Deutetrabenazine-a deuterated version of tetrabenazine-and valbenazine, the purified parent product of one of the main tetrabenazine metabolites, are novel VMAT2 inhibitors and the only drugs to receive approval from the US FDA for the treatment of TD. VMAT2 inhibitors deplete presynaptic dopamine and reduce involuntary movements in many hyperkinetic movement disorders, particularly TD, Huntington disease, and Tourette syndrome. The active metabolites of the VMAT2 inhibitors have high affinity for VMAT2 and minimal off-target binding. Compared with tetrabenazine, deutetrabenazine and valbenazine have pharmacokinetic advantages that translate into less frequent dosing and better tolerability. However, no head-to-head studies have compared the various VMAT2 inhibitors. One of the major advantages of VMAT2 inhibitors over DRBAs, which are still being used by some clinicians in the treatment of some hyperkinetic disorders, including TD, is that they are not associated with the development of TD. We also briefly discuss other treatment options for TD, including amantadine, clonazepam, Gingko biloba, zolpidem, botulinum toxin, and deep brain stimulation. Treatment of TD and other drug-induced movement disorders must be individualized and based on the severity, phenomenology, potential side effects, and other factors discussed in this review.
Collapse
|
6
|
|
7
|
Nonmotor Symptoms in Huntington Disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2017; 134:1397-1408. [DOI: 10.1016/bs.irn.2017.05.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
8
|
Koht J, Løstegaard SO, Wedding I, Vidailhet M, Louha M, Tallaksen CM. Benign hereditary chorea, not only chorea: a family case presentation. CEREBELLUM & ATAXIAS 2016; 3:3. [PMID: 26839702 PMCID: PMC4736661 DOI: 10.1186/s40673-016-0041-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 01/08/2016] [Indexed: 02/02/2023]
Abstract
Background Benign hereditary chorea is a rare disorder which is characterized by early onset, non-progressive choreic movement disturbance, with other hyperkinetic movements and unsteadiness also commonly seen. Hypothyroidism and lung disease are frequent additional features. The disorder is caused by mutations of the NKX2-1 gene on chromosome 14. Case presentation A Norwegian four-generation family with eight affected was identified. All family members had an early onset movement disorder, starting before one year of age with motor delay and chorea. Learning difficulties were commonly reported from early school years. The family presented with choreic movements at rest, but other movements were seen; myoclonus, dystonia, ataxia, stuttering and tics-like movements. All patients reported unsteadiness and ataxic gait was observed in two patients. Videos are provided in the supplementary material. Most affected family members had asthma and a subclinical or clinical hypothyroidism. Sequencing revealed a mutation in the NKX2-1 gene in all eight affected family members. Conclusions This is the first Norwegian family with benign hereditary chorea due to a mutation in the NKX2-1 gene, c.671 T > G (p.Leu224Arg). This family demonstrates well the wide phenotype, including dystonia, myoclonus and ataxia. Electronic supplementary material The online version of this article (doi:10.1186/s40673-016-0041-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jeanette Koht
- Department of Neurology, Drammen Hospital, Vestre Viken Health Trust, Drammen, Norway
| | | | - Iselin Wedding
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway ; Department of Neurology, Oslo University Hospital, Ullevål, Oslo, Norway
| | - Marie Vidailhet
- Department of Neurology, Salpêtrière Hospital, APHP, Sorbonne Universités, UPMC Univ Paris 6 UMR S 1127, Inserm U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, Paris, France
| | - Malek Louha
- Laboratoire de Biochimie et Génétique Moléculaire, Hôpital Armand Trousseau- AP-HP, Paris, France
| | - Chantal Me Tallaksen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway ; Department of Neurology, Oslo University Hospital, Ullevål, Oslo, Norway
| |
Collapse
|
9
|
Biasiotto G, Di Lorenzo D, Archetti S, Zanella I. Iron and Neurodegeneration: Is Ferritinophagy the Link? Mol Neurobiol 2015; 53:5542-74. [PMID: 26468157 DOI: 10.1007/s12035-015-9473-y] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 10/01/2015] [Indexed: 12/12/2022]
Abstract
Mounting evidence indicates that the lysosome-autophagy pathway plays a critical role in iron release from ferritin, the main iron storage cellular protein, hence in the distribution of iron to the cells. The recent identification of nuclear receptor co-activator 4 as the receptor for ferritin delivery to selective autophagy sheds further light on the understanding of the mechanisms underlying this pathway. The emerging view is that iron release from ferritin through the lysosomes is a general mechanism in normal and tumour cells of different tissue origins, but it has not yet been investigated in brain cells. Defects in the lysosome-autophagy pathway are often involved in the pathogenesis of neurodegenerative disorders, and brain iron homeostasis disruption is a hallmark of many of these diseases. However, in most cases, it has not been established whether iron dysregulation is directly involved in the pathogenesis of the diseases or if it is a secondary effect derived from other pathogenic mechanisms. The recent evidence of the crucial involvement of autophagy in cellular iron handling offers new perspectives about the role of iron in neurodegeneration, suggesting that autophagy dysregulation could cause iron dyshomeostasis. In this review, we recapitulate our current knowledge on the routes through which iron is released from ferritin, focusing on the most recent advances. We summarise the current evidence concerning lysosome-autophagy pathway dysfunctions and those of iron metabolism and discuss their potential interconnections in several neurodegenerative disorders, such as Alzheimer's, Parkinson's and Huntington's diseases; amyotrophic lateral sclerosis; and frontotemporal lobar dementia.
Collapse
Affiliation(s)
- Giorgio Biasiotto
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
- Biotechnology Laboratory, Department of Diagnostics, Civic Hospital of Brescia, Piazzale Spedali Civili 1, 25123, Brescia, Italy
| | - Diego Di Lorenzo
- Biotechnology Laboratory, Department of Diagnostics, Civic Hospital of Brescia, Piazzale Spedali Civili 1, 25123, Brescia, Italy
| | - Silvana Archetti
- Biotechnology Laboratory, Department of Diagnostics, Civic Hospital of Brescia, Piazzale Spedali Civili 1, 25123, Brescia, Italy
| | - Isabella Zanella
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
- Biotechnology Laboratory, Department of Diagnostics, Civic Hospital of Brescia, Piazzale Spedali Civili 1, 25123, Brescia, Italy.
| |
Collapse
|
10
|
O'Brien R, DeGiacomo F, Holcomb J, Bonner A, Ring KL, Zhang N, Zafar K, Weiss A, Lager B, Schilling B, Gibson BW, Chen S, Kwak S, Ellerby LM. Integration-independent Transgenic Huntington Disease Fragment Mouse Models Reveal Distinct Phenotypes and Life Span in Vivo. J Biol Chem 2015; 290:19287-306. [PMID: 26025364 DOI: 10.1074/jbc.m114.623561] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Indexed: 11/06/2022] Open
Abstract
The cascade of events that lead to cognitive decline, motor deficits, and psychiatric symptoms in patients with Huntington disease (HD) is triggered by a polyglutamine expansion in the N-terminal region of the huntingtin (HTT) protein. A significant mechanism in HD is the generation of mutant HTT fragments, which are generally more toxic than the full-length HTT. The protein fragments observed in human HD tissue and mouse models of HD are formed by proteolysis or aberrant splicing of HTT. To systematically investigate the relative contribution of the various HTT protein proteolysis events observed in vivo, we generated transgenic mouse models of HD representing five distinct proteolysis fragments ending at amino acids 171, 463, 536, 552, and 586 with a polyglutamine length of 148. All lines contain a single integration at the ROSA26 locus, with expression of the fragments driven by the chicken β-actin promoter at nearly identical levels. The transgenic mice N171-Q148 and N552-Q148 display significantly accelerated phenotypes and a shortened life span when compared with N463-Q148, N536-Q148, and N586-Q148 transgenic mice. We hypothesized that the accelerated phenotype was due to altered HTT protein interactions/complexes that accumulate with age. We found evidence for altered HTT complexes in caspase-2 fragment transgenic mice (N552-Q148) and a stronger interaction with the endogenous HTT protein. These findings correlate with an altered HTT molecular complex and distinct proteins in the HTT interactome set identified by mass spectrometry. In particular, we identified HSP90AA1 (HSP86) as a potential modulator of the distinct neurotoxicity of the caspase-2 fragment mice (N552-Q148) when compared with the caspase-6 transgenic mice (N586-Q148).
Collapse
Affiliation(s)
- Robert O'Brien
- From the Buck Institute for Research on Aging, Novato, California 94945
| | | | - Jennifer Holcomb
- From the Buck Institute for Research on Aging, Novato, California 94945
| | - Akilah Bonner
- From the Buck Institute for Research on Aging, Novato, California 94945
| | - Karen L Ring
- From the Buck Institute for Research on Aging, Novato, California 94945
| | - Ningzhe Zhang
- From the Buck Institute for Research on Aging, Novato, California 94945
| | - Khan Zafar
- From the Buck Institute for Research on Aging, Novato, California 94945
| | - Andreas Weiss
- Evotec AG, Manfred Eigen Campus, Essener Bogen 7, 22419 Hamburg, Germany, and
| | - Brenda Lager
- CHDI Management/CHDI Foundation, Inc., Princeton, New Jersey 08540
| | - Birgit Schilling
- From the Buck Institute for Research on Aging, Novato, California 94945
| | - Bradford W Gibson
- From the Buck Institute for Research on Aging, Novato, California 94945
| | - Sylvia Chen
- From the Buck Institute for Research on Aging, Novato, California 94945
| | - Seung Kwak
- CHDI Management/CHDI Foundation, Inc., Princeton, New Jersey 08540
| | - Lisa M Ellerby
- From the Buck Institute for Research on Aging, Novato, California 94945,
| |
Collapse
|
11
|
Bates GP, Dorsey R, Gusella JF, Hayden MR, Kay C, Leavitt BR, Nance M, Ross CA, Scahill RI, Wetzel R, Wild EJ, Tabrizi SJ. Huntington disease. Nat Rev Dis Primers 2015; 1:15005. [PMID: 27188817 DOI: 10.1038/nrdp.2015.5] [Citation(s) in RCA: 975] [Impact Index Per Article: 97.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Huntington disease is devastating to patients and their families - with autosomal dominant inheritance, onset typically in the prime of adult life, progressive course, and a combination of motor, cognitive and behavioural features. The disease is caused by an expanded CAG trinucleotide repeat (of variable length) in HTT, the gene that encodes the protein huntingtin. In mutation carriers, huntingtin is produced with abnormally long polyglutamine sequences that confer toxic gains of function and predispose the protein to fragmentation, resulting in neuronal dysfunction and death. In this Primer, we review the epidemiology of Huntington disease, noting that prevalence is higher than previously thought, geographically variable and increasing. We describe the relationship between CAG repeat length and clinical phenotype, as well as the concept of genetic modifiers of the disease. We discuss normal huntingtin protein function, evidence for differential toxicity of mutant huntingtin variants, theories of huntingtin aggregation and the many different mechanisms of Huntington disease pathogenesis. We describe the genetic and clinical diagnosis of the condition, its clinical assessment and the multidisciplinary management of symptoms, given the absence of effective disease-modifying therapies. We review past and present clinical trials and therapeutic strategies under investigation, including impending trials of targeted huntingtin-lowering drugs and the progress in development of biomarkers that will support the next generation of trials. For an illustrated summary of this Primer, visit: http://go.nature.com/hPMENh.
Collapse
Affiliation(s)
- Gillian P Bates
- Department of Medical and Molecular Genetics, King's College London, London, UK
| | - Ray Dorsey
- Department of Neurology, University of Rochester Medical Center, Rochester, New York, USA
| | - James F Gusella
- Molecular Neurogenetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, and Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael R Hayden
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Chris Kay
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Blair R Leavitt
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Martha Nance
- Struthers Parkinson's Center, Golden Valley, Minneapolis, Minnesota, USA; and Hennepin County Medical Center, Minneapolis, Minnesota, USA
| | - Christopher A Ross
- Division of Neurobiology, Department of Psychiatry and Departments of Neurology, Pharmacology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Rachael I Scahill
- Department of Neurodegenerative Disease, University College London Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Ronald Wetzel
- Department of Structural Biology and Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Edward J Wild
- Department of Neurodegenerative Disease, University College London Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Sarah J Tabrizi
- Department of Neurodegenerative Disease, University College London Institute of Neurology, Queen Square, London WC1N 3BG, UK
| |
Collapse
|
12
|
|