1
|
Dell’Angelica D, Singh K, Colwell CS, Ghiani CA. Circadian Interventions in Preclinical Models of Huntington's Disease: A Narrative Review. Biomedicines 2024; 12:1777. [PMID: 39200241 PMCID: PMC11351982 DOI: 10.3390/biomedicines12081777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 09/02/2024] Open
Abstract
Huntington's Disease (HD) is a neurodegenerative disorder caused by an autosomal-dominant mutation in the huntingtin gene, which manifests with a triad of motor, cognitive and psychiatric declines. Individuals with HD often present with disturbed sleep/wake cycles, but it is still debated whether altered circadian rhythms are intrinsic to its aetiopathology or a consequence. Conversely, it is well established that sleep/wake disturbances, perhaps acting in concert with other pathophysiological mechanisms, worsen the impact of the disease on cognitive and motor functions and are a burden to the patients and their caretakers. Currently, there is no cure to stop the progression of HD, however, preclinical research is providing cementing evidence that restoring the fluctuation of the circadian rhythms can assist in delaying the onset and slowing progression of HD. Here we highlight the application of circadian-based interventions in preclinical models and provide insights into their potential translation in clinical practice. Interventions aimed at improving sleep/wake cycles' synchronization have shown to improve motor and cognitive deficits in HD models. Therefore, a strong support for their suitability to ameliorate HD symptoms in humans emerges from the literature, albeit with gaps in our knowledge on the underlying mechanisms and possible risks associated with their implementation.
Collapse
Affiliation(s)
- Derek Dell’Angelica
- Department of Psychiatry and Biobehavioural Sciences, Semel Institute for Neuroscience and Human Behaviour, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90024, USA; (D.D.); (K.S.); (C.S.C.)
| | - Karan Singh
- Department of Psychiatry and Biobehavioural Sciences, Semel Institute for Neuroscience and Human Behaviour, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90024, USA; (D.D.); (K.S.); (C.S.C.)
| | - Christopher S. Colwell
- Department of Psychiatry and Biobehavioural Sciences, Semel Institute for Neuroscience and Human Behaviour, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90024, USA; (D.D.); (K.S.); (C.S.C.)
| | - Cristina A. Ghiani
- Department of Psychiatry and Biobehavioural Sciences, Semel Institute for Neuroscience and Human Behaviour, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90024, USA; (D.D.); (K.S.); (C.S.C.)
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90024, USA
| |
Collapse
|
2
|
Oosterloo M, Touze A, Byrne LM, Achenbach J, Aksoy H, Coleman A, Lammert D, Nance M, Nopoulos P, Reilmann R, Saft C, Santini H, Squitieri F, Tabrizi S, Burgunder JM, Quarrell O. Clinical Review of Juvenile Huntington's Disease. J Huntingtons Dis 2024; 13:149-161. [PMID: 38669553 PMCID: PMC11307030 DOI: 10.3233/jhd-231523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2024] [Indexed: 04/28/2024]
Abstract
Juvenile Huntington's disease (JHD) is rare. In the first decade of life speech difficulties, rigidity, and dystonia are common clinical motor symptoms, whereas onset in the second decade motor symptoms may sometimes resemble adult-onset Huntington's disease (AOHD). Cognitive decline is mostly detected by declining school performances. Behavioral symptoms in general do not differ from AOHD but may be confused with autism spectrum disorder or attention deficit hyperactivity disorder and lead to misdiagnosis and/or diagnostic delay. JHD specific features are epilepsy, ataxia, spasticity, pain, itching, and possibly liver steatosis. Disease progression of JHD is faster compared to AOHD and the disease duration is shorter, particularly in case of higher CAG repeat lengths. The diagnosis is based on clinical judgement in combination with a positive family history and/or DNA analysis after careful consideration. Repeat length in JHD is usually > 55 and caused by anticipation, usually via paternal transmission. There are no pharmacological and multidisciplinary guidelines for JHD treatment. Future perspectives for earlier diagnosis are better diagnostic markers such as qualitative MRI and neurofilament light in serum.
Collapse
Affiliation(s)
- Mayke Oosterloo
- Department of Neurology, Maastricht University Medical Center, Maastricht, The Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Alexiane Touze
- Department of Neurodegenerative Disease, UCL Huntington’s Disease Centre, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Lauren M. Byrne
- Department of Neurodegenerative Disease, UCL Huntington’s Disease Centre, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Jannis Achenbach
- Department of Neurology, Huntington Centre NRW, Ruhr-University Bochum, St. Josef-Hospital, Bochum, Germany
| | - Hande Aksoy
- Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Annabelle Coleman
- Department of Neurodegenerative Disease, UCL Huntington’s Disease Centre, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Dawn Lammert
- Department of Neurology, Division of Child Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Martha Nance
- Struthers Parkinson’s Center, Minneapolis, MN, USA
| | - Peggy Nopoulos
- Departments of Psychiatry, Pediatrics, & Neurology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Ralf Reilmann
- George-Huntington-Institute & Department of Radiology, University of Muenster, Muenster, Germany
- Department for Neurodegeneration, Hertie Institute for Clinical, Brain Research, University of Tuebingen, Tuebingen, Germany
| | - Carsten Saft
- Department of Neurology, Huntington Centre NRW, Ruhr-University Bochum, St. Josef-Hospital, Bochum, Germany
| | | | - Ferdinando Squitieri
- Centre for Rare Neurological Diseases (CMRN), Italian League for Research on Huntington (LIRH) Foundation, Rome, Italy
- Huntington and Rare Diseases Unit, IRCCS Casa Sollievo Della Sofferenza Research Hospital, San Giovanni Rotondo, Italy
| | - Sarah Tabrizi
- Department of Neurodegenerative Disease, UCL Huntington’s Disease Centre, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Jean-Marc Burgunder
- Neurozentrum Siloah and Department of Neurology, Swiss HD Center, University of Bern, Bern, Switzerland
| | - Oliver Quarrell
- Department of Clinical Genetics, Sheffield Children’s Hospital, Sheffield, UK
- Department of Neurosciences University of Sheffield, Sheffield, UK
| | - on behalf of the Pediatric Huntington Disease Working Group of the European Huntington Disease Network
- Department of Neurology, Maastricht University Medical Center, Maastricht, The Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Department of Neurodegenerative Disease, UCL Huntington’s Disease Centre, UCL Queen Square Institute of Neurology, University College London, London, UK
- Department of Neurology, Huntington Centre NRW, Ruhr-University Bochum, St. Josef-Hospital, Bochum, Germany
- Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
- Department of Neurology, Division of Child Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Struthers Parkinson’s Center, Minneapolis, MN, USA
- Departments of Psychiatry, Pediatrics, & Neurology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- George-Huntington-Institute & Department of Radiology, University of Muenster, Muenster, Germany
- Department for Neurodegeneration, Hertie Institute for Clinical, Brain Research, University of Tuebingen, Tuebingen, Germany
- Huntington’s Disease Association, England and Wales
- Centre for Rare Neurological Diseases (CMRN), Italian League for Research on Huntington (LIRH) Foundation, Rome, Italy
- Huntington and Rare Diseases Unit, IRCCS Casa Sollievo Della Sofferenza Research Hospital, San Giovanni Rotondo, Italy
- Neurozentrum Siloah and Department of Neurology, Swiss HD Center, University of Bern, Bern, Switzerland
- Department of Clinical Genetics, Sheffield Children’s Hospital, Sheffield, UK
- Department of Neurosciences University of Sheffield, Sheffield, UK
| |
Collapse
|
3
|
Saft C, Burgunder JM, Dose M, Jung HH, Katzenschlager R, Priller J, Nguyen HP, Reetz K, Reilmann R, Seppi K, Landwehrmeyer GB. Symptomatic treatment options for Huntington's disease (guidelines of the German Neurological Society). Neurol Res Pract 2023; 5:61. [PMID: 37968732 PMCID: PMC10652593 DOI: 10.1186/s42466-023-00285-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 11/17/2023] Open
Abstract
INTRODUCTION Ameliorating symptoms and signs of Huntington's disease (HD) is essential to care but can be challenging and hard to achieve. The pharmacological treatment of motor signs (e.g. chorea) may favorably or unfavorably impact other facets of the disease phenotype (such as mood and cognition). Similarly, pharmacotherapy for behavioral issues may modify the motor phenotype. Sometimes synergistic effects can be achieved. In patients undergoing pragmatic polypharmacological therapy, emerging complaints may stem from the employed medications' side effects, a possibility that needs to be considered. It is recommended to clearly and precisely delineate the targeted signs and symptoms (e.g., chorea, myoclonus, bradykinesia, Parkinsonism, or dystonia). Evidence from randomized controlled trials (RCTs) is limited. Therefore, the guidelines prepared for the German Neurological Society (DGN) for German-speaking countries intentionally extend beyond evidence from RCTs and aim to synthesize evidence from RCTs and recommendations of experienced clinicians. RECOMMENDATIONS First-line treatment for chorea is critically discussed, and a preference in prescription practice for using tiapride instead of tetrabenazine is noted. In severe chorea, combining two antidopaminergic drugs with a postsynaptic (e.g., tiapride) and presynaptic mode of action (e.g., tetrabenazine) is discussed as a potentially helpful strategy. Sedative side effects of both classes of compounds can be used to improve sleep if the highest dosage of the day is given at night. Risperidone, in some cases, may ameliorate irritability but also chorea and sleep disorders. Olanzapine can be helpful in the treatment of weight loss and chorea, and quetiapine as a mood stabilizer with an antidepressant effect. CONCLUSIONS Since most HD patients simultaneously suffer from distinct motor signs and distinct psychiatric/behavioral symptoms, treatment should be individually adapted.
Collapse
Affiliation(s)
- Carsten Saft
- Department of Neurology, Huntington-Zentrum NRW, St. Josef-Hospital, Ruhr-Universität Bochum, Bochum, Germany.
| | - Jean-Marc Burgunder
- Department of Neurology, Schweizerisches Huntington-Zentrum, Bern University, Bern, Switzerland
| | - Matthias Dose
- Kbo-Isar-Amper-Klinikum, Taufkirchen/München-Ost, Germany
| | | | - Regina Katzenschlager
- Department of Neurology and Karl Landsteiner Institute for Neuroimmunological and Neurodegenerative Disorders, Klinik Donaustadt, Vienna, Austria
| | - Josef Priller
- Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- Neuropsychiatry, Charité-Universitätsmedizin, Berlin, Germany
| | - Huu Phuc Nguyen
- Huntington-Zentrum NRW, Department of Human Genetics, Ruhr-Universität Bochum, Bochum, Germany
| | - Kathrin Reetz
- Department of Neurology, Euregional Huntington Centre Aachen, RWTH Aachen University Hospital, Aachen, Germany
| | - Ralf Reilmann
- George-Huntington-Institute, Muenster, Germany
- Department of Radiology, Universitaetsklinikum Muenster (UKM), Westfaelische Wilhelms-University, Muenster, Germany
- Department of Neurodegenerative Diseases and Hertie-Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany
| | - Klaus Seppi
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | | |
Collapse
|
4
|
Saade-Lemus S, Videnovic A. Sleep Disorders and Circadian Disruption in Huntington's Disease. J Huntingtons Dis 2023; 12:121-131. [PMID: 37424473 PMCID: PMC10473087 DOI: 10.3233/jhd-230576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2023] [Indexed: 07/11/2023]
Abstract
Sleep and circadian alterations are common in patients with Huntington's disease (HD). Understanding the pathophysiology of these alterations and their association with disease progression and morbidity can guide HD management. We provide a narrative review of the clinical and basic-science studies centered on sleep and circadian function on HD. Sleep/wake disturbances among HD patients share many similarities with other neurodegenerative diseases. Overall, HD patients and animal models of the disease present with sleep changes early in the clinical course of the disease, including difficulties with sleep initiation and maintenance leading to decreased sleep efficiency, and progressive deterioration of normal sleep architecture. Despite this, sleep alterations remain frequently under-reported by patients and under-recognized by health professionals. The degree of sleep and circadian alterations has not consistently shown to be CAG dose-dependent. Evidence based treatment recommendations are insufficient due to lack of well-designed intervention trials. Approaches aimed at improving circadian entrainment, such as including light therapy, and time-restricted feeding have demonstrated a potential to delay symptom progression in some basic HD investigations. Larger study cohorts, comprehensive assessment of sleep and circadian function, and reproducibility of findings are needed in future in order to better understand sleep and circadian function in HD and to develop effective treatments.
Collapse
Affiliation(s)
- Sandra Saade-Lemus
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Aleksandar Videnovic
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Standlee J, Malkani R. Sleep Dysfunction in Movement Disorders: a Window to the Disease Biology. Curr Neurol Neurosci Rep 2022; 22:565-576. [PMID: 35867306 DOI: 10.1007/s11910-022-01220-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE OF REVIEW To comprehensively summarize the sleep pathologies associated with movement disorders, focusing on neurodegenerative diseases. RECENT FINDINGS Mounting evidence has further implicated both sleep and circadian disruption in the pathophysiology of many movement disorders. In particular, recent data illuminate the mechanisms by which poor sleep quality and circadian dysfunction can exacerbate neurodegeneration. In addition, anti-IgLON5 disease is a recently described autoimmune disease with various symptoms that can feature prominent sleep disruption and parasomnia. Many movement disorders are associated with sleep and circadian rhythm disruption. Motor symptoms can cause sleep fragmentation, resulting in insomnia and excessive daytime sleepiness. Many neurodegenerative movement disorders involve brainstem pathology in regions close to or affecting nuclei that regulate sleep and wake. Further, commonly used movement medications may exacerbate sleep concerns. Providers should screen for and address these sleep symptoms to improve function and quality of life for patients and caregivers.
Collapse
Affiliation(s)
- Jordan Standlee
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Roneil Malkani
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA. .,Jesse Brown Veterans Affairs Medical Center, Neurology Service, 820 S Damen Ave, Damen Building, 9th floor, Chicago, IL, 60612, USA.
| |
Collapse
|
6
|
Abstract
Endogenous biological clocks, orchestrated by the suprachiasmatic nucleus, time the circadian rhythms that synchronize physiological and behavioural functions in humans. The circadian system influences most physiological processes, including sleep, alertness and cognitive performance. Disruption of circadian homeostasis has deleterious effects on human health. Neurodegenerative disorders involve a wide range of symptoms, many of which exhibit diurnal variations in frequency and intensity. These disorders also disrupt circadian homeostasis, which in turn has negative effects on symptoms and quality of life. Emerging evidence points to a bidirectional relationship between circadian homeostasis and neurodegeneration, suggesting that circadian function might have an important role in the progression of neurodegenerative disorders. Therefore, the circadian system has become an attractive target for research and clinical care innovations. Studying circadian disruption in neurodegenerative disorders could expand our understanding of the pathophysiology of neurodegeneration and facilitate the development of novel, circadian-based interventions for these disabling disorders. In this Review, we discuss the alterations to the circadian system that occur in movement (Parkinson disease and Huntington disease) and cognitive (Alzheimer disease and frontotemporal dementia) neurodegenerative disorders and provide directions for future investigations in this field.
Collapse
|
7
|
De Nobrega AK, Luz KV, Lyons LC. Resetting the Aging Clock: Implications for Managing Age-Related Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1260:193-265. [PMID: 32304036 DOI: 10.1007/978-3-030-42667-5_9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Worldwide, individuals are living longer due to medical and scientific advances, increased availability of medical care and changes in public health policies. Consequently, increasing attention has been focused on managing chronic conditions and age-related diseases to ensure healthy aging. The endogenous circadian system regulates molecular, physiological and behavioral rhythms orchestrating functional coordination and processes across tissues and organs. Circadian disruption or desynchronization of circadian oscillators increases disease risk and appears to accelerate aging. Reciprocally, aging weakens circadian function aggravating age-related diseases and pathologies. In this review, we summarize the molecular composition and structural organization of the circadian system in mammals and humans, and evaluate the technological and societal factors contributing to the increasing incidence of circadian disorders. Furthermore, we discuss the adverse effects of circadian dysfunction on aging and longevity and the bidirectional interactions through which aging affects circadian function using examples from mammalian research models and humans. Additionally, we review promising methods for managing healthy aging through behavioral and pharmacological reinforcement of the circadian system. Understanding age-related changes in the circadian clock and minimizing circadian dysfunction may be crucial components to promote healthy aging.
Collapse
Affiliation(s)
- Aliza K De Nobrega
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| | - Kristine V Luz
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| | - Lisa C Lyons
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
8
|
Abnormal Photic Entrainment to Phase-Delaying Stimuli in the R6/2 Mouse Model of Huntington's Disease, despite Retinal Responsiveness to Light. eNeuro 2019; 6:ENEURO.0088-19.2019. [PMID: 31744839 PMCID: PMC6905640 DOI: 10.1523/eneuro.0088-19.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 10/22/2019] [Accepted: 10/28/2019] [Indexed: 12/13/2022] Open
Abstract
The circadian clock located in the suprachiasmatic nucleus (SCN) in mammals entrains to ambient light via the retinal photoreceptors. This allows behavioral rhythms to change in synchrony with seasonal and daily changes in light period. Circadian rhythmicity is progressively disrupted in Huntington's disease (HD) and in HD mouse models such as the transgenic R6/2 line. Although retinal afferent inputs to the SCN are disrupted in R6/2 mice at late stages, they can respond to changes in light/dark cycles, as seen in jet lag and 23 h/d paradigms. To investigate photic entrainment and SCN function in R6/2 mice at different stages of disease, we first assessed the effect on locomotor activity of exposure to a 15 min light pulse given at different times of the day. We then placed the mice under five non-standard light conditions. These were light cycle regimes (T-cycles) of T21 (10.5 h light/dark), T22 (11 h light/dark), T26 (13 h light/dark), constant light, or constant dark. We found a progressive impairment in photic synchronization in R6/2 mice when the stimuli required the SCN to lengthen rhythms (phase-delaying light pulse, T26, or constant light), but normal synchronization to stimuli that required the SCN to shorten rhythms (phase-advancing light pulse and T22). Despite the behavioral abnormalities, we found that Per1 and c-fos gene expression remained photo-inducible in SCN of R6/2 mice. Both the endogenous drift of the R6/2 mouse SCN to shorter periods and its inability to adapt to phase-delaying changes will contribute to the HD circadian dysfunction.
Collapse
|
9
|
Rudenko O, Springer C, Skov LJ, Madsen AN, Hasholt L, Nørremølle A, Holst B. Ghrelin-mediated improvements in the metabolic phenotype in the R6/2 mouse model of Huntington's disease. J Neuroendocrinol 2019; 31:e12699. [PMID: 30776164 DOI: 10.1111/jne.12699] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/17/2019] [Accepted: 02/14/2019] [Indexed: 12/18/2022]
Abstract
Huntington's disease (HD) is a heritable neurodegenerative disorder, characterised by metabolic disturbances, along with cognitive and psychiatric impairments. Targeting metabolic HD dysfunction via the maintenance of body weight and fat mass and restoration of peripheral energy metabolism can improve the progression of neurological symptoms. In this respect, we focused on the therapeutic potential of the orexigenic peptide hormone ghrelin, which plays an important role in promoting a positive energy balance. In the present study, we found a significant disruption of circadian metabolic regulation in a R6/2 mouse HD model in the late stage of disease. Daily circadian rhythms of activity, energy expenditure, respiratory exchange ratio and feeding were strongly attenuated in R6/2 mice. During the rest phase, R6/2 mice had a higher total activity, elevated energy expenditure and excessive water consumption compared to control mice. We also found that, in the late stage of disease, R6/2 mice had ghrelin axis deficiency as a result of low circulating ghrelin levels, in addition to down-regulation of the ghrelin receptor and several key signalling molecules in the hypothalamus, as well as a reduced responsiveness to exogenous peripheral ghrelin. We demonstrated that, in pre-symptomatic mice, responsiveness to ghrelin is preserved. Chronic ghrelin treatment efficiently increased lean body mass and decreased the energy expenditure and fat utilisation of R6/2 mice in the early stage of disease. In addition, ghrelin treatment was also effective in the normalisation of drinking behaviour and the rest activity of these mice. Ghrelin treatment could provide a novel therapeutic possibility for delaying disease progression; however, deficiency in ghrelin receptor expression could limit its therapeutic potential in the late stage of disease.
Collapse
Affiliation(s)
- Olga Rudenko
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Section for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Cecilie Springer
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Section for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Louisa J Skov
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Section for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Andreas N Madsen
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Section for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Lis Hasholt
- Medical Genetics Program, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne Nørremølle
- Medical Genetics Program, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Birgitte Holst
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Section for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
10
|
Herzog–Krzywoszanska R, Krzywoszanski L. Sleep Disorders in Huntington's Disease. Front Psychiatry 2019; 10:221. [PMID: 31031659 PMCID: PMC6474183 DOI: 10.3389/fpsyt.2019.00221] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 03/26/2019] [Indexed: 12/13/2022] Open
Abstract
Huntington's chorea (Huntington's disease, HD) is a genetic disorder caused by autosomal dominant mutation, leading to progressive neurodegenerative changes in the central nervous system. Involuntary movements such as chorea occur typically in HD patients, accompanied by progressive cognitive and psychiatric disturbances. Other common symptoms of HD are circadian and sleep abnormalities, which are observed from the earliest stages of the disease or even before the occurrence of clinical symptoms. The most common sleep problems reported by HD patients include insomnia, difficulties in falling asleep, frequent nocturnal awakenings, and excessive daytime sleepiness. Also, specific changes in sleep architecture have been identified in HD. In this paper, we review studies on sleep and circadian rhythm disorders in HD. We outline findings concerning sleep patterns and disturbances of circadian rhythms in HD patients, as well as the role of psychiatric disorders and motor disorders in HD patients' sleep problems. We also discuss problems related to the different methods of diagnosing sleep disorders in HD. Furthermore, the adverse effects of medication used for the treatment of core HD symptoms as one of the sources of sleep disturbances in HD are emphasized. In conclusion, the diversity and complexity of the determinants of sleep and circadian rhythm disorders in HD are highlighted. Finally, the relevance of effective treatment to improve patients' functioning and quality of life as well as the potential relief of their cognitive and emotional symptoms is addressed.
Collapse
Affiliation(s)
| | - Lukasz Krzywoszanski
- Neurocognitive Psychology Unit, Chair of Psychology, Faculty of Pedagogy, Pedagogical University of Krakow, Krakow, Poland
| |
Collapse
|
11
|
Roles of aging in sleep. Neurosci Biobehav Rev 2019; 98:177-184. [DOI: 10.1016/j.neubiorev.2019.01.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 01/02/2019] [Accepted: 01/11/2019] [Indexed: 12/12/2022]
|
12
|
Whittaker DS, Loh DH, Wang HB, Tahara Y, Kuljis D, Cutler T, Ghiani CA, Shibata S, Block GD, Colwell CS. Circadian-based Treatment Strategy Effective in the BACHD Mouse Model of Huntington's Disease. J Biol Rhythms 2018; 33:535-554. [PMID: 30084274 DOI: 10.1177/0748730418790401] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Huntington's disease (HD) patients suffer from progressive neurodegeneration that results in cognitive, psychiatric, cardiovascular, and motor dysfunction. Disturbances in sleep-wake cycles are common among HD patients with reports of delayed sleep onset, frequent bedtime awakenings, and excessive fatigue. The BACHD mouse model exhibits many HD core symptoms including circadian dysfunction. Because circadian dysfunction manifests early in the disease in both patients and mouse models, we sought to determine if early interventions that improve circadian rhythmicity could benefit HD symptoms and delay disease progression. We evaluated the effects of time-restricted feeding (TRF) on the BACHD mouse model. At 3 months of age, the animals were divided into 2 groups: ad lib and TRF. The TRF-treated BACHD mice were exposed to a 6-h feeding/18-h fasting regimen that was designed to be aligned with the middle (ZT 15-21) of the period when mice are normally active (ZT 12-24). Following 3 months of treatment (when mice reached the early disease stage), the TRF-treated BACHD mice showed improvements in their locomotor activity and sleep behavioral rhythms. Furthermore, we found improved heart rate variability, suggesting that their autonomic nervous system dysfunction was improved. On a molecular level, TRF altered the phase but not the amplitude of the PER2::LUC rhythms measured in vivo and in vitro. Importantly, treated BACHD mice exhibited improved motor performance compared with untreated BACHD controls, and the motor improvements were correlated with improved circadian output. It is worth emphasizing that HD is a genetically caused disease with no known cure. Lifestyle changes that not only improve the quality of life but also delay disease progression for HD patients are greatly needed. Our study demonstrates the therapeutic potential of circadian-based treatment strategies in a preclinical model of HD.
Collapse
Affiliation(s)
- Daniel S Whittaker
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California, USA
| | - Dawn H Loh
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California, USA
| | - Huei-Bin Wang
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California, USA
| | - Yu Tahara
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California, USA
| | - Dika Kuljis
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California, USA
| | - Tamara Cutler
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California, USA
| | - Cristina A Ghiani
- Department of Pathology & Laboratory Medicine, University of California, Los Angeles, California, USA
| | - Shigenobu Shibata
- Waseda Institute for Advanced Study, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Gene D Block
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California, USA
| | - Christopher S Colwell
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
13
|
Diago EB, Martínez-Horta S, Lasaosa SS, Alebesque AV, Pérez-Pérez J, Kulisevsky J, del Val JL. Circadian Rhythm, Cognition, and Mood Disorders in Huntington’s Disease. J Huntingtons Dis 2018; 7:193-198. [DOI: 10.3233/jhd-180291] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Elena Bellosta Diago
- Department of Neurology, Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain
- Research group of Movement Disorders and Headache (GIIS070), Aragon Institute of Health Sciences, Zaragoza, Spain
| | - Saül Martínez-Horta
- Department of Neurology, Movement Disorders Unit, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Biomedical Research Institute Sant Pau (IIB-Sant Pau), Barcelona, Spain
| | - Sonia Santos Lasaosa
- Department of Neurology, Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain
- Research group of Movement Disorders and Headache (GIIS070), Aragon Institute of Health Sciences, Zaragoza, Spain
| | - Alejandro Viloria Alebesque
- Department of Neurology, Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain
- Research group of Movement Disorders and Headache (GIIS070), Aragon Institute of Health Sciences, Zaragoza, Spain
| | - Jesús Pérez-Pérez
- Department of Neurology, Movement Disorders Unit, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Biomedical Research Institute Sant Pau (IIB-Sant Pau), Barcelona, Spain
| | - Jaime Kulisevsky
- Department of Neurology, Movement Disorders Unit, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Biomedical Research Institute Sant Pau (IIB-Sant Pau), Barcelona, Spain
| | - Javier López del Val
- Department of Neurology, Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain
- Research group of Movement Disorders and Headache (GIIS070), Aragon Institute of Health Sciences, Zaragoza, Spain
| |
Collapse
|
14
|
Anderson KE, van Duijn E, Craufurd D, Drazinic C, Edmondson M, Goodman N, van Kammen D, Loy C, Priller J, Goodman LV. Clinical Management of Neuropsychiatric Symptoms of Huntington Disease: Expert-Based Consensus Guidelines on Agitation, Anxiety, Apathy, Psychosis and Sleep Disorders. J Huntingtons Dis 2018; 7:355-366. [PMID: 30040737 PMCID: PMC6294590 DOI: 10.3233/jhd-180293] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND In clinical practice, several strategies and pharmacological options are available to treat neuropsychiatric symptoms of Huntington disease (HD). However, there is currently insufficient data for evidence-based guidelines on the management of these common symptoms. OBJECTIVE We aimed to develop expert-based recommendations regarding the management of agitation, anxiety, apathy, psychosis, and sleep disorders. METHODS Guideline development was based on a modified Institute of Medicine guideline process that accounted for a lack of evidence base. An international committee of 11 multidisciplinary experts proposed a series of statements regarding the description and management of each symptom. Statement assessment and validation was performed using a web-based survey tool and 84 international HD experts (neurologists and psychiatrists) who assessed the statements and indicated their level of agreement. RESULTS High-level agreement (≥85% experts strongly agreed or agreed) was reached for 107 of the 110 statements that have been incorporated into the expert-based clinical recommendations presented herein. CONCLUSIONS Clinical statements to guide the routine management of agitation, anxiety, apathy, psychosis, and sleep disorders in HD have been developed. Although not specifically tested in the HD population, clinical experience has shown that most of the neuropsychiatric symptoms discussed, when considered in isolation are treatable using pharmacologic and non-pharmacologic strategies developed for use in other populations. However, the management of neuropsychiatric symptoms in HD can be complex because neuropsychiatric symptoms often co-exist and treatment decisions should be adapted to cover all symptoms while limiting polypharmacy.
Collapse
Affiliation(s)
- Karen E. Anderson
- Department of Psychiatry and Department of Neurology, Georgetown University, Washington, DC, USA
| | - Erik van Duijn
- Department of Psychiatry, Leiden University Medical Centre, Leiden; and Mental Health Care Centre Delfland, Delft, The Netherlands
| | - David Craufurd
- Manchester Centre for Genomic Medicine, Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- St Mary’s Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Carolyn Drazinic
- Chief Medical Officer of State Mental Health Facilities, Office of Substance Abuse and Mental Health Florida Department of Children and Families, Tallahassee, FL, USA
| | | | | | - Daniel van Kammen
- Consultant for CNS drug development, Professor emeritus University of Pittsburgh, Pittsburgh, PA, USA
| | - Clement Loy
- Westmead Huntington Disease Service, The University of Sydney, and the Garvan Institute of Medical Research, Sydney, Australia
| | - Josef Priller
- Department of Neuropsychiatry, Charité - Universitätsmedizin, Berlin, Germany and University of Edinburgh and UK DRI, Edinburgh, UK
| | | |
Collapse
|
15
|
Adams JL, Dinesh K, Xiong M, Tarolli CG, Sharma S, Sheth N, Aranyosi AJ, Zhu W, Goldenthal S, Biglan KM, Dorsey ER, Sharma G. Multiple Wearable Sensors in Parkinson and Huntington Disease Individuals: A Pilot Study in Clinic and at Home. Digit Biomark 2017; 1:52-63. [PMID: 32095745 DOI: 10.1159/000479018] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 06/26/2017] [Indexed: 12/24/2022] Open
Abstract
Background Clinician rating scales and patient-reported outcomes are the principal means of assessing motor symptoms in Parkinson disease and Huntington disease. However, these assessments are subjective and generally limited to episodic in-person visits. Wearable sensors can objectively and continuously measure motor features and could be valuable in clinical research and care. Methods We recruited participants with Parkinson disease, Huntington disease, and prodromal Huntington disease (individuals who carry the genetic marker but do not yet exhibit symptoms of the disease), and controls to wear 5 accelerometer-based sensors on their chest and limbs for standardized in-clinic assessments and for 2 days at home. The study's aims were to assess the feasibility of use of wearable sensors, to determine the activity (lying, sitting, standing, walking) of participants, and to survey participants on their experience. Results Fifty-six individuals (16 with Parkinson disease, 15 with Huntington disease, 5 with prodromal Huntington disease, and 20 controls) were enrolled in the study. Data were successfully obtained from 99.3% (278/280) of sensors dispatched. On average, individuals with Huntington disease spent over 50% of the total time lying down, substantially more than individuals with prodromal Huntington disease (33%, p = 0.003), Parkinson disease (38%, p = 0.01), and controls (34%; p < 0.001). Most (86%) participants were "willing" or "very willing" to wear the sensors again. Conclusions Among individuals with movement disorders, the use of wearable sensors in clinic and at home was feasible and well-received. These sensors can identify statistically significant differences in activity profiles between individuals with movement disorders and those without. In addition, continuous, objective monitoring can reveal disease characteristics not observed in clinic.
Collapse
Affiliation(s)
- Jamie L Adams
- Department of Neurology, University of Rochester Medical Center, Rochester, New York, USA.,Center for Health and Technology, University of Rochester Medical Center, Rochester, New York, USA
| | - Karthik Dinesh
- Department of Electrical and Computer Engineering, University of Rochester Medical Center, Rochester, New York, USA
| | - Mulin Xiong
- Center for Health and Technology, University of Rochester Medical Center, Rochester, New York, USA
| | - Christopher G Tarolli
- Department of Neurology, University of Rochester Medical Center, Rochester, New York, USA.,Center for Health and Technology, University of Rochester Medical Center, Rochester, New York, USA
| | - Saloni Sharma
- Center for Health and Technology, University of Rochester Medical Center, Rochester, New York, USA
| | | | | | - William Zhu
- Center for Health and Technology, University of Rochester Medical Center, Rochester, New York, USA
| | - Steven Goldenthal
- Center for Health and Technology, University of Rochester Medical Center, Rochester, New York, USA
| | - Kevin M Biglan
- Department of Neurology, University of Rochester Medical Center, Rochester, New York, USA.,Center for Health and Technology, University of Rochester Medical Center, Rochester, New York, USA
| | - E Ray Dorsey
- Department of Neurology, University of Rochester Medical Center, Rochester, New York, USA.,Center for Health and Technology, University of Rochester Medical Center, Rochester, New York, USA
| | - Gaurav Sharma
- Department of Electrical and Computer Engineering, University of Rochester Medical Center, Rochester, New York, USA.,Department of Computer Science, University of Rochester, Rochester, New York, USA
| |
Collapse
|
16
|
Nance MA. Psychiatric Management of Huntington's Disease. Psychiatr Ann 2017. [DOI: 10.3928/00485713-20170413-02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Jockers R, Delagrange P, Dubocovich ML, Markus RP, Renault N, Tosini G, Cecon E, Zlotos DP. Update on melatonin receptors: IUPHAR Review 20. Br J Pharmacol 2016; 173:2702-25. [PMID: 27314810 DOI: 10.1111/bph.13536] [Citation(s) in RCA: 297] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/15/2016] [Accepted: 05/19/2016] [Indexed: 02/06/2023] Open
Abstract
Melatonin receptors are seven transmembrane-spanning proteins belonging to the GPCR superfamily. In mammals, two melatonin receptor subtypes exist - MT1 and MT2 - encoded by the MTNR1A and MTNR1B genes respectively. The current review provides an update on melatonin receptors by the corresponding subcommittee of the International Union of Basic and Clinical Pharmacology. We will highlight recent developments of melatonin receptor ligands, including radioligands, and give an update on the latest phenotyping results of melatonin receptor knockout mice. The current status and perspectives of the structure of melatonin receptor will be summarized. The physiological importance of melatonin receptor dimers and biologically important and type 2 diabetes-associated genetic variants of melatonin receptors will be discussed. The role of melatonin receptors in physiology and disease will be further exemplified by their functions in the immune system and the CNS. Finally, antioxidant and free radical scavenger properties of melatonin and its relation to melatonin receptors will be critically addressed.
Collapse
Affiliation(s)
- Ralf Jockers
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS UMR 8104, Paris, France.,University Paris Descartes, Paris, France
| | | | - Margarita L Dubocovich
- Department Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Science, University at Buffalo (SUNY), Buffalo, USA
| | - Regina P Markus
- Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | | | - Gianluca Tosini
- Neuroscience Institute and Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Erika Cecon
- Inserm, U1016, Institut Cochin, Paris, France.,CNRS UMR 8104, Paris, France.,University Paris Descartes, Paris, France
| | - Darius P Zlotos
- Department of Pharmaceutical Chemistry, The German University in Cairo, New Cairo City, Cairo, Egypt
| |
Collapse
|