1
|
Smeraldo A, Ponsiglione AM, Netti PA, Torino E. Artificial neural network modelling hydrodenticity for optimal design by microfluidics of polymer nanoparticles to apply in magnetic resonance imaging. Acta Biomater 2023; 171:440-450. [PMID: 37775077 DOI: 10.1016/j.actbio.2023.09.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 09/11/2023] [Accepted: 09/17/2023] [Indexed: 10/01/2023]
Abstract
The engineering of nanoparticles impacts the control of their nano-bio interactions at each level of the delivery pathway. Therefore, optimal nanoparticle physicochemical properties should be identified to favour on-target interactions and deliver efficiently active compounds to a specific target. To date, traditional batch processes do not guarantee the reproducibility of results and low polydispersity index of the nanostructures, while microfluidics has emerged as cost effectiveness, short-production time approach to control the nanoparticle size and size distribution. Several thermodynamic processes have been implemented in microfluidics, such as nanoprecipitation, ionotropic gelation, self-assembly, etc., to produce nanoparticles in a continuous mode and high throughput way. In this work, we show how the Artificial Neural Network (ANN) can be adopted to model the impact of microfluidic parameters (namely, flow rates and polymer concentrations) on the size of the nanoparticles. Promising results have been obtained, with the highest model accuracy reaching 98.9 %, thus confirming the proposed approach's potential applicability for an ANN-guided biopolymer nanoparticle design for biomedical applications. Nanostructures with different degrees of complexity are analysed, and a proof-of-concept machine learning approach is proposed to evaluate Hydrodenticity in biopolymer matrices. STATEMENT OF SIGNIFICANCE: Size, shape and surface charge determine nano-bio interactions of nanoparticles and their ability to target diseases. The ideal nanoparticle design avoids off-target interactions and favours on-target interactions. So, tools enabling the identification of the optimal nanoparticle physicochemical properties for delivery to a specific target are required. In this work, we evaluate the use of Artificial Neural Network (ANN) to analyse the role of microfluidic parameters in predicting the optimal size of the different hydrogel nanoparticles and their ability to trigger Hydrodenticity.
Collapse
Affiliation(s)
- Alessio Smeraldo
- Department of Chemical, Materials and Production Engineering, University of Naples "Federico II", Piazzale Tecchio 80, 80125 Naples, Italy; Interdisciplinary Research Center on Biomaterials, CRIB, Piazzale Tecchio 80, 80125 Naples, Italy; Center for Advanced Biomaterials for Health Care, CABHC, Istituto Italiano di Tecnologia, IIT@CRIB, Largo Barsanti e Matteucci 53, 80125 Naples, Italy
| | - Alfonso Maria Ponsiglione
- Department of Chemical, Materials and Production Engineering, University of Naples "Federico II", Piazzale Tecchio 80, 80125 Naples, Italy
| | - Paolo Antonio Netti
- Department of Chemical, Materials and Production Engineering, University of Naples "Federico II", Piazzale Tecchio 80, 80125 Naples, Italy; Interdisciplinary Research Center on Biomaterials, CRIB, Piazzale Tecchio 80, 80125 Naples, Italy; Center for Advanced Biomaterials for Health Care, CABHC, Istituto Italiano di Tecnologia, IIT@CRIB, Largo Barsanti e Matteucci 53, 80125 Naples, Italy
| | - Enza Torino
- Department of Chemical, Materials and Production Engineering, University of Naples "Federico II", Piazzale Tecchio 80, 80125 Naples, Italy; Interdisciplinary Research Center on Biomaterials, CRIB, Piazzale Tecchio 80, 80125 Naples, Italy; Center for Advanced Biomaterials for Health Care, CABHC, Istituto Italiano di Tecnologia, IIT@CRIB, Largo Barsanti e Matteucci 53, 80125 Naples, Italy.
| |
Collapse
|
2
|
Smeraldo A, Ponsiglione AM, Soricelli A, Netti PA, Torino E. Update on the Use of PET/MRI Contrast Agents and Tracers in Brain Oncology: A Systematic Review. Int J Nanomedicine 2022; 17:3343-3359. [PMID: 35937076 PMCID: PMC9346926 DOI: 10.2147/ijn.s362192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 04/29/2022] [Indexed: 11/23/2022] Open
Abstract
The recent advancements in hybrid positron emission tomography–magnetic resonance imaging systems (PET/MRI) have brought massive value in the investigation of disease processes, in the development of novel treatments, in the monitoring of both therapy response and disease progression, and, not least, in the introduction of new multidisciplinary molecular imaging approaches. While offering potential advantages over PET/CT, the hybrid PET/MRI proved to improve both the image quality and lesion detectability. In particular, it showed to be an effective tool for the study of metabolic information about lesions and pathological conditions affecting the brain, from a better tumor characterization to the analysis of metabolic brain networks. Based on the PRISMA guidelines, this work presents a systematic review on PET/MRI in basic research and clinical differential diagnosis on brain oncology and neurodegenerative disorders. The analysis includes literature works and clinical case studies, with a specific focus on the use of PET tracers and MRI contrast agents, which are usually employed to perform hybrid PET/MRI studies of brain tumors. A systematic literature search for original diagnostic studies is performed using PubMed/MEDLINE, Scopus and Web of Science. Patients, study, and imaging characteristics were extracted from the selected articles. The analysis included acquired data pooling, heterogeneity testing, sensitivity analyses, used tracers, and reported patient outcomes. Our analysis shows that, while PET/MRI for the brain is a promising diagnostic method for early diagnosis, staging and recurrence in patients with brain diseases, a better definition of the role of tracers and imaging agents in both clinical and preclinical hybrid PET/MRI applications is needed and further efforts should be devoted to the standardization of the contrast imaging protocols, also considering the emerging agents and multimodal probes.
Collapse
Affiliation(s)
- Alessio Smeraldo
- Department of Chemical, Materials and Production Engineering, University of Naples “Federico II”, Naples, 80125, Italy
- Interdisciplinary Research Center on Biomaterials, CRIB, Naples, 80125, Italy
- Center for Advanced Biomaterials for Health Care, CABHC, Istituto Italiano di Tecnologia, IIT@CRIB, Naples, 80125, Italy
| | - Alfonso Maria Ponsiglione
- Department of Chemical, Materials and Production Engineering, University of Naples “Federico II”, Naples, 80125, Italy
| | - Andrea Soricelli
- Department of Motor Sciences and Healthiness, University of Naples “Parthenope”, Naples, 80133, Italy
| | - Paolo Antonio Netti
- Department of Chemical, Materials and Production Engineering, University of Naples “Federico II”, Naples, 80125, Italy
- Interdisciplinary Research Center on Biomaterials, CRIB, Naples, 80125, Italy
- Center for Advanced Biomaterials for Health Care, CABHC, Istituto Italiano di Tecnologia, IIT@CRIB, Naples, 80125, Italy
| | - Enza Torino
- Department of Chemical, Materials and Production Engineering, University of Naples “Federico II”, Naples, 80125, Italy
- Interdisciplinary Research Center on Biomaterials, CRIB, Naples, 80125, Italy
- Center for Advanced Biomaterials for Health Care, CABHC, Istituto Italiano di Tecnologia, IIT@CRIB, Naples, 80125, Italy
- Correspondence: Enza Torino, Department of Chemical, Materials and Production Engineering, University of Naples “Federico II”, Piazzale Tecchio 80, Naples, 80125, Italy, Tel +39-328-955-8158, Email
| |
Collapse
|
3
|
Lam FC, Salehi F, Kasper EM. Integrating Nanotechnology in Neurosurgery, Neuroradiology, and Neuro-Oncology Practice-The Clinicians' Perspective. Front Bioeng Biotechnol 2022; 10:801822. [PMID: 35223783 PMCID: PMC8864069 DOI: 10.3389/fbioe.2022.801822] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/11/2022] [Indexed: 12/11/2022] Open
Affiliation(s)
- Fred C Lam
- Division of Neurosurgery, Hamilton Health Sciences, McMaster University Faculty of Health Sciences, Hamilton, ON, Canada
| | - Fateme Salehi
- Department of Radiology, Hamilton Health Sciences, McMaster University Faculty of Health Sciences, Hamilton, ON, Canada
| | - Ekkehard M Kasper
- Division of Neurosurgery, Hamilton Health Sciences, McMaster University Faculty of Health Sciences, Hamilton, ON, Canada
| |
Collapse
|
4
|
Sahiner N, Umut E, Suner SS, Sahiner M, Culha M, Ayyala RS. Hyaluronic acid (HA)-Gd(III) and HA-Fe(III) microgels as MRI contrast enhancing agents. Carbohydr Polym 2022; 277:118873. [PMID: 34893278 DOI: 10.1016/j.carbpol.2021.118873] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 10/24/2021] [Accepted: 11/05/2021] [Indexed: 12/11/2022]
Abstract
Hyaluronic acid (HA) was crosslinked with Gd(III) and Fe(III) ions rendering physically crosslinked HA-metal(III) microgels as magnetic resonance imaging (MRI) enhancing contrast agents. These HA-Gd(III) and HA-Fe(III) microgels are injectable with size range, 50-5000 nm in water. The same isoelectric point, pH 1.2 ± 0.1, was measured for both microgels. HA-Gd(III) and HA-Fe(III) microgels are hemo-compatible biomaterials and can be safely used in intravascular applications up to 1000 μg/mL concentration. Furthermore, no significant toxicity was attained as 95 ± 8 and 81 ± 2% cell viability on L929 fibroblast cells at 100 μg/mL of HA-Gd(III) and HA-Fe(III) microgels were measured. Moreover, HA-Gd(III) microgels were found to afford significant contrast improvement capability in MRI with proton relaxivity, r1 = 2.11 mM-1 s-1, comparable with the values reported for Gd(III) labeled functionalized HA gel systems and commercial Gd based contrast agents.
Collapse
Affiliation(s)
- Nurettin Sahiner
- Department of Chemistry, Canakkale Onsekiz Mart University, Canakkale, Turkey; Department of Chemical and Biomolecular Engineering, University of South Florida, Tampa, FL 33620, USA; Department of Ophthalmology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs B. Downs Blv., MDC 21, Tampa, FL 33612, USA.
| | - Evrim Umut
- Department of Medical Imaging Techniques, School of Healthcare, Dokuz Eylul University, Narlıdere, Izmir 35330, Turkey
| | - Selin S Suner
- Department of Chemistry, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | - Mehtap Sahiner
- Department of Fashion Design, Canakkale School of Applied Science, Canakkale Onsekiz Mart University, Terzioglu Campus, Canakkale 17100, Turkey
| | - Mustafa Culha
- Department of Ophthalmology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs B. Downs Blv., MDC 21, Tampa, FL 33612, USA; Sabanci University Nanotechnology Research and Application Center (SUNUM), Orta Mh. Universite Cd. No:27/1, Tuzla, Istanbul 34956, Turkey
| | - Ramesh S Ayyala
- Department of Ophthalmology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs B. Downs Blv., MDC 21, Tampa, FL 33612, USA
| |
Collapse
|
5
|
Smeraldo A, Ponsiglione AM, Netti PA, Torino E. Tuning of Hydrogel Architectures by Ionotropic Gelation in Microfluidics: Beyond Batch Processing to Multimodal Diagnostics. Biomedicines 2021; 9:1551. [PMID: 34829780 PMCID: PMC8614968 DOI: 10.3390/biomedicines9111551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/05/2021] [Accepted: 10/25/2021] [Indexed: 12/11/2022] Open
Abstract
Microfluidics is emerging as a promising tool to control physicochemical properties of nanoparticles and to accelerate clinical translation. Indeed, microfluidic-based techniques offer more advantages in nanomedicine over batch processes, allowing fine-tuning of process parameters. In particular, the use of microfluidics to produce nanoparticles has paved the way for the development of nano-scaled structures for improved detection and treatment of several diseases. Here, ionotropic gelation is implemented in a custom-designed microfluidic chip to produce different nanoarchitectures based on chitosan-hyaluronic acid polymers. The selected biomaterials provide biocompatibility, biodegradability and non-toxic properties to the formulation, making it promising for nanomedicine applications. Furthermore, results show that morphological structures can be tuned through microfluidics by controlling the flow rates. Aside from the nanostructures, the ability to encapsulate gadolinium contrast agent for magnetic resonance imaging and a dye for optical imaging is demonstrated. In conclusion, the polymer nanoparticles here designed revealed the dual capability of enhancing the relaxometric properties of gadolinium by attaining Hydrodenticity and serving as a promising nanocarrier for multimodal imaging applications.
Collapse
Affiliation(s)
- Alessio Smeraldo
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy; (A.S.); (A.M.P.); (P.A.N.)
- Center for Advanced Biomaterials for Health Care—CABHC, Istituto Italiano di Tecnologia, IIT@CRIB, Largo Barsanti e Matteucci 53, 80125 Naples, Italy
| | - Alfonso Maria Ponsiglione
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy; (A.S.); (A.M.P.); (P.A.N.)
| | - Paolo Antonio Netti
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy; (A.S.); (A.M.P.); (P.A.N.)
- Center for Advanced Biomaterials for Health Care—CABHC, Istituto Italiano di Tecnologia, IIT@CRIB, Largo Barsanti e Matteucci 53, 80125 Naples, Italy
- Interdisciplinary Research Center on Biomaterials—CRIB, Piazzale Tecchio 80, 80125 Naples, Italy
| | - Enza Torino
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy; (A.S.); (A.M.P.); (P.A.N.)
- Center for Advanced Biomaterials for Health Care—CABHC, Istituto Italiano di Tecnologia, IIT@CRIB, Largo Barsanti e Matteucci 53, 80125 Naples, Italy
- Interdisciplinary Research Center on Biomaterials—CRIB, Piazzale Tecchio 80, 80125 Naples, Italy
| |
Collapse
|
6
|
Targeting Nanostrategies for Imaging of Atherosclerosis. CONTRAST MEDIA & MOLECULAR IMAGING 2021; 2021:6664471. [PMID: 33880112 PMCID: PMC8032543 DOI: 10.1155/2021/6664471] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 03/02/2021] [Accepted: 03/16/2021] [Indexed: 02/07/2023]
Abstract
Despite the progress in cardiovascular research, atherosclerosis still represents the main cause of death worldwide. Clinically, the diagnosis of Atherosclerotic Cardiovascular Disease (ASCVD) relies on imaging methodologies including X-ray angiography and computed tomography (CT), which however still fails in the identification of patients at high risk of plaque rupture, the main cause of severe clinical events as stroke and heart attack. Magnetic resonance imaging, which is characterized by very high spatial resolution, could provide a better characterization of atherosclerotic plaque (AP) anatomy and composition, aiding in the identification of “vulnerable” plaques. In this context, hydrogel matrices, which have been demonstrated able to boost relaxometric properties of Gd-based contrast agents (CAs) by the effect of Hydrodenticity, represent a valuable tool towards the precision imaging of ASCVD improving the performance of this class of CAs while reducing systemic toxicity. In particular, hydrogel nanoparticles encapsulating Gd-DTPA can further contribute to providing CA-specific accumulation in the AP by nanoparticle surface decoration triggering an active targeting of the AP with the overall effect of allowing an earlier and more accurate diagnosis. In this work, we tested crosslinked Hyaluronic Acid Nanoparticles (cHANPs) in the complex environment of human atherosclerotic plaque. In addition, the surface of cHANPs was decorated with the antibody anti-CD36 (Ab36-cHANPs) for the active targeting of AP-associated macrophages. Results demonstrate that the Hydrodenticity of cHANPs and Ab36-cHANPs is preserved in this complex system and, preliminarily, that interaction of these probes with the AP is present.
Collapse
|
7
|
Costagliola di Polidoro A, Zambito G, Haeck J, Mezzanotte L, Lamfers M, Netti PA, Torino E. Theranostic Design of Angiopep-2 Conjugated Hyaluronic Acid Nanoparticles (Thera-ANG-cHANPs) for Dual Targeting and Boosted Imaging of Glioma Cells. Cancers (Basel) 2021; 13:cancers13030503. [PMID: 33525655 PMCID: PMC7865309 DOI: 10.3390/cancers13030503] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/08/2021] [Accepted: 01/22/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Glioblastoma multiforme is the most aggressive malignant brain tumor with poor patient prognosis. The presence of the blood-brain barrier and the complex tumor microenvironment impair the efficient accumulation of drugs and contrast agents, causing late diagnosis, inefficient treatment and monitoring. Functionalized theranostic nanoparticles are a valuable tool to modulate biodistribution of active agents, promoting their active delivery and selective accumulation for an earlier diagnosis and effective treatment, and provide simultaneous therapy and imaging for improved evaluation of treatment efficacy. In this work, we developed angiopep-2 functionalized crosslinked hyaluronic acid nanoparticles encapsulating gadolinium-diethylenetriamine pentaacetic acid (Gd-DTPA) and irinotecan (Thera-ANG-cHANPs) that were shown to boost relaxometric properties of Gd-DTPA by the effect of Hydrodenticity, improve the uptake of nanoparticles by the exploitation of angiopep-2 improved transport properties, and accelerate the therapeutic effect of Irinotecan. Abstract Glioblastoma multiforme (GBM) has a mean survival of only 15 months. Tumour heterogeneity and blood-brain barrier (BBB) mainly hinder the transport of active agents, leading to late diagnosis, ineffective therapy and inaccurate follow-up. The use of hydrogel nanoparticles, particularly hyaluronic acid as naturally occurring polymer of the extracellular matrix (ECM), has great potential in improving the transport of drug molecules and, furthermore, in facilitatating the early diagnosis by the effect of hydrodenticity enabling the T1 boosting of Gadolinium chelates for MRI. Here, crosslinked hyaluronic acid nanoparticles encapsulating gadolinium-diethylenetriamine pentaacetic acid (Gd-DTPA) and the chemotherapeutic agent irinotecan (Thera-cHANPs) are proposed as theranostic nanovectors, with improved MRI capacities. Irinotecan was selected since currently repurposed as an alternative compound to the poorly effective temozolomide (TMZ), generally approved as the gold standard in GBM clinical care. Also, active crossing and targeting are achieved by theranostic cHANPs decorated with angiopep-2 (Thera-ANG-cHANPs), a dual-targeting peptide interacting with low density lipoprotein receptor related protein-1(LRP-1) receptors overexpressed by both endothelial cells of the BBB and glioma cells. Results showed preserving the hydrodenticity effect in the advanced formulation and internalization by the active peptide-mediated uptake of Thera-cHANPs in U87 and GS-102 cells. Moreover, Thera-ANG-cHANPs proved to reduce ironotecan time response, showing a significant cytotoxic effect in 24 h instead of 48 h.
Collapse
Affiliation(s)
- Angela Costagliola di Polidoro
- Department of Chemical, Materials and Production Engineering (DICMaPI), University of Naples Federico II, 80125 Naples, Italy; (A.C.d.P.); (P.A.N.)
- Fondazione Istituto Italiano di Tecnologia, IIT, 80125 Naples, Italy
| | - Giorgia Zambito
- Department of Molecular Genetics, Erasmus Medical Center, 3015 CN Rotterdam, The Netherlands; (G.Z.); (L.M.)
- Medres Medical Research GmBH, 50931 Cologne, Germany
- Department of Radiology and Nuclear Medicine, Erasmus Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Joost Haeck
- AMIE Core Facility, Erasmus Medical Center, 3015 CN Rotterdam, The Netherlands;
| | - Laura Mezzanotte
- Department of Molecular Genetics, Erasmus Medical Center, 3015 CN Rotterdam, The Netherlands; (G.Z.); (L.M.)
- Medres Medical Research GmBH, 50931 Cologne, Germany
| | - Martine Lamfers
- Department of Neurosurgery, Brain Tumor Center, Erasmus Medical Center, 3015 CN Rotterdam, The Netherlands;
| | - Paolo Antonio Netti
- Department of Chemical, Materials and Production Engineering (DICMaPI), University of Naples Federico II, 80125 Naples, Italy; (A.C.d.P.); (P.A.N.)
- Fondazione Istituto Italiano di Tecnologia, IIT, 80125 Naples, Italy
- AMIE Core Facility, Erasmus Medical Center, 3015 CN Rotterdam, The Netherlands;
| | - Enza Torino
- Department of Chemical, Materials and Production Engineering (DICMaPI), University of Naples Federico II, 80125 Naples, Italy; (A.C.d.P.); (P.A.N.)
- Interdisciplinary Research Center on Biomaterials, CRIB, University of Naples Federico II, 80125 Naples, Italy
- Correspondence:
| |
Collapse
|
8
|
Ponsiglione AM, Russo M, Torino E. Glycosaminoglycans and Contrast Agents: The Role of Hyaluronic Acid as MRI Contrast Enhancer. Biomolecules 2020; 10:biom10121612. [PMID: 33260661 PMCID: PMC7759866 DOI: 10.3390/biom10121612] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/11/2020] [Accepted: 11/26/2020] [Indexed: 12/27/2022] Open
Abstract
A comprehensive understanding of the behaviour of Glycosaminoglycans (GAGs) combined with imaging or therapeutic agents can be a key factor for the rational design of drug delivery and diagnostic systems. In this work, physical and thermodynamic phenomena arising from the complex interplay between GAGs and contrast agents for Magnetic Resonance Imaging (MRI) have been explored. Being an excellent candidate for drug delivery and diagnostic systems, Hyaluronic acid (HA) (0.1 to 0.7%w/v) has been chosen as a GAG model, and Gd-DTPA (0.01 to 0.2 mM) as a relevant MRI contrast agent. HA samples crosslinked with divinyl sulfone (DVS) have also been investigated. Water Diffusion and Isothermal Titration Calorimetry studies demonstrated that the interaction between HA and Gd-DTPA can form hydrogen bonds and coordinate water molecules, which plays a leading role in determining both the polymer conformation and the relaxometric properties of the contrast agent. This interaction can be modulated by changing the GAG/contrast agent molar ratio and by acting on the organization of the polymer network. The fine control over the combination of GAGs and imaging agents could represent an enormous advantage in formulating novel multifunctional diagnostic probes paving the way for precision nanomedicine tools.
Collapse
Affiliation(s)
- Alfonso Maria Ponsiglione
- Department of Electrical Engineering and Information Technology (DIETI), University of Naples “Federico II”, Via Claudio 21, 80125 Naples, Italy;
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Naples, Italy;
| | - Maria Russo
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Naples, Italy;
| | - Enza Torino
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Naples, Italy;
- Interdisciplinary Research Center on Biomaterials, CRIB, Piazzale V. Tecchio 80, 80125 Naples, Italy
- Correspondence: ; Tel.: +39-328-955-8158
| |
Collapse
|
9
|
New Strategies in the Design of Paramagnetic CAs. CONTRAST MEDIA & MOLECULAR IMAGING 2020; 2020:4327479. [PMID: 33071681 PMCID: PMC7537686 DOI: 10.1155/2020/4327479] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/31/2020] [Accepted: 08/04/2020] [Indexed: 11/17/2022]
Abstract
Nowadays, magnetic resonance imaging (MRI) is the first diagnostic imaging modality for numerous indications able to provide anatomical information with high spatial resolution through the use of magnetic fields and gradients. Indeed, thanks to the characteristic relaxation time of each tissue, it is possible to distinguish between healthy and pathological ones. However, the need to have brighter images to increase differences and catch important diagnostic details has led to the use of contrast agents (CAs). Among them, Gadolinium-based CAs (Gd-CAs) are routinely used in clinical MRI practice. During these last years, FDA highlighted many risks related to the use of Gd-CAs such as nephrotoxicity, heavy allergic effects, and, recently, about the deposition within the brain. These alerts opened a debate about the opportunity to formulate Gd-CAs in a different way but also to the use of alternative and safer compounds to be administered, such as manganese- (Mn-) based agents. In this review, the physical principle behind the role of relaxivity and the T1 boosting will be described in terms of characteristic correlation times and inner and outer spheres. Then, the recent advances in the entrapment of Gd-CAs within nanostructures will be analyzed in terms of relaxivity boosting obtained without the chemical modification of CAs as approved in the chemical practice. Finally, a critical evaluation of the use of manganese-based CAs will be illustrated as an alternative ion to Gd due to its excellent properties and endogenous elimination pathway.
Collapse
|
10
|
Tammaro O, Costagliola di Polidoro A, Romano E, Netti PA, Torino E. A Microfluidic Platform to design Multimodal PEG - crosslinked Hyaluronic Acid Nanoparticles (PEG-cHANPs) for diagnostic applications. Sci Rep 2020; 10:6028. [PMID: 32265496 PMCID: PMC7138812 DOI: 10.1038/s41598-020-63234-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 03/27/2020] [Indexed: 12/23/2022] Open
Abstract
The combination of different imaging modalities can allow obtaining simultaneously morphological and functional information providing a more accurate diagnosis. This advancement can be reached through the use of multimodal tracers, and nanotechnology-based solutions allow the simultaneous delivery of different diagnostic compounds moving a step towards their safe administration for multimodal imaging acquisition. Among different processes, nanoprecipitation is a consolidate method for the production of nanoparticles and its implementation in microfluidics can further improve the control over final product features accelerating its potential clinical translation. A Hydrodynamic Flow Focusing (HFF) approach is proposed to produce through a ONE-STEP process Multimodal Pegylated crosslinked Hyaluronic Acid NanoParticles (PEG-cHANPs). A monodisperse population of NPs with an average size of 140 nm is produced and Gd-DTPA and ATTO488 compounds are co-encapsulated, simultaneously. The results showed that the obtained multimodal nanoparticle could work as MRI/Optical imaging probe. Furthermore, under the Hydrodenticity effect, a boosting of the T1 values with respect to free Gd-DTPA is preserved.
Collapse
Affiliation(s)
- Olimpia Tammaro
- University of Naples Federico II, Department of Chemical, Materials and Production Engineering (DICMaPI), P.le Tecchio 80, 80125, Naples, Italy
- Fondazione Istituto Italiano di Tecnologia, IIT, Largo Barsanti e Matteucci 53, 80125, Naples, Italy
| | - Angela Costagliola di Polidoro
- University of Naples Federico II, Department of Chemical, Materials and Production Engineering (DICMaPI), P.le Tecchio 80, 80125, Naples, Italy
- Fondazione Istituto Italiano di Tecnologia, IIT, Largo Barsanti e Matteucci 53, 80125, Naples, Italy
| | - Eugenia Romano
- University of Naples Federico II, Department of Chemical, Materials and Production Engineering (DICMaPI), P.le Tecchio 80, 80125, Naples, Italy
- Fondazione Istituto Italiano di Tecnologia, IIT, Largo Barsanti e Matteucci 53, 80125, Naples, Italy
| | - Paolo Antonio Netti
- University of Naples Federico II, Department of Chemical, Materials and Production Engineering (DICMaPI), P.le Tecchio 80, 80125, Naples, Italy
- Fondazione Istituto Italiano di Tecnologia, IIT, Largo Barsanti e Matteucci 53, 80125, Naples, Italy
- Interdisciplinary Research Center on Biomaterials, CRIB, University of Naples Federico II, P.le Tecchio 80, 80125, Naples, Italy
| | - Enza Torino
- University of Naples Federico II, Department of Chemical, Materials and Production Engineering (DICMaPI), P.le Tecchio 80, 80125, Naples, Italy.
- Fondazione Istituto Italiano di Tecnologia, IIT, Largo Barsanti e Matteucci 53, 80125, Naples, Italy.
- Interdisciplinary Research Center on Biomaterials, CRIB, University of Naples Federico II, P.le Tecchio 80, 80125, Naples, Italy.
| |
Collapse
|
11
|
Effect of crosslinking agent to design nanostructured hyaluronic acid-based hydrogels with improved relaxometric properties. Carbohydr Polym 2019; 222:114991. [DOI: 10.1016/j.carbpol.2019.114991] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 06/08/2019] [Accepted: 06/11/2019] [Indexed: 12/11/2022]
|
12
|
De Sarno F, Ponsiglione AM, Russo M, Grimaldi AM, Forte E, Netti PA, Torino E. Water-Mediated Nanostructures for Enhanced MRI: Impact of Water Dynamics on Relaxometric Properties of Gd-DTPA. Theranostics 2019; 9:1809-1824. [PMID: 31037140 PMCID: PMC6485182 DOI: 10.7150/thno.27313] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 01/19/2019] [Indexed: 02/07/2023] Open
Abstract
Recently, rational design of a new class of contrast agents (CAs), based on biopolymers (hydrogels), have received considerable attention in Magnetic Resonance Imaging (MRI) diagnostic field. Several strategies have been adopted to improve relaxivity without chemical modification of the commercial CAs, however, understanding the MRI enhancement mechanism remains a challenge. Methods: A multidisciplinary approach is used to highlight the basic principles ruling biopolymer-CA interactions in the perspective of their influence on the relaxometric properties of the CA. Changes in polymer conformation and thermodynamic interactions of CAs and polymers in aqueous solutions are detected by isothermal titration calorimetric (ITC) measurements and later, these interactions are investigated at the molecular level using NMR to better understand the involved phenomena. Water molecular dynamics of these systems is also studied using Differential Scanning Calorimetry (DSC). To observe relaxometric properties variations, we have monitored the MRI enhancement of the examined structures over all the experiments. The study of polymer-CA solutions reveals that thermodynamic interactions between biopolymers and CAs could be used to improve MRI Gd-based CA efficiency. High-Pressure Homogenization is used to obtain nanoparticles. Results: The effect of the hydration of the hydrogel structure on the relaxometric properties, called Hydrodenticity and its application to the nanomedicine field, is exploited. The explanation of this concept takes place through several key aspects underlying biopolymer-CA's interactions mediated by the water. In addition, Hydrodenticity is applied to develop Gadolinium-based polymer nanovectors with size around 200 nm with improved MRI relaxation time (10-times). Conclusions: The experimental results indicate that the entrapment of metal chelates in hydrogel nanostructures offers a versatile platform for developing different high performing CAs for disease diagnosis.
Collapse
Affiliation(s)
- Franca De Sarno
- Department of Chemical, Materials Engineering & Industrial Production, University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy
- Center for Advanced Biomaterials for Health Care, CABHC, Istituto Italiano di Tecnologia, IIT@CRIB, Largo Barsanti e Matteucci 53, 80125 Naples, Italy
| | - Alfonso Maria Ponsiglione
- Department of Chemical, Materials Engineering & Industrial Production, University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy
- Center for Advanced Biomaterials for Health Care, CABHC, Istituto Italiano di Tecnologia, IIT@CRIB, Largo Barsanti e Matteucci 53, 80125 Naples, Italy
| | - Maria Russo
- Department of Chemical, Materials Engineering & Industrial Production, University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy
- Center for Advanced Biomaterials for Health Care, CABHC, Istituto Italiano di Tecnologia, IIT@CRIB, Largo Barsanti e Matteucci 53, 80125 Naples, Italy
| | | | - Ernesto Forte
- IRCCS SDN, Via E. Gianturco 113, 80143 Naples, Italy
| | - Paolo Antonio Netti
- Department of Chemical, Materials Engineering & Industrial Production, University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy
- Center for Advanced Biomaterials for Health Care, CABHC, Istituto Italiano di Tecnologia, IIT@CRIB, Largo Barsanti e Matteucci 53, 80125 Naples, Italy
- Interdisciplinary Research Center on Biomaterials, CRIB, Piazzale Tecchio 80, 80125 Naples, Italy
| | - Enza Torino
- Department of Chemical, Materials Engineering & Industrial Production, University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy
- Center for Advanced Biomaterials for Health Care, CABHC, Istituto Italiano di Tecnologia, IIT@CRIB, Largo Barsanti e Matteucci 53, 80125 Naples, Italy
- Interdisciplinary Research Center on Biomaterials, CRIB, Piazzale Tecchio 80, 80125 Naples, Italy
| |
Collapse
|
13
|
Azzawi M. Advances in biomaterial design and application for medical intervention. Nanomedicine (Lond) 2017; 12:2151-2152. [PMID: 28856990 DOI: 10.2217/nnm-2017-0263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- May Azzawi
- School of Healthcare Science, Faculty of Science & Engineering, Manchester Metropolitan University, Manchester, UK
| |
Collapse
|