1
|
Dragicevic N, Predic-Atkinson J, Nikolic B, Pajovic SB, Ivkovic S, Adzic M. Nanocarriers in topical photodynamic therapy. Expert Opin Drug Deliv 2024; 21:279-307. [PMID: 38349540 DOI: 10.1080/17425247.2024.2318460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 02/09/2024] [Indexed: 02/22/2024]
Abstract
INTRODUCTION Photodynamic therapy (PDT) has gained significant attention due to its superiority over conventional treatments. In the context of skin cancers and nonmalignant skin diseases, topical application of photosensitizer formulations onto affected skin, followed by illumination, offers distinct advantages. Topical PDT simplifies therapy by providing easy access to the skin, increasing drug concentration within the target area, and confining residual photosensitivity to the treated skin. However, the effectiveness of topical PDT is often hindered by challenges such as limited skin penetration or photosensitizer instability. Additionally, the hypoxic tumor environment poses further limitations. Nanocarriers present a promising solution to address these challenges. AREAS COVERED The objective of this review is to comprehensively explore and highlight the role of various nanocarriers in advancing topical PDT for the treatment of skin diseases. The primary focus is to address the challenges associated with conventional topical PDT approaches and demonstrate how nanotechnology-based strategies can overcome these challenges, thereby improving the overall efficiency and efficacy of PDT. EXPERT OPINION Nanotechnology has revolutionized the field of PDT, offering innovative tools to combat the unfavorable features of photosensitizers and hurdles in PDT. Nanocarriers enhance skin penetration and stability of photosensitizers, provide controlled drug release, reduce needed dose, increase production of reactive oxygen species, while reducing side effects, thereby improving PDT effectiveness.
Collapse
Affiliation(s)
- Nina Dragicevic
- Department of Pharmacy, Singidunum University, Belgrade, Serbia
| | | | - Bojan Nikolic
- Faculty of Health and Business studies, Singidunum University, Valjevo, Serbia
| | - Snezana B Pajovic
- Institute of Nuclear sciences "Vinča", National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Sanja Ivkovic
- Institute of Nuclear sciences "Vinča", National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Miroslav Adzic
- Institute of Nuclear sciences "Vinča", National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
2
|
Wang Q, Chen N, Li M, Yao S, Sun X, Feng X, Chen Y. Light-related activities of metal-based nanoparticles and their implications on dermatological treatment. Drug Deliv Transl Res 2023; 13:386-399. [PMID: 35908132 DOI: 10.1007/s13346-022-01216-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2022] [Indexed: 12/30/2022]
Abstract
Metal-based nanoparticles (MNPs) represent an emerging class of materials that have attracted enormous attention in many fields. By comparison with other biomaterials, MNPs own unique optical properties which make them a potential alternative to conventional therapeutic agents in medical applications. Especially, owing to the easy access to the skin, the use of MNPs based on their optical properties has gained importance for the treatment of a variety of skin diseases. This review provides an insight into the different optical properties of MNPs, including photoprotection, photocatalysis, and photothermal, and highlights their implications in treating skin disorders, with a special emphasis on their use in infection control. Finally, a perspective on the safety concern of MNPs for dermatological use is discussed and analyzed. The information gathered and presented in this review will help the readers have a comprehensive understanding of utilizing the photo-triggered activity of MNPs for the treatment of skin diseases.
Collapse
Affiliation(s)
- Qiuyue Wang
- Department of Pharmaceutics, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, ShenyangShenyang, 110122, China
| | - Naiying Chen
- Department of Pharmaceutics, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, ShenyangShenyang, 110122, China
| | - Mingming Li
- Department of Pharmaceutics, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, ShenyangShenyang, 110122, China
| | - Sicheng Yao
- Department of Pharmaceutics, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, ShenyangShenyang, 110122, China
| | - Xinxing Sun
- Department of Pharmaceutics, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, ShenyangShenyang, 110122, China
| | - Xun Feng
- Department of Sanitary Chemistry, School of Public Health, Shenyang Medical College, No.146 Yellow River North Street, Shenyang, 110034, China.
| | - Yang Chen
- Department of Pharmaceutics, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, ShenyangShenyang, 110122, China.
| |
Collapse
|
3
|
Li D, Liu P, Tan Y, Zhang Z, Kang M, Wang D, Tang BZ. Type I Photosensitizers Based on Aggregation-Induced Emission: A Rising Star in Photodynamic Therapy. BIOSENSORS 2022; 12:bios12090722. [PMID: 36140107 PMCID: PMC9496375 DOI: 10.3390/bios12090722] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/26/2022] [Accepted: 09/01/2022] [Indexed: 05/09/2023]
Abstract
Photodynamic therapy (PDT), emerging as a minimally invasive therapeutic modality with precise controllability and high spatiotemporal accuracy, has earned significant advancements in the field of cancer and other non-cancerous diseases treatment. Thereinto, type I PDT represents an irreplaceable and meritorious part in contributing to these delightful achievements since its distinctive hypoxia tolerance can perfectly compensate for the high oxygen-dependent type II PDT, particularly in hypoxic tissues. Regarding the diverse type I photosensitizers (PSs) that light up type I PDT, aggregation-induced emission (AIE)-active type I PSs are currently arousing great research interest owing to their distinguished AIE and aggregation-induced generation of reactive oxygen species (AIE-ROS) features. In this review, we offer a comprehensive overview of the cutting-edge advances of novel AIE-active type I PSs by delineating the photophysical and photochemical mechanisms of the type I pathway, summarizing the current molecular design strategies for promoting the type I process, and showcasing current bioapplications, in succession. Notably, the strategies to construct highly efficient type I AIE PSs were elucidated in detail from the two aspects of introducing high electron affinity groups, and enhancing intramolecular charge transfer (ICT) intensity. Lastly, we present a brief conclusion, and a discussion on the current limitations and proposed opportunities.
Collapse
Affiliation(s)
- Danxia Li
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Peiying Liu
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yonghong Tan
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Zhijun Zhang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Miaomiao Kang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
- Correspondence: (M.K.); (D.W.)
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
- Correspondence: (M.K.); (D.W.)
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen 518172, China
| |
Collapse
|
4
|
Ramanunny AK, Wadhwa S, Gulati M, Singh SK, Kapoor B, Dureja H, Chellappan DK, Anand K, Dua K, Khursheed R, Awasthi A, Kumar R, Kaur J, Corrie L, Pandey NK. Nanocarriers for treatment of dermatological diseases: Principle, perspective and practices. Eur J Pharmacol 2020; 890:173691. [PMID: 33129787 DOI: 10.1016/j.ejphar.2020.173691] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/15/2020] [Accepted: 10/26/2020] [Indexed: 10/23/2022]
Abstract
Skin diseases are the fourth leading non-fatal skin conditions that act as a burden and affect the world economy globally. This condition affects the quality of a patient's life and has a pronounced impact on both their physical and mental state. Treatment of these skin conditions with conventional approaches shows a lack of efficacy, long treatment duration, recurrence of conditions, systemic side effects, etc., due to improper drug delivery. However, these pitfalls can be overcome with the applications of nanomedicine-based approaches that provide efficient site-specific drug delivery at the target site. These nanomedicine-based strategies are evolved as potential treatment opportunities in the form of nanocarriers such as polymeric and lipidic nanocarriers, nanoemulsions along with emerging others viz. carbon nanotubes for dermatological treatment. The current review focuses on challenges faced by the existing conventional treatments along with the topical therapeutic perspective of nanocarriers in treating various skin diseases. A total of 213 articles have been reviewed and the application of different nanocarriers in treating various skin diseases has been explained in detail through case studies of previously published research works. The toxicity related aspects of nanocarriers are also discussed.
Collapse
Affiliation(s)
| | - Sheetu Wadhwa
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India.
| | - Bhupinder Kapoor
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Dinesh Kumar Chellappan
- School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Krishnan Anand
- Department of Chemical Pathology, School of Pathology, Faculty of Health Sciences and National Health Laboratory Service, University of the Free State, Bloemfontein, South Africa
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Rubiya Khursheed
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Ankit Awasthi
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Rajan Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Jaskiran Kaur
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Leander Corrie
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Narendra Kumar Pandey
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| |
Collapse
|
5
|
Nanocarriers as versatile delivery systems for effective management of acne. Int J Pharm 2020; 579:119140. [DOI: 10.1016/j.ijpharm.2020.119140] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/26/2020] [Accepted: 02/12/2020] [Indexed: 12/23/2022]
|
6
|
Arriagada F, Nonell S, Morales J. Silica-based nanosystems for therapeutic applications in the skin. Nanomedicine (Lond) 2019; 14:2243-2267. [PMID: 31411537 DOI: 10.2217/nnm-2019-0052] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aging, exposure to oxidants, infectious pathogens, inflammogens, ultraviolet radiation and other environmental and genetic factors can result in the development of various skin disorders. Despite immense progress being made in dermatological treatments, many skin-associated problems still remain difficult to treat and various therapies have limitations. Progress in silica-based nanomaterials research provides an opportunity to overcome these drawbacks and improve therapies and is a promising tool for inclusion in clinical practice to treat skin diseases. This review focuses on the use of various types of silica nanoparticles with therapeutic applications in various skin disorders. These nanosystems improve treatment efficacy by maintaining or enhancing the effect of several drugs and are useful tools for nanomedicine, pharmaceutical sciences and future clinical applications.
Collapse
Affiliation(s)
- Francisco Arriagada
- Departamento de Ciencias y Tecnología Farmacéuticas, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380494, Chile
| | - Santi Nonell
- Institut Químic de Sarrià (IQS), University Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain
| | - Javier Morales
- Departamento de Ciencias y Tecnología Farmacéuticas, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380494, Chile
| |
Collapse
|
7
|
Lorenzoni D, Souto CAZ, Araujo MB, de Souza Berger C, da Silva LCD, Baratti MO, Ribeiro JN, Endringer DC, Guimarães MCC, da Silva AR. PLGA-PEG nanoparticles containing gallium phthalocyanine: Preparation, optimization and analysis of its photodynamic efficiency on red blood cell and Hepa-1C1C7. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 198:111582. [PMID: 31442827 DOI: 10.1016/j.jphotobiol.2019.111582] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 07/25/2019] [Accepted: 07/31/2019] [Indexed: 12/27/2022]
Abstract
Poly(lactide-co-glycolide) (PLGA) has been used for the encapsulation of phthalocyanine motived by its biocompatibility and biodegradability. Many studies have already been done to evaluate the influence of parameters used in the PLGA nanoparticle synthesis but without the evaluation of the combinatory interaction between these parameters on the nanoparticulate properties. Ga(III)-phthalocyanine (GaPc) was encapsulated into the PEGlated PLGA-nanoparticles and the individual and combinatory effects of the emulsification time, the method used for the nanoparticle synthesis and the temperature of the aqueous phase was evaluated on the size, entrapment efficiency, efficacy of nanoparticle recovery, residual PVA and zeta potential value using a 23 factorial design (FD). Mathematical models were adjustable to the data and evolutionary operations were performed to optimize the nanoparticle size. The ability of the optimized nanoparticle to decrease the viability of the Hepa-1C1C7 cell and the blood red cell was also evaluated. The FD disclosed the emulsification-diffusion method decreased the residual PVA and the size of PLGA-PEG nanoparticle, but also decreased the entrapment efficiency of GaPc, the zeta potential absolute value and the recovery efficacy of nanoparticles. The combinatory effect between the method used in the nanoparticle preparation and the temperature of aqueous phase influenced four of the five evaluated properties. The viability of Hepa-1C1C7 cells was reduced until 13× when the cells were irradiated in the presence of encapsulated GaPc while it was decreased until 4.7× when the experiment was carried out with the free GaPc. The encapsulated GaPc was also more efficient to cause the haemolysis of the RBC than it was the free GaPc. The optimization of the nanoparticles synthesis increased the efficiency of the GaPc to oxidize the evaluated cells.
Collapse
Affiliation(s)
- Drielly Lorenzoni
- Federal Institute of Espírito Santo, Campus Aracruz, 29192-733 Aracruz, ES, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|