1
|
Xu Q, Zhang H, Liu H, Han Y, Qiu W, Li Z. Inhibiting autophagy flux and DNA repair of tumor cells to boost radiotherapy of orthotopic glioblastoma. Biomaterials 2021; 280:121287. [PMID: 34864449 DOI: 10.1016/j.biomaterials.2021.121287] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/18/2021] [Accepted: 11/25/2021] [Indexed: 12/27/2022]
Abstract
Radio-resistance of glioblastoma (GBM) remains a leading cause of radiotherapy failure because of the protective autophagy induced by X-Ray irradiation and tumor cells' strong capability of repairing damaged DNA. It is of great importance to overcome the radio-resistance for improving the efficacy of radiotherapy. Herein, we report the novel mechanism of core-shell copper selenide coated gold nanoparticles (Au@Cu2-xSe NPs) inhibiting the protective autophagy and DNA repair of tumor cells to drastically boost the radiotherapy efficacy of glioblastoma. We reveal that the core-shell Au@Cu2-xSe NPs can inhibit the autophagy flux by effectively alkalizing lysosomes. They can increase the SQSTM1/p62 protein levels of tumor cells without influencing their mRNA. We also reveal that Au@Cu2-xSe NPs can increase the ubiquitination of DNA repair protein Rad51, and promote the degradation of Rad51 by proteasomes to prevent the DNA repair. The simultaneous inhibition of protective autophagy and DNA repair significantly suppress the growth of orthotopic GBM by using radiotherapy and our novel Au@Cu2-xSe NPs. Our work provides a new insight and paradigm to significantly improve the efficacy of radiotherapy by rationally designing theranostic nano-agents to simultaneously inhibit protective autophagy and DNA repair of tumor cells.
Collapse
Affiliation(s)
- Qi Xu
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, P.R. China
| | - Hao Zhang
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, P.R. China; College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P.R. China.
| | - Hanghang Liu
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, P.R. China
| | - Yaobao Han
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, P.R. China
| | - Weibao Qiu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P.R. China
| | - Zhen Li
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, P.R. China.
| |
Collapse
|
2
|
Zhang S, Li G, Deng D, Dai Y, Liu Z, Wu S. Fluorinated Chitosan Mediated Synthesis of Copper Selenide Nanoparticles with Enhanced Penetration for Second Near‐Infrared Photothermal Therapy of Bladder Cancer. ADVANCED THERAPEUTICS 2021; 4:2100043. [DOI: 10.1002/adtp.202100043] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Indexed: 02/05/2023]
Affiliation(s)
- Shaohua Zhang
- Department of Urology The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group) Shenzhen 518000 China
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences Guangzhou 510530 China
| | - Guangzhi Li
- Department of Urology The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group) Shenzhen 518000 China
| | - Dashi Deng
- Department of Urology The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group) Shenzhen 518000 China
| | - Yizhi Dai
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon‐Based Functional Materials & Devices Soochow University Suzhou 215123 China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon‐Based Functional Materials & Devices Soochow University Suzhou 215123 China
| | - Song Wu
- Department of Urology The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group) Shenzhen 518000 China
- Teaching Center of Shenzhen Luohu Hospital Shantou University Medical College Shantou 515000 China
- Department of Urology and Guangdong Key Laboratory of Urology The First Affiliated Hospital of Guangzhou Medical University Guangzhou 510230 China
| |
Collapse
|
3
|
Leng F, Liu Y, Li G, Lai W, Zhang Q, Liu W, Hu C, Li P, Sheng F, Huang J, Zhang R. Cu2−xSe nanoparticles (Cu2−xSe NPs) mediated neurotoxicityviaoxidative stress damage in PC-12 cells and BALB/c mice. RSC Adv 2019; 9:36558-36569. [PMID: 35539053 PMCID: PMC9075139 DOI: 10.1039/c9ra06245a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 10/26/2019] [Indexed: 12/02/2022] Open
Abstract
Cu2−xSe nanoparticles (Cu2−xSe NPs) are widely used for optical diagnostic imaging and photothermal therapy due to their strong near-infrared (NIR) optical absorption. With the continuous expansion of applications using Cu2−xSe NPs, their biosafety has received increasing attention in recent years. Cu2−xSe NPs can enter the brain by crossing the blood–brain barrier, but the neurotoxicity of NPs remains unclear. The present investigation provides direct evidence that the toxicity of Cu2−xSe NPs can be specifically exploited to kill rat pheochromocytoma PC-12 cells (a cell line used as an in vitro model for brain neuron research) in dose- and time-dependent manners. These cytotoxicity events were accompanied by mitochondrial damage, adenosine triphosphate (ATP) depletion, production of oxidizing species (including reactive oxygen species (ROS), malondialdehyde (MDA) and hydrogen peroxide (H2O2)), as well as reductions in antioxidant defense systems (glutathione (GSH) and superoxide dismutase (SOD)). Moreover, our in vivo study also confirmed that Cu2−xSe NPs markedly induced neurotoxicity and oxidative stress damage in the striatum and hippocampal tissues of BALB/c mice. These findings suggest that Cu2−xSe NPs induce neurotoxicity in PC-12 cells and BALB/c mice via oxidative stress damage, which provides useful information for understanding the neurotoxicity of Cu2−xSe NPs. Cu2−xSe nanoparticles (Cu2−xSe NPs) are widely used for optical diagnostic imaging and photothermal therapy due to their strong near-infrared (NIR) optical absorption.![]()
Collapse
Affiliation(s)
- Faning Leng
- Department of Pharmacology
- The Second Affiliated Hospital of Army Medical University
- Chongqing
- China
| | - Yali Liu
- Department of Pharmacology
- The Second Affiliated Hospital of Army Medical University
- Chongqing
- China
| | - Guobing Li
- Department of Pharmacology
- The Second Affiliated Hospital of Army Medical University
- Chongqing
- China
| | - Wenjing Lai
- Department of Pharmacology
- The Second Affiliated Hospital of Army Medical University
- Chongqing
- China
| | - Qian Zhang
- Department of Pharmacology
- The Second Affiliated Hospital of Army Medical University
- Chongqing
- China
| | - Wuyi Liu
- Department of Pharmacology
- The Second Affiliated Hospital of Army Medical University
- Chongqing
- China
| | - Changpeng Hu
- Department of Pharmacology
- The Second Affiliated Hospital of Army Medical University
- Chongqing
- China
| | - Pantong Li
- Department of Pharmacology
- The Second Affiliated Hospital of Army Medical University
- Chongqing
- China
| | - Fangfang Sheng
- Department of Pharmacology
- The Second Affiliated Hospital of Army Medical University
- Chongqing
- China
| | - Jingbin Huang
- Department of Pharmacology
- The Second Affiliated Hospital of Army Medical University
- Chongqing
- China
| | - Rong Zhang
- Department of Pharmacology
- The Second Affiliated Hospital of Army Medical University
- Chongqing
- China
| |
Collapse
|