1
|
Tu L, Han P, Sun Y, Jin Y, Hu K, Cheng M, Shao Y, Feng J, Yuan F. Study on the preparation of stabilizer-free silymarin nanocrystals and its oral absorption mechanisms. Int J Pharm X 2024; 8:100292. [PMID: 39498271 PMCID: PMC11533498 DOI: 10.1016/j.ijpx.2024.100292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/30/2024] [Accepted: 10/09/2024] [Indexed: 11/07/2024] Open
Abstract
Many researchers have studied the oral absorption mechanisms yet, however, considering stabilizers often participate in the absorption process of nanocrystals, these known mechanisms may be incorrect. Hence in this study, we aimed to explore the correct absorption mechanism of nanocrystals by performing related studies on stabilizer-free nanocrystals. We firstly prepared stabilizer-free silymarin nanocrystals by high-pressure homogenization, and then performed absorption-related studies, such as solubility, dissolution rate, pharmacokinetic study, cellular uptake and intracellular transport. Results showed the stabilizer-free silymarin nanocrystals had an average particle size of (450.2 ± 4.46) nm, with PDI of 0.280 ± 0.021 and Zeta potential of -26.9 ± 2.4 mV. The conversion of silymarin crude drug to stabilizer-free silymarin nanocrystals increased the compound's solubility by 1.41 times, with a dissolution rate of 92.2 % in water within 30 min compared to 38.5 % for crude drugs. Pharmacokinetic studies showed the oral bioavailability of stabilizer-free silymarin nanocrystals was found to be 1.48 times greater than that of the crude drugs. The cell experimentation results demonstrated that the stabilizer-silymarin nanocrystals can improve uptake but have poor transmembrane transport properties. Most researchers believe that nanocrystals can enhance transmembrane transport of drugs via an endocytosis-mediated pathway. In fact, nanocrystals are indeed endocytosed more by the cells, but this transport pathway is poor because the cells lack the intracellular transport pathway to transport nanocrystals from the AP side to the BP side. Therefore, we believe that the intracellular transport of nanocrystals can be enhanced by modifications and other carriers if needed to improve nanocrystals' ability to promote oral absorption.
Collapse
Affiliation(s)
- Liangxing Tu
- Jiangxi University of Chinese Medicine, Nanchang 330006, PR China
| | - Ping Han
- Jiangxi University of Chinese Medicine, Nanchang 330006, PR China
| | - Yongbing Sun
- Jiangxi University of Chinese Medicine, Nanchang 330006, PR China
| | - Yi Jin
- Jiangxi University of Chinese Medicine, Nanchang 330006, PR China
| | - Kaili Hu
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Meng Cheng
- Jiangxi University of Chinese Medicine, Nanchang 330006, PR China
| | - Yisen Shao
- Jiangxi University of Chinese Medicine, Nanchang 330006, PR China
| | - Jianfang Feng
- Jiangxi University of Chinese Medicine, Nanchang 330006, PR China
- Guangxi University of Chinese Medicine, Nanning 530200, PR China
| | - Fangying Yuan
- Jiangxi University of Chinese Medicine, Nanchang 330006, PR China
| |
Collapse
|
2
|
Shaikh MAJ, Gupta G, Bagiyal P, Gupta S, Singh SK, Pillappan R, Chellappan DK, Prasher P, Jakhmola V, Singh TG, Dureja H, Singh SK, Dua K. Enhancing drug bioavailability for Parkinson's disease: The promise of chitosan delivery mechanisms. ANNALES PHARMACEUTIQUES FRANÇAISES 2024:S0003-4509(24)00107-X. [PMID: 39089365 DOI: 10.1016/j.pharma.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/20/2024] [Accepted: 07/25/2024] [Indexed: 08/03/2024]
Abstract
Parkinson's disease (PD) is a widely seen neurodegenerative condition recognized by misfolded α-synuclein (αSyn) protein, a prominent indicator for PD and other synucleinopathies. Motor symptoms like stiffness, akinesia, rest tremor, and postural instability coexist with nonmotor symptoms that differ from person to person in the development of PD. These symptoms arise from a progressive loss of synapses and neurons, leading to a widespread degenerative process in multiple organs. Implementing medical and surgical interventions, such as deep brain stimulation, has enhanced individuals' overall well-being and long-term survival with PD. It should be mentioned that these treatments cannot stop the condition from getting worse. The complicated structure of the brain and the existence of a semi-permeable barrier, commonly known as the BBB, have traditionally made medication delivery for the treatment of PD a challenging endeavor. The drug's low lipophilic nature, enormous size, and peculiarity for various ATP-dependent transport mechanisms hinder its ability to enter brain cells. This article delves at the potential of drug delivery systems based on chitosan (CS) to treat PD.
Collapse
Affiliation(s)
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Pawan Bagiyal
- HLL Lifecare Limited, AMRIT Pharmacy, AIIMS Rishikesh, Rishikesh, Uttarakhand, India
| | - Saurabh Gupta
- Chameli Devi Institute of Pharmacy, Indore, Madhya Pradesh, India
| | | | - Ramkumar Pillappan
- NITTE (Deemed to be University), NGSM Institute of Pharmaceutical Sciences [NGSMIPS], Mangaluru, Karnataka, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Parteek Prasher
- Department of Chemistry, University of Petroleum & Energy Studies, Energy Acres, Dehradun 248007, India
| | - Vikas Jakhmola
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun 248007, India
| | | | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Center in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Center in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
3
|
Marques AC, Costa PC, Velho S, Amaral MH. Analytical Techniques for Characterizing Tumor-Targeted Antibody-Functionalized Nanoparticles. Life (Basel) 2024; 14:489. [PMID: 38672759 PMCID: PMC11051252 DOI: 10.3390/life14040489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
The specific interaction between cell surface receptors and corresponding antibodies has driven opportunities for developing targeted cancer therapies using nanoparticle systems. It is challenging to design and develop such targeted nanomedicines using antibody ligands, as the final nanoconjugate's specificity hinges on the cohesive functioning of its components. The multicomponent nature of antibody-conjugated nanoparticles also complicates the characterization process. Regardless of the type of nanoparticle, it is essential to perform physicochemical characterization to establish a solid foundation of knowledge and develop suitable preclinical studies. A meaningful physicochemical evaluation of antibody-conjugated nanoparticles should include determining the quantity and orientation of the antibodies, confirming the antibodies' integrity following attachment, and assessing the immunoreactivity of the obtained nanoconjugates. In this review, the authors describe the various techniques (electrophoresis, spectroscopy, colorimetric assays, immunoassays, etc.) used to analyze the physicochemical properties of nanoparticles functionalized with antibodies and discuss the main results.
Collapse
Affiliation(s)
- Ana Camila Marques
- UCIBIO—Applied Molecular Biosciences Unit, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Paulo C. Costa
- UCIBIO—Applied Molecular Biosciences Unit, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Sérgia Velho
- i3S—Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal
- IPATIMUP—Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal
| | - Maria Helena Amaral
- UCIBIO—Applied Molecular Biosciences Unit, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
4
|
Priya V, Samridhi, Singh N, Dash D, Muthu MS. Nattokinase Encapsulated Nanomedicine for Targeted Thrombolysis: Development, Improved in Vivo Thrombolytic Effects, and Ultrasound/Photoacoustic Imaging. Mol Pharm 2024; 21:283-302. [PMID: 38126777 DOI: 10.1021/acs.molpharmaceut.3c00830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Nattokinase (NK), a potent thrombolytic enzyme that dissolves blood clots, is highly used in the treatment of cardiovascular disorders. However, its effective delivery remains demanding because of stability and bioavailability problems owing to its high molecular weight and proteineous nature. In this research, we have developed novel NK-loaded nontargeted liposomes (NK-LS) and targeted liposomes (RGD-NK-LS and AM-NK-LS) by the reverse phase evaporation method. The physiochemical characterizations (particle size, polydispersity index, zeta potential, and morphology) were performed by a Zetasizer, SEM, TEM, and AFM. The Bradford assay and XPS analysis confirmed the successful surface conjugation of the targeting ligands. Platelet interaction studies by CLSM, photon imager optima, and flow cytometry showed significantly higher (P < 0.05) platelet binding affinity of targeted liposomes. In vitro evaluations were performed using human blood and a fibrinolysis study by CLSM imaging demonstrating the potent antithrombotic efficacy of AM-NK-LS. Furthermore, bleeding and clotting time studies revealed that the targeted liposomes were free from any bleeding complications. Moreover, the in vivo FeCl3 model on Sprague-Dawley (SD) rats using a Doppler flow meter and ultrasound/photoacoustic imaging indicated the increased % thrombolysis and potent affinity of targeted liposomes toward the thrombus site. Additionally, in vitro hemocompatibility and histopathology studies demonstrated the safety and biocompatibility of the nanoformulations.
Collapse
Affiliation(s)
- Vishnu Priya
- Department of Pharmaceutical Engineering and Technology, IIT (BHU), Varanasi 221005, U.P., India
| | - Samridhi
- Department of Pharmaceutical Engineering and Technology, IIT (BHU), Varanasi 221005, U.P., India
| | - Nitesh Singh
- Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, U.P., India
| | - Debabrata Dash
- Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, U.P., India
| | - Madaswamy S Muthu
- Department of Pharmaceutical Engineering and Technology, IIT (BHU), Varanasi 221005, U.P., India
| |
Collapse
|
5
|
Vikas, Mehata AK, Viswanadh MK, Malik AK, Setia A, Kumari P, Mahto SK, Muthu MS. EGFR Targeted Redox Sensitive Chitosan Nanoparticles of Cabazitaxel: Dual-Targeted Cancer Therapy, Lung Distribution, and Targeting Studies by Photoacoustic and Optical Imaging. Biomacromolecules 2023; 24:4989-5003. [PMID: 37871263 DOI: 10.1021/acs.biomac.3c00658] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
In this research, we have modified tocopheryl polyethylene glycol succinate (TPGS) to a redox-sensitive material, denoted as TPGS-SH, and employed the same to develop dual-receptor-targeted nanoparticles of chitosan loaded with cabazitaxel (CZT). The physicochemical properties and morphological characteristics of all nanoparticle formulations were assessed. Dual-receptor targeting redox-sensitive nanoparticles of CZT (F-CTX-CZT-CS-SH-NPs) were developed by a combination of pre- and postconjugation techniques by incorporating synthesized chitosan-folate (F) and TPGS-SH during nanoparticle synthesis and further postconjugated with cetuximab (CTX) for epidermal growth factor receptor (EGFR) targeting. The in vitro release of the drug was seemingly higher in the redox-sensitive buffer media (GSH, 20 mM) compared to that in physiological buffer. However, the extent of cellular uptake of dual-targeted nanoparticles was significantly higher in A549 cells than other control nanoparticles. The IC50 values of F-CTX-CZT-CS-SH-NPs against A549 cells was 0.26 ± 0.12 μg/mL, indicating a 6.3-fold and 60-fold enhancement in cytotoxicity relative to that of dual-receptor targeted, nonredox sensitive nanoparticles and CZT clinical injection, respectively. Furthermore, F-CTX-CZT-CS-SH-NPs demonstrated improved anticancer activity in the benzo(a)pyrene lung cancer model with a higher survival rate. Due to the synergistic combination of enhanced permeability and retention (EPR) effect of small-sized nanoparticles, the innovative and redox sensitive TPGS-SH moiety and the dual folate and EGFR mediated augmented endocytosis have all together significantly enhanced their biodistribution and targeting exclusively to the lung which is evident from their ultrasound/photoacoustic and in vivo imaging system (IVIS) studies.
Collapse
Affiliation(s)
- Vikas
- Department of Pharmaceutical Engineering and Technology, IIT BHU, Varanasi 221005, Uttar Pradesh, India
| | - Abhishesh Kumar Mehata
- Department of Pharmaceutical Engineering and Technology, IIT BHU, Varanasi 221005, Uttar Pradesh, India
| | - Matte Kasi Viswanadh
- Department of Pharmaceutics, College of Pharmacy, K.L. Deemed-to-be-University, Greenfields, Vaddeswaram 522302, Andhra Pradesh, India
| | - Ankit Kumar Malik
- Department of Pharmaceutical Engineering and Technology, IIT BHU, Varanasi 221005, Uttar Pradesh, India
| | - Aseem Setia
- Department of Pharmaceutical Engineering and Technology, IIT BHU, Varanasi 221005, Uttar Pradesh, India
| | - Pooja Kumari
- School of Biomedical Engineering, IIT BHU, Varanasi 221005, Uttar Pradesh, India
| | - Sanjeev Kumar Mahto
- School of Biomedical Engineering, IIT BHU, Varanasi 221005, Uttar Pradesh, India
| | - Madaswamy S Muthu
- Department of Pharmaceutical Engineering and Technology, IIT BHU, Varanasi 221005, Uttar Pradesh, India
| |
Collapse
|
6
|
Sui F, Fang Z, Li L, Wan X, Zhang Y, Cai X. pH-triggered "PEG" sheddable and folic acid-targeted nanoparticles for docetaxel delivery in breast cancer treatment. Int J Pharm 2023; 644:123293. [PMID: 37541534 DOI: 10.1016/j.ijpharm.2023.123293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/13/2023] [Accepted: 08/02/2023] [Indexed: 08/06/2023]
Abstract
Multifunctional nanoparticles have attracted significant attentions for oncology and cancer treatment. In fact, they could address critical point for tumour treatment by creating a stimuli-responsive targeted drug delivery system that can exist stably in the systemic circulation, efficiently penetrate the tumour tissue, and then accumulate in tumour cells in large quantities. A novel stepwise pH-responsive multifunctional nanoparticles (FPDPCNPs/DTX) for targeted delivery of the antitumour drug docetaxel (DTX) is prepared by coating a tumour acidity-sensitive "sheddable" FA modified β-carboxylic amide functionalized PEG layer (folic acid-polyethylene glycol-2,3-dimethylmaleic anhydride, FA-PEG-DA) on the cationic drug-loaded core (poly(β-amino ester-cholesterol, PAE-Chol) through electrostatic interaction in this study. The charge shielding behaviour of the FPDPCNPs/DTX was confirmed by zeta potential assay. The surface charges of the nanoparticles can change from positive to negative after PEG coating. The IC50 values of FPDPCNPs/DTX was 3.04 times higher than that of PEG "unsheddable" nanoparticles in cytotoxicity experiments. The results of in vivo experiment further showed that FPDPCNPs/DTX had enhanced tumour targeting effect, the tumour inhibition rate of FPDPCNPs/DTX was as high as 81.99%, which was 1.51 times that of free DTX. Under a micro acidic environment and folate receptor (FR)-mediated targeting, FPDPCNPs/DTX contributed to more uptake of DTX by MCF-7 cells. In summary, FPDPCNPs/DTX as a multifunctional nano-drug delivery system provides a promising strategy for efficiently delivering antitumour drugs.
Collapse
Affiliation(s)
- Fangqian Sui
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China
| | - Zengjun Fang
- Department of Pharmacy, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Lingjun Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China
| | - Xinhuan Wan
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China
| | - Yongqing Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China
| | - Xiaoqing Cai
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China.
| |
Collapse
|
7
|
Anisuzzman M, Komalla V, Tarkistani MAM, Kayser V. Anti-Tumor Activity of Novel Nimotuzumab-Functionalized Gold Nanoparticles as a Potential Immunotherapeutic Agent against Skin and Lung Cancers. J Funct Biomater 2023; 14:407. [PMID: 37623652 PMCID: PMC10456021 DOI: 10.3390/jfb14080407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/21/2023] [Accepted: 07/30/2023] [Indexed: 08/26/2023] Open
Abstract
The epidermal growth factor receptor (EGFR) is vital for many different types of cancer. Nimotuzumab (NmAb), an anti-EGFR monoclonal antibody (mAb), is used against some of EGFR-overexpressed cancers in various countries. It targets malignant cells and is internalized via receptor-mediated endocytosis. We hypothesized that mAb-nanoparticle conjugation would provide an enhanced therapeutic efficacy, and hence we conjugated NmAb with 27 nm spherical gold nanoparticles (AuNPs) to form AuNP-NmAb nanoconjugates. Using biophysical and spectroscopic methods, including ultraviolet-visible spectroscopy (UV-Vis), transmission electron microscopy (TEM), dynamic light scattering (DLS), nanoparticle tracking analysis (NTA), sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and Fourier-transform infrared spectroscopy (FTIR), the AuNP-NmAb complex was characterized. Furthermore, in vitro studies were performed using a medium-level EGFR-expressing skin cancer cell (A431, EGFRmedium) and low-level EGFR-expressing lung cancer cell (A549, EGFRlow) to evaluate anti-tumor and cellular uptake efficiency via MTT assay and single-particle inductively coupled plasma mass spectrometry (spICP-MS), respectively. In comparison to NmAb monotherapy, the AuNP-NmAb treatment drastically reduced cancer cell survivability: for A431 cells, the IC50 value of AuNP-NmAb conjugate was 142.7 µg/mL, while the IC50 value of free NmAb was 561.3 µg/mL. For A549 cells, the IC50 value of the AuNP-NmAb conjugate was 163.6 µg/mL, while the IC50 value of free NmAb was 1,082.0 µg/mL. Therefore, this study highlights the unique therapeutic potential of AuNP-NmAb in EGFR+ cancers and shows the potential to develop other mAb nanoparticle complexes for a superior therapeutic efficacy.
Collapse
Affiliation(s)
| | | | | | - Veysel Kayser
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
| |
Collapse
|
8
|
Mehata AK, Singh V, Singh N, Mandal A, Dash D, Koch B, Muthu MS. Chitosan- g-estrone Nanoparticles of Palbociclib Vanished Hypoxic Breast Tumor after Targeted Delivery: Development and Ultrasound/Photoacoustic Imaging. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37433149 DOI: 10.1021/acsami.3c03184] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Breast cancer is the leading cause of death among women globally. Approximately 80% of all breast cancers diagnosed are overexpressed with estrogen receptors (ERs). In this study, we have developed an estrone (Egen)-grafted chitosan-based polymeric nanocarrier for the targeted delivery of palbociclib (PLB) to breast cancer. The nanoparticles (NPs) were prepared by solvent evaporation using the ionic gelation method and characterized for particle size, zeta potential, polydispersity, surface morphology, surface chemistry, drug entrapment efficiency, cytotoxicity assay, cellular uptake, and apoptosis study. The developed PLB-CS NPs and PLB-CS-g-Egen NPs had a particle size of 116.3 ± 1.53 nm and 141.6 ± 1.97 nm, respectively. The zeta potential of PLB-CS NPs and PLB-CS-g-Egen NPs was found to be 18.70 ± 0.416 mV and 12.45 ± 0.574 mV, respectively. The morphological analysis demonstrated that all NPs were spherical in shape and had a smooth surface. An in vitro cytotoxicity assay was performed in estrogen receptor (ER)-expressing MCF7 cells and T47D cells, which suggested that targeted NPs were 57.34- and 30.32-fold more cytotoxic compared to the pure PLB, respectively. Additionally, cell cycle analysis confirmed that cell cycle progression from the G1 into S phase was blocked more efficiently by targeted NPs compared to nontargeted NPs and PLB in MCF7 cells. In vivo pharmacokinetic studies demonstrated that entrapment of the PLB in the NPs improved the half-life and bioavailability by ∼2-3-fold. Further, ultrasound and photoacoustic imaging of DMBA induced breast cancer in the Sprague-Dawley (SD) rat showed that targeted NPs completely vanished breast tumor, reduced hypoxic tumor volume, and suppressed tumor angiogenesis more efficiently compared to the nontargeted NPs and free PLB. Further, in vitro hemocompatibility and histopathology studies suggested that NPs were biocompatible and safe for clinical use.
Collapse
Affiliation(s)
- Abhishesh Kumar Mehata
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Virendra Singh
- Cancer Biology Laboratory, Department of Zoology Institute of Science, (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Nitesh Singh
- Department of Biochemistry, Institute of Medical Sciences, (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Abhijit Mandal
- Department of Radiotherapy and Radiation Medicine, Institute of Medical Sciences, (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Debabrata Dash
- Department of Biochemistry, Institute of Medical Sciences, (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Biplob Koch
- Cancer Biology Laboratory, Department of Zoology Institute of Science, (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Madaswamy S Muthu
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, (BHU), Varanasi 221005, Uttar Pradesh, India
| |
Collapse
|
9
|
Kazmi I, Shaikh MAJ, Afzal O, Alfawaz Altamimi AS, Almalki WH, Alzarea SI, Al-Abbasi FA, Pandey M, Dureja H, Singh SK, Dua K, Gupta G. Chitosan-based nano drug delivery system for lung cancer. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
10
|
Picos-Corrales LA, Morales-Burgos AM, Ruelas-Leyva JP, Crini G, García-Armenta E, Jimenez-Lam SA, Ayón-Reyna LE, Rocha-Alonzo F, Calderón-Zamora L, Osuna-Martínez U, Calderón-Castro A, De-Paz-Arroyo G, Inzunza-Camacho LN. Chitosan as an Outstanding Polysaccharide Improving Health-Commodities of Humans and Environmental Protection. Polymers (Basel) 2023; 15:526. [PMID: 36771826 PMCID: PMC9920095 DOI: 10.3390/polym15030526] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Public health, production and preservation of food, development of environmentally friendly (cosmeto-)textiles and plastics, synthesis processes using green technology, and improvement of water quality, among other domains, can be controlled with the help of chitosan. It has been demonstrated that this biopolymer exhibits advantageous properties, such as biocompatibility, biodegradability, antimicrobial effect, mucoadhesive properties, film-forming capacity, elicitor of plant defenses, coagulant-flocculant ability, synergistic effect and adjuvant along with other substances and materials. In part, its versatility is attributed to the presence of ionizable and reactive primary amino groups that provide strong chemical interactions with small inorganic and organic substances, macromolecules, ions, and cell membranes/walls. Hence, chitosan has been used either to create new materials or to modify the properties of conventional materials applied on an industrial scale. Considering the relevance of strategic topics around the world, this review integrates recent studies and key background information constructed by different researchers designing chitosan-based materials with potential applications in the aforementioned concerns.
Collapse
Affiliation(s)
- Lorenzo A. Picos-Corrales
- Facultad de Ingeniería Culiacán, Universidad Autónoma de Sinaloa, Ciudad Universitaria, Culiacán 80013, Sinaloa, Mexico
| | - Ana M. Morales-Burgos
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Ciudad Universitaria, Culiacán 80013, Sinaloa, Mexico
| | - Jose P. Ruelas-Leyva
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Ciudad Universitaria, Culiacán 80013, Sinaloa, Mexico
| | - Grégorio Crini
- Laboratoire Chrono-Environnement, UMR 6249, UFR Sciences et Techniques, Université de Franche-Comté, 16 Route de Gray, 25000 Besançon, France
| | - Evangelina García-Armenta
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Ciudad Universitaria, Culiacán 80013, Sinaloa, Mexico
| | - Sergio A. Jimenez-Lam
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Ciudad Universitaria, Culiacán 80013, Sinaloa, Mexico
| | - Lidia E. Ayón-Reyna
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Ciudad Universitaria, Culiacán 80013, Sinaloa, Mexico
| | - Fernando Rocha-Alonzo
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Hermosillo 83000, Sonora, Mexico
| | - Loranda Calderón-Zamora
- Facultad de Biología, Universidad Autónoma de Sinaloa, Ciudad Universitaria, Culiacán 80013, Sinaloa, Mexico
| | - Ulises Osuna-Martínez
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Ciudad Universitaria, Culiacán 80013, Sinaloa, Mexico
| | - Abraham Calderón-Castro
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Ciudad Universitaria, Culiacán 80013, Sinaloa, Mexico
| | - Gonzalo De-Paz-Arroyo
- Facultad de Ingeniería Culiacán, Universidad Autónoma de Sinaloa, Ciudad Universitaria, Culiacán 80013, Sinaloa, Mexico
| | - Levy N. Inzunza-Camacho
- Unidad Académica Preparatoria Hermanos Flores Magón, Universidad Autónoma de Sinaloa, Culiacán 80000, Sinaloa, Mexico
| |
Collapse
|
11
|
Priya V, Singh SK, Revand R, Kumar S, Mehata AK, Sushmitha P, Mahto SK, Muthu MS. GPIIb/IIIa Receptor Targeted Rutin Loaded Liposomes for Site-Specific Antithrombotic Effect. Mol Pharm 2023; 20:663-679. [PMID: 36413707 DOI: 10.1021/acs.molpharmaceut.2c00848] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Rutin (RUT) is a flavonoid obtained from a natural source and is reported for antithrombotic potential, but its delivery remains challenging because of its poor solubility and bioavailability. In this research, we have fabricated novel rutin loaded liposomes (RUT-LIPO, nontargeted), liposomes conjugated with RGD peptide (RGD-RUT-LIPO, targeted), and abciximab (ABX-RUT-LIPO, targeted) by ethanol injection method. The particle size, ζ potential, and morphology of prepared liposomes were analyzed by using DLS, SEM, and TEM techniques. The conjugation of targeting moiety on the surface of targeted liposomes was confirmed by XPS analysis and Bradford assay. In vitro assessment such as blood clot assay, aPTT assay, PT assay, and platelet aggregation analysis was performed using human blood which showed the superior antithrombotic potential of ABX-RUT-LIPO and RGD-RUT-LIPO liposomes. The clot targeting efficiency was evaluated by in vitro imaging and confocal laser scanning microscopy. A significant (P < 0.05) rise in the affinity of targeted liposomes toward activated platelets was demonstrated that revealed their remarkable potential in inhibiting thrombus formation. Furthermore, an in vivo study executed on Sprague Dawley rats (FeCl3 model) demonstrated improved antithrombotic activity of RGD-RUT-LIPO and ABX-RUT-LIPO compared with pure drug. The pharmacokinetic study performed on rats demonstrates the increase in bioavailability when administered as liposomal formulation as compared to RUT. Moreover, the tail bleeding assay and clotting time study (Swiss Albino mice) indicated a better antithrombotic efficacy of targeted liposomes than control preparations. Additionally, biocompatibility of liposomal formulations was determined by an in vitro hemolysis study and cytotoxicity assay, which showed that they were hemocompatible and safe for human use. A histopathology study on rats suggested no severe toxicity of prepared liposomal formulations. Thus, RUT encapsulated nontargeted and targeted liposomes exhibited superior antithrombotic potential over RUT and could be used as a promising carrier for future use.
Collapse
Affiliation(s)
- Vishnu Priya
- Department of Pharmaceutical Engineering and Technology, IIT (BHU), Varanasi221005, UP, India
| | - Sanjeev K Singh
- Department of Physiology, IMS, Banaras Hindu University, Varanasi221005, India
| | - Ravindran Revand
- Department of Physiology, IMS, Banaras Hindu University, Varanasi221005, India
| | - Sandip Kumar
- Department of Pathology, IMS, Banaras Hindu University, Varanasi221005, India
| | - Abhishesh Kumar Mehata
- Department of Pharmaceutical Engineering and Technology, IIT (BHU), Varanasi221005, UP, India
| | - Paulraj Sushmitha
- School of Biomedical Engineering, IIT (BHU), Varanasi221005, UPIndia
| | | | - Madaswamy S Muthu
- Department of Pharmaceutical Engineering and Technology, IIT (BHU), Varanasi221005, UP, India
| |
Collapse
|
12
|
Bhat AA, Gupta G, Alharbi KS, Afzal O, Altamimi ASA, Almalki WH, Kazmi I, Al-Abbasi FA, Alzarea SI, Chellappan DK, Singh SK, MacLoughlin R, Oliver BG, Dua K. Polysaccharide-Based Nanomedicines Targeting Lung Cancer. Pharmaceutics 2022; 14:pharmaceutics14122788. [PMID: 36559281 PMCID: PMC9782996 DOI: 10.3390/pharmaceutics14122788] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/02/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
A primary illness that accounts for a significant portion of fatalities worldwide is cancer. Among the main malignancies, lung cancer is recognised as the most chronic kind of cancer around the globe. Radiation treatment, surgery, and chemotherapy are some medical procedures used in the traditional care of lung cancer. However, these methods lack selectivity and damage nearby healthy cells. Several polysaccharide-based nanomaterials have been created to transport chemotherapeutics to reduce harmful and adverse side effects and improve response during anti-tumour reactions. To address these drawbacks, a class of naturally occurring polymers called polysaccharides have special physical, chemical, and biological characteristics. They can interact with the immune system to induce a better immunological response. Furthermore, because of the flexibility of their structures, it is possible to create multifunctional nanocomposites with excellent stability and bioavailability for the delivery of medicines to tumour tissues. This study seeks to present new views on the use of polysaccharide-based chemotherapeutics and to highlight current developments in polysaccharide-based nanomedicines for lung cancer.
Collapse
Affiliation(s)
- Asif Ahmad Bhat
- School and of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur 302017, India
| | - Gaurav Gupta
- School and of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur 302017, India
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun 248007, India
- Correspondence:
| | - Khalid Saad Alharbi
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72388, Saudi Arabia
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Abdulmalik S. A. Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Fahad A. Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sami I. Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72388, Saudi Arabia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Ronan MacLoughlin
- Research and Development, Science and Emerging Technologies, Aerogen, IDA Business Park, Dangan, H91 HE94 Galway, Ireland
- School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
- School of Pharmacy and Pharmaceutical Sciences, Trinity College, D02 PN40 Dublin, Ireland
| | - Brian G Oliver
- School of Life Sciences, Faculty of Science, University of Technology, Sydney, NSW 2007, Australia
- Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW 2000, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
13
|
Ahlawat P, Phutela K, Bal A, Singh N, Sharma S. Therapeutic potential of human serum albumin nanoparticles encapsulated actinonin in murine model of lung adenocarcinoma. Drug Deliv 2022; 29:2403-2413. [PMID: 35892161 PMCID: PMC9336490 DOI: 10.1080/10717544.2022.2067600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Non-small cell lung cancer comprises 85% of the global lung cancer cases. Conventional chemotherapeutics possess certain limitations like systemic toxicity and drug resistance that requires the development of new therapeutic agents for successful treatment of lung cancer. Actinonin, a human peptide deformylase inhibitor, has demonstrated anti-cancerous properties in various leukemias and solid cancer types. However, it has limited therapeutic application because of its low bioavailability and systemic toxicity if administered in free form. This limitation can be overcome by using nano-delivery systems that will increase the therapeutic efficacy of actinonin. In the present study, human serum albumin actinonin nanoparticles were prepared using a desolvation technique and folic acid was conjugated to lysine residues of albumin for effective delivery to the lung. The lung adenocarcinoma model was established 24 weeks after intraperitoneal administration of urethane and chemotherapeutic efficacy of free as well as nanoencapsulated actinonin was evaluated. This study demonstrated anti-proliferative potential of folic acid conjugated human serum albumin nanoparticles encapsulating actinonin. The intraperitoneally administered nanoformulation exhibited sustain release profile of actinonin with longer half-life and mean retention time. The reduced dose frequency resulted in therapeutic efficacy comparable to free drug in vivo in terms of 100% survival and reduced tumor burden along with downregulation of epidermal growth factor receptor, folate receptor α and peptide deformylase expression in lung adenocarcinoma mice model. Therefore, actinonin encapsulated albumin nanoparticles-based therapy holds great potential as an alternative strategy to improve its anti-cancerous activity against lung adenocarcinoma.
Collapse
Affiliation(s)
- Priyanca Ahlawat
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Kanika Phutela
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Amanjit Bal
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Navneet Singh
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sadhna Sharma
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
14
|
Vikas, Mehata AK, Suseela MNL, Behera C, Kumari P, Mahto SK, Muthu MS. Chitosan-alginate nanoparticles of cabazitaxel: Design, dual-receptor targeting and efficacy in lung cancer model. Int J Biol Macromol 2022; 221:874-890. [PMID: 36089091 DOI: 10.1016/j.ijbiomac.2022.09.053] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/30/2022] [Accepted: 09/06/2022] [Indexed: 11/05/2022]
Abstract
Cabazitaxel (CZT) loaded chitosan-alginate based (CSA) nanoparticles were developed with dual targeting functions of both folate receptor and epidermal growth factor receptor (EGFR) using ionic gelation technique. The chitosan-folate conjugate was synthesized, and characterized by using FTIR, NMR and Mass spectroscopy. The physicochemical parameters and morphology of all CSA nanoparticles were examined. The degree of conjugation of folic acid and cetuximab (CTXmab) was determined by UV-Visible spectroscopy and Bradford assay, respectively. Moreover, XPS analysis also supported the presence of the ligands on nanoparticles. The cellular-uptake study performed on A-549 cells demonstrated a significant enhancement in the uptake of dual-receptor targeted CSA nanoparticles than non-targeted and single-receptor targeted CSA nanoparticles. Further, CZT-loaded dual receptors targeted CSA nanoparticles also showed significantly lower IC50 values (~38 folds) than the CZT control against A-549 cells. Further, in-vivo histopathological evaluations of dual receptor-targeted CSA nanoparticles have demonstrated better safety in Wistar rats. Moreover, its treatment on the Benzo(a)pyrene (B(a)P) induced lung cancer mice model has showed the enhanced anticancer efficacy of CZT with a prolonged survival rate.
Collapse
Affiliation(s)
- Vikas
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, UP, India
| | - Abhishesh Kumar Mehata
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, UP, India
| | - M Nikitha Lakshmi Suseela
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, UP, India
| | - Chittaranjan Behera
- PK-PD Tox & Formulation Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Pooja Kumari
- School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, UP, India
| | - Sanjeev Kumar Mahto
- School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, UP, India
| | - Madaswamy S Muthu
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, UP, India.
| |
Collapse
|
15
|
Rout SK, Priya V, Vikas, Mehata AK, Muthu MS. Abciximab coated albumin nanoparticles of rutin for improved and targeted antithrombotic effect. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
16
|
Ioele G, Chieffallo M, Occhiuzzi MA, De Luca M, Garofalo A, Ragno G, Grande F. Anticancer Drugs: Recent Strategies to Improve Stability Profile, Pharmacokinetic and Pharmacodynamic Properties. Molecules 2022; 27:molecules27175436. [PMID: 36080203 PMCID: PMC9457551 DOI: 10.3390/molecules27175436] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 12/20/2022] Open
Abstract
In past decades, anticancer research has led to remarkable results despite many of the approved drugs still being characterized by high systemic toxicity mainly due to the lack of tumor selectivity and present pharmacokinetic drawbacks, including low water solubility, that negatively affect the drug circulation time and bioavailability. The stability studies, performed in mild conditions during their development or under stressing exposure to high temperature, hydrolytic medium or light source, have demonstrated the sensitivity of anticancer drugs to many parameters. For this reason, the formation of degradation products is assessed both in pharmaceutical formulations and in the environment as hospital waste. To date, numerous formulations have been developed for achieving tissue-specific drug targeting and reducing toxic side effects, as well as for improving drug stability. The development of prodrugs represents a promising strategy in targeted cancer therapy for improving the selectivity, efficacy and stability of active compounds. Recent studies show that the incorporation of anticancer drugs into vesicular systems, such as polymeric micelles or cyclodextrins, or the use of nanocarriers containing chemotherapeutics that conjugate to monoclonal antibodies can improve solubility, pharmacokinetics, cellular absorption and stability. In this study, we summarize the latest advances in knowledge regarding the development of effective highly stable anticancer drugs formulated as stable prodrugs or entrapped in nanosystems.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Fedora Grande
- Correspondence: (G.I.); (F.G.); Tel.: +39-0984-493268 (G.I.)
| |
Collapse
|
17
|
Vikas, Sahu HK, Mehata AK, Viswanadh MK, Priya V, Muthu MS. Dual-receptor-targeted nanomedicines: emerging trends and advances in lung cancer therapeutics. Nanomedicine (Lond) 2022; 17:1375-1395. [PMID: 36317852 DOI: 10.2217/nnm-2021-0470] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Cancer is the leading cause of mortality worldwide. Among all cancer types, lung cancer is recognized as the most lethal and highly metastatic. The application of targeted nanomedicine loaded with anticancer drugs is highly desirable for successful lung cancer treatment. However, due to the heterogenicity and complexity of lung cancer, the therapeutic effectiveness of a single receptor targeting nanomedicine is unfortunately limited. Therefore, the concept of dual-receptor-targeted nanomedicine is an emerging trend for the advancement in lung cancer therapeutics. In this review, the authors discuss various single- and dual-receptor-targeted nanomedicines that have been developed for lung cancer treatment. Furthermore, the authors also discussed all the types of receptors that can be utilized in combination for the development of dual-receptor-targeted nanomedicines.
Collapse
Affiliation(s)
- Vikas
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Hemendra Kumar Sahu
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Abhishesh Kumar Mehata
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Matte Kasi Viswanadh
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Vishnu Priya
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Madaswamy S Muthu
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| |
Collapse
|
18
|
Doroudian M, Azhdari MH, Goodarzi N, O’Sullivan D, Donnelly SC. Smart Nanotherapeutics and Lung Cancer. Pharmaceutics 2021; 13:1972. [PMID: 34834387 PMCID: PMC8619749 DOI: 10.3390/pharmaceutics13111972] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 12/11/2022] Open
Abstract
Lung cancer is a significant health problem worldwide. Unfortunately, current therapeutic strategies lack a sufficient level of specificity and can harm adjacent healthy cells. Consequently, to address the clinical need, novel approaches to improve treatment efficiency with minimal side effects are required. Nanotechnology can substantially contribute to the generation of differentiated products and improve patient outcomes. Evidence from previous research suggests that nanotechnology-based drug delivery systems could provide a promising platform for the targeted delivery of traditional chemotherapeutic drugs and novel small molecule therapeutic agents to treat lung cancer cells more effectively. This has also been found to improve the therapeutic index and reduce the required drug dose. Nanodrug delivery systems also provide precise control over drug release, resulting in reduced toxic side effects, controlled biodistribution, and accelerated effects or responses. This review highlights the most advanced and novel nanotechnology-based strategies, including targeted nanodrug delivery systems, stimuli-responsive nanoparticles, and bio-nanocarriers, which have recently been employed in preclinical and clinical investigations to overcome the current challenges in lung cancer treatments.
Collapse
Affiliation(s)
- Mohammad Doroudian
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College, Dublin 2, Ireland; (M.D.); (D.O.)
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran 15719-14911, Iran; (M.H.A.); (N.G.)
| | - Mohammad H. Azhdari
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran 15719-14911, Iran; (M.H.A.); (N.G.)
| | - Nima Goodarzi
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran 15719-14911, Iran; (M.H.A.); (N.G.)
| | - David O’Sullivan
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College, Dublin 2, Ireland; (M.D.); (D.O.)
| | - Seamas C. Donnelly
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College, Dublin 2, Ireland; (M.D.); (D.O.)
- Department of Clinical Medicine, Trinity Centre for Health Sciences, Tallaght University Hospital, Tallaght, Dublin 24, Ireland
| |
Collapse
|
19
|
Vikas, Viswanadh MK, Mehata AK, Sharma V, Priya V, Varshney N, Mahto SK, Muthu MS. Bioadhesive chitosan nanoparticles: Dual targeting and pharmacokinetic aspects for advanced lung cancer treatment. Carbohydr Polym 2021; 274:118617. [PMID: 34702448 DOI: 10.1016/j.carbpol.2021.118617] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 08/12/2021] [Accepted: 08/23/2021] [Indexed: 12/13/2022]
Abstract
The chitosan-folate conjugate was synthesized initially and confirmed by FTIR and NMR spectroscopic studies. Following, docetaxel (DXL) loaded non-targeted, single receptor and dual receptor (folate and EGFR) targeted chitosan nanoparticles were prepared and their shape, particle size, zeta-potential, surface morphology and texture were screened by SEM, TEM, AFM analyses. Surface chemistry analysis by XPS indeed confirmed the successful conjugation of folate and cetuximab on the targeted formulations. In-vitro analysis of dual-targeted chitosan nanoparticles has revealed their superior cytotoxicity against A-549 cells. The IC50 of dual receptor-targeted chitosan NP was almost 34 times lower than DXL control. In-vivo pharmacokinetic study on Wistar rats has demonstrated improved relative bioavailability of all NP in comparison to DXL control. The results illustrated that EGFR and folate dual targeted NP enhanced the cytotoxicity of DXL towards A-549 lung cancer cells and substantially improved DXL pharmacokinetics in rats.
Collapse
Affiliation(s)
- Vikas
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, UP, India
| | - Matte Kasi Viswanadh
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, UP, India
| | - Abhishesh Kumar Mehata
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, UP, India
| | - Vishal Sharma
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, UP, India
| | - Vishnu Priya
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, UP, India
| | - Neelima Varshney
- School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, UP, India
| | - Sanjeev Kumar Mahto
- School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, UP, India
| | - Madaswamy S Muthu
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, UP, India.
| |
Collapse
|
20
|
Novel redox-sensitive thiolated TPGS based nanoparticles for EGFR targeted lung cancer therapy. Int J Pharm 2021; 602:120652. [PMID: 33915187 DOI: 10.1016/j.ijpharm.2021.120652] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/06/2021] [Accepted: 04/23/2021] [Indexed: 12/22/2022]
Abstract
Novel glutathione (GSH) redox-sensitive thiolated vitaminE-PEG1000-succinate (TPGH-SH) was synthesized by conjugating TPGS with 4-amino thiophenol (4-ATP) and confirmed by FTIR and NMR studies. Following, docetaxel (DTX) loaded, cetuximab (CTB) conjugated redox sensitive TPGS-SH nanoparticles (TPGS-SH NP) were prepared by dialysis method and screened for size, charge, DTX entrapment, which revealed that size, surface charge and percent entrapment are in the range of 183-227 nm, +18 to +26 mV and 68-71%. SEM, TEM, AFM have reflected the spherical and uniform size of NP with a smooth surface. In-vitro release studies were performed in media containing different concentrations of GSH to study their effect on drug release and drug release of up to 94.5%, at pH 5.5, GSH 20 mM, is observed within 24 h. The pH/redox sensitivity studies revealed the better stability of NP at higher pH and lower GSH concentrations. In-vitro cytotoxicity, cellular uptake, migration and apoptotic assays, performed on A549 cells, have proved that targeted formulation produced higher cytotoxicity (significantly less IC50 value) and uptake and also prevented cell migration. Pharmacokinetic and histopathological screening were performed on CF rats, which demonstrated promising results. The in-vivo efficacy studies on benzo(a)pyrene induced mice lung cancer model showed that targeted TPGS-SH NP has significantly reduced the cell number than the model control.
Collapse
|