1
|
Mehrvar A, Akbari M, Khosroshahi EM, Nekavand M, Mokhtari K, Baniasadi M, Aghababaian M, Karimi M, Amiri S, Moazen A, Maghsoudloo M, Alimohammadi M, Rahimzadeh P, Farahani N, Vaghar ME, Entezari M, Hashemi M. The impact of exosomes on bone health: A focus on osteoporosis. Pathol Res Pract 2024; 263:155618. [PMID: 39362132 DOI: 10.1016/j.prp.2024.155618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/05/2024]
Abstract
Osteoporosis is a widespread chronic condition. Although standard treatments are generally effective, they are frequently constrained by side effects and the risk of developing drug resistance. A promising area of research is the investigation of extracellular vesicles (EVs), including exosomes, microvesicles, and apoptotic bodies, which play a crucial role in bone metabolism. Exosomes, in particular, have shown significant potential in both the diagnosis and treatment of osteoporosis. EVs derived from osteoclasts, osteoblasts, mesenchymal stem cells, and other sources can influence bone metabolism, while exosomes from inflammatory and tumor cells may exacerbate bone loss, highlighting their dual role in osteoporosis pathology. This review offers a comprehensive overview of EV biogenesis, composition, and function in osteoporosis, focusing on their diagnostic and therapeutic potential. We examine the roles of various types of EVs and their cargo-proteins, RNAs, and lipids-in bone metabolism. Additionally, we explore the emerging applications of EVs as biomarkers and therapeutic agents, emphasizing the need for further research to address current challenges and enhance EV-based strategies for managing osteoporosis.
Collapse
Affiliation(s)
- Amir Mehrvar
- Assistant Professor, Department of Orthopedics, Taleghani Hospital Research Development Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadarian Akbari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elaheh Mohandesi Khosroshahi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrandokht Nekavand
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Midwifery, Faculty of nursing and midwifery, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Khatere Mokhtari
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Mojtaba Baniasadi
- Department of Orthopedic Surgery, Isfahan University of Medical Sciences, Isfahan, Iran; MD, Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Department of Orthopedic, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Aghababaian
- Department of Orthopedic Surgery, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mansour Karimi
- MD, Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Department of Orthopedic, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shayan Amiri
- MD, Assistant Professor of Orthopaedic Surgery, Shohadaye Haftom-e-Tir Hospital, Department of Orthopedic, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Moazen
- Department of Orthopedics, Bone and Joint Reconstruction Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mazaher Maghsoudloo
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000, PR China
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Payman Rahimzadeh
- Surgical Research Society (SRS), Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mohammad Eslami Vaghar
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of gynecology, Faculty of Medicine, Tehran Medical sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
2
|
Kowkabany G, Bao Y. Nanoparticle Tracking Analysis: An Effective Tool to Characterize Extracellular Vesicles. Molecules 2024; 29:4672. [PMID: 39407601 PMCID: PMC11477862 DOI: 10.3390/molecules29194672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/26/2024] [Accepted: 09/28/2024] [Indexed: 10/20/2024] Open
Abstract
Extracellular vesicles (EVs) are membrane-enclosed particles that have attracted much attention for their potential in disease diagnosis and therapy. However, the clinical translation is limited by the dosing consistency due to their heterogeneity. Among various characterization techniques, nanoparticle tracking analysis (NTA) offers distinct benefits for EV characterization. In this review, we will discuss the NTA technique with a focus on factors affecting the results; then, we will review the two modes of the NTA techniques along with suitable applications in specific areas of EV studies. EVs are typically characterized by their size, size distribution, concentration, protein markers, and RNA cargos. The light-scattering mode of NTA offers accurate size, size distribution, and concentration information in solution, which is useful for comparing EV isolation methods, storage conditions, and EV secretion conditions. In contrast, fluorescent mode of NTA allows differentiating EV subgroups based on specific markers. The success of fluorescence NTA heavily relies on fluorescent tags (e.g., types of dyes and labeling methods). When EVs are labeled with disease-specific markers, fluorescence NTA offers an effective tool for disease detection in biological fluids, such as saliva, blood, and serum. Finally, we will discuss the limitations and future directions of the NTA technique in EV characterization.
Collapse
Affiliation(s)
| | - Yuping Bao
- Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA;
| |
Collapse
|
3
|
Rajeev Kumar S, Sakthiswary R, Lokanathan Y. Potential Therapeutic Application and Mechanism of Action of Stem Cell-Derived Extracellular Vesicles (EVs) in Systemic Lupus Erythematosus (SLE). Int J Mol Sci 2024; 25:2444. [PMID: 38397121 PMCID: PMC10889333 DOI: 10.3390/ijms25042444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/09/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is a multisystemic autoimmune disease that affects nearly 3.41 million people globally, with 90% of the cases affecting women of childbearing age. SLE is a complex disease due to the interplay of various immunological pathways and mechanisms. This scoping review aims to highlight the latest research findings on the therapeutic mechanisms of action of EVs in SLE. Relevant research articles were identified using the PRISMA framework from databases such as PubMed/MEDLINE (National Library of Medicine), Scopus (Elsevier), and Web of Science: Core Collection (Clarivate Analytics) from July 2023 to October 2023. Eleven studies met the inclusion criteria and thus were included in this scoping review. The findings showed that EVs have therapeutic effects on ameliorating the disease progression of SLE. EVs can reduce the pro-inflammatory cytokines and increase the anti-inflammatory cytokines. Moreover, EVs can increase the levels of regulatory T cells, thus reducing inflammation. EVs also have the potential to regulate B cells to alleviate SLE and reduce its adverse effects. The scoping review has successfully analysed the therapeutic potential in ameliorating the disease progression of SLE. The review also includes prospects to improve the effects of EVs further to increase the therapeutic effects on SLE.
Collapse
Affiliation(s)
- Sushmitha Rajeev Kumar
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, University Kebangsaaan Malaysia, Jalan Yaacob Latiff, Cheras, Kuala Lumpur 56000, Malaysia;
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Lembah Pantai, Kuala Lumpur 50603, Malaysia
| | - Rajalingham Sakthiswary
- Department of Medicine, Faculty of Medicine, University Kebangsaan Malaysia, Jalan Yaacob Latiff, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Yogeswaran Lokanathan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, University Kebangsaaan Malaysia, Jalan Yaacob Latiff, Cheras, Kuala Lumpur 56000, Malaysia;
| |
Collapse
|
4
|
Ramalhete L, Araújo R, Ferreira A, Calado CRC. Exosomes and microvesicles in kidney transplantation: the long road from trash to gold. Pathology 2024; 56:1-10. [PMID: 38071158 DOI: 10.1016/j.pathol.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 09/26/2023] [Accepted: 10/19/2023] [Indexed: 01/24/2024]
Abstract
Kidney transplantation significantly enhances the survival rate and quality of life of patients with end-stage kidney disease. The ability to predict post-transplantation rejection events in their early phases can reduce subsequent allograft loss. Therefore, it is critical to identify biomarkers of rejection processes that can be acquired on routine analysis of samples collected by non-invasive or minimally invasive procedures. It is also important to develop new therapeutic strategies that facilitate optimisation of the dose of immunotherapeutic drugs and the induction of allograft immunotolerance. This review explores the challenges and opportunities offered by extracellular vesicles (EVs) present in biofluids in the discovery of biomarkers of rejection processes, as drug carriers and in the induction of immunotolerance. Since EVs are highly complex structures and their composition is affected by the parent cell's metabolic status, the importance of defining standardised methods for isolating and characterising EVs is also discussed. Understanding the major bottlenecks associated with all these areas will promote the further investigation of EVs and their translation into a clinical setting.
Collapse
Affiliation(s)
- Luis Ramalhete
- Blood and Transplantation Center of Lisbon, Instituto Português do Sangue e da Transplantação, Alameda das Linhas de Torres, Lisbon, Portugal; NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal; iNOVA4Health - Advancing Precision Medicine, RG11: Reno-Vascular Diseases Group, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal.
| | - Ruben Araújo
- NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Aníbal Ferreira
- NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal; Centro Hospitalar Universitário Lisboa Central, Hospital Curry Cabral, Serviço de Nefrologia, NOVA Medical School, Lisbon, Portugal
| | - Cecília R C Calado
- ISEL - Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, R. Conselheiro Emídio Navarro 1, Lisbon, Portugal; CIMOSM - Centro de Investigação em Modelação e Otimização de Sistemas Multifuncionais, Lisbon, Portugal
| |
Collapse
|
5
|
Liu X, Liu G, Mao Y, Luo J, Cao Y, Tan W, Li W, Yu H, Jia X, Li H. Engineering extracellular vesicles mimetics for targeted chemotherapy of drug-resistant ovary cancer. Nanomedicine (Lond) 2024; 19:25-41. [PMID: 38059464 DOI: 10.2217/nnm-2023-0289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023] Open
Abstract
Aim: To develop nanocarriers for targeting the delivery of chemotherapeutics to overcome multidrug-resistant ovarian cancer. Materials & methods: Doxorubicin-loaded nanovesicles were obtained through serial extrusion, followed by loading of P-glycoprotein siRNA and folic acid. The targeting ability and anticancer efficacy of the nanovesicles were evaluated. Results: The doxorubicin-loaded nanovesicles showed a high production yield. The presence of P-glycoprotein siRNA and folic acid resulted in reversed drug resistance and tumor targeting. This nanoplatform tremendously inhibited the viability of multidrug-resistant ovarian cancer cells, which was able to target tumor tissue and suppress tumor growth without adverse effects. Conclusion: These bioengineered nanovesicles could serve as novel extracellular vesicles mimetics for chemotherapeutics delivery to overcome multidrug resistance.
Collapse
Affiliation(s)
- Xiaoguang Liu
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity & Child Health Care Hospital, Nanjing, 210001, China
| | - Guangquan Liu
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity & Child Health Care Hospital, Nanjing, 210001, China
| | - Yinghua Mao
- Centre for Diseases Prevention & Control of Eastern Theater, Nanjing, 210002, China
| | - Jie Luo
- Department of Healthcare, General Hospital of Eastern Theater Command, Nanjing, 210002, China
| | - Yongping Cao
- Centre for Diseases Prevention & Control of Eastern Theater, Nanjing, 210002, China
| | - Weilong Tan
- Centre for Diseases Prevention & Control of Eastern Theater, Nanjing, 210002, China
| | - Wenhao Li
- Centre for Diseases Prevention & Control of Eastern Theater, Nanjing, 210002, China
| | - Huanhuan Yu
- Department of Clinical Pharmacy, General Hospital of Eastern Theater Command, Nanjing, 210002, China
| | - Xuemei Jia
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity & Child Health Care Hospital, Nanjing, 210001, China
| | - Hong Li
- Centre for Diseases Prevention & Control of Eastern Theater, Nanjing, 210002, China
| |
Collapse
|
6
|
Li C, Wang C, Xie HY, Huang L. Cell-Based Biomaterials for Coronavirus Disease 2019 Prevention and Therapy. Adv Healthc Mater 2023; 12:e2300404. [PMID: 36977465 DOI: 10.1002/adhm.202300404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/17/2023] [Indexed: 03/30/2023]
Abstract
Coronavirus disease 2019 (COVID-19) continues to threaten human health, economic development, and national security. Although many vaccines and drugs have been explored to fight against the major pandemic, their efficacy and safety still need to be improved. Cell-based biomaterials, especially living cells, extracellular vesicles, and cell membranes, offer great potential in preventing and treating COVID-19 owing to their versatility and unique biological functions. In this review, the characteristics and functions of cell-based biomaterials and their biological applications in COVID-19 prevention and therapy are described. First the pathological features of COVID-19 are summarized, providing enlightenment on how to fight against COVID-19. Next, the classification, organization structure, characteristics, and functions of cell-based biomaterials are focused on. Finally, the progress of cell-based biomaterials in overcoming COVID-19 in different aspects, including the prevention of viral infection, inhibition of viral proliferation, anti-inflammation, tissue repair, and alleviation of lymphopenia are comprehensively described. At the end of this review, a look forward to the challenges of this aspect is presented.
Collapse
Affiliation(s)
- Chuyu Li
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Chenguang Wang
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Hai-Yan Xie
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Lili Huang
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, P. R. China
| |
Collapse
|
7
|
Mansur S, Habib S, Hawkins M, Brown SR, Weinman ST, Bao Y. Preparation of Nanoparticle-Loaded Extracellular Vesicles Using Direct Flow Filtration. Pharmaceutics 2023; 15:pharmaceutics15051551. [PMID: 37242792 DOI: 10.3390/pharmaceutics15051551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Extracellular vesicles (EVs) have shown great potential as cell-free therapeutics and biomimetic nanocarriers for drug delivery. However, the potential of EVs is limited by scalable, reproducible production and in vivo tracking after delivery. Here, we report the preparation of quercetin-iron complex nanoparticle-loaded EVs derived from a breast cancer cell line, MDA-MB-231br, using direct flow filtration. The morphology and size of the nanoparticle-loaded EVs were characterized using transmission electron microscopy and dynamic light scattering. The SDS-PAGE gel electrophoresis of those EVs showed several protein bands in the range of 20-100 kDa. The analysis of EV protein markers by a semi-quantitative antibody array confirmed the presence of several typical EV markers, such as ALIX, TSG101, CD63, and CD81. Our EV yield quantification suggested a significant yield increase in direct flow filtration compared with ultracentrifugation. Subsequently, we compared the cellular uptake behaviors of nanoparticle-loaded EVs with free nanoparticles using MDA-MB-231br cell line. Iron staining studies indicated that free nanoparticles were taken up by cells via endocytosis and localized at a certain area within the cells while uniform iron staining across cells was observed for cells treated with nanoparticle-loaded EVs. Our studies demonstrate the feasibility of using direct flow filtration for the production of nanoparticle-loaded EVs from cancer cells. The cellular uptake studies suggested the possibility of deeper penetration of the nanocarriers because the cancer cells readily took up the quercetin-iron complex nanoparticles, and then released nanoparticle-loaded EVs, which can be further delivered to regional cells.
Collapse
Affiliation(s)
- Shomit Mansur
- Chemical & Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Shahriar Habib
- Chemical & Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Mikayla Hawkins
- Chemical & Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Spenser R Brown
- Chemical & Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Steven T Weinman
- Chemical & Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Yuping Bao
- Chemical & Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA
| |
Collapse
|
8
|
Haghighitalab A, Dominici M, Matin MM, Shekari F, Ebrahimi Warkiani M, Lim R, Ahmadiankia N, Mirahmadi M, Bahrami AR, Bidkhori HR. Extracellular vesicles and their cells of origin: Open issues in autoimmune diseases. Front Immunol 2023; 14:1090416. [PMID: 36969255 PMCID: PMC10031021 DOI: 10.3389/fimmu.2023.1090416] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 02/20/2023] [Indexed: 03/29/2023] Open
Abstract
The conventional therapeutic approaches to treat autoimmune diseases through suppressing the immune system, such as steroidal and non-steroidal anti-inflammatory drugs, are not adequately practical. Moreover, these regimens are associated with considerable complications. Designing tolerogenic therapeutic strategies based on stem cells, immune cells, and their extracellular vesicles (EVs) seems to open a promising path to managing autoimmune diseases' vast burden. Mesenchymal stem/stromal cells (MSCs), dendritic cells, and regulatory T cells (Tregs) are the main cell types applied to restore a tolerogenic immune status; MSCs play a more beneficial role due to their amenable properties and extensive cross-talks with different immune cells. With existing concerns about the employment of cells, new cell-free therapeutic paradigms, such as EV-based therapies, are gaining attention in this field. Additionally, EVs' unique properties have made them to be known as smart immunomodulators and are considered as a potential substitute for cell therapy. This review provides an overview of the advantages and disadvantages of cell-based and EV-based methods for treating autoimmune diseases. The study also presents an outlook on the future of EVs to be implemented in clinics for autoimmune patients.
Collapse
Affiliation(s)
- Azadeh Haghighitalab
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
- Stem Cells and Regenerative Medicine Research Group, Academic Center for Education, Culture and Research (ACECR)-Khorasan Razavi, Mashhad, Iran
| | - Massimo Dominici
- Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
| | - Maryam M. Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Faezeh Shekari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Cell Sciences Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | | | - Rebecca Lim
- Department of Obstetrics and Gynaecology, Monash University, Clayton VIC, Australia
| | - Naghmeh Ahmadiankia
- Cancer Prevention Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mahdi Mirahmadi
- Stem Cells and Regenerative Medicine Research Group, Academic Center for Education, Culture and Research (ACECR)-Khorasan Razavi, Mashhad, Iran
| | - Ahmad Reza Bahrami
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
- Industrial Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hamid Reza Bidkhori
- Stem Cells and Regenerative Medicine Research Group, Academic Center for Education, Culture and Research (ACECR)-Khorasan Razavi, Mashhad, Iran
- Blood Borne Infections Research Center, Academic Center for Education, Culture and Research (ACECR)-Khorasan Razavi, Mashhad, Iran
| |
Collapse
|
9
|
Farhat W, Yeung V, Kahale F, Parekh M, Cortinas J, Chen L, Ross AE, Ciolino JB. Doxorubicin-Loaded Extracellular Vesicles Enhance Tumor Cell Death in Retinoblastoma. Bioengineering (Basel) 2022; 9:bioengineering9110671. [PMID: 36354582 PMCID: PMC9687263 DOI: 10.3390/bioengineering9110671] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/08/2022] [Accepted: 11/08/2022] [Indexed: 11/11/2022] Open
Abstract
Chemotherapy is often used to treat retinoblastoma; however, this treatment method has severe systemic adverse effects and inadequate therapeutic effectiveness. Extracellular vesicles (EVs) are important biological information carriers that mediate local and systemic cell-to-cell communication under healthy and pathological settings. These endogenous vesicles have been identified as important drug delivery vehicles for a variety of therapeutic payloads, including doxorubicin (Dox), with significant benefits over traditional techniques. In this work, EVs were employed as natural drug delivery nanoparticles to load Dox for targeted delivery to retinoblastoma human cell lines (Y-79). Two sub-types of EVs were produced from distinct breast cancer cell lines (4T1 and SKBR3) that express a marker that selectively interacts with retinoblastoma cells and were loaded with Dox, utilizing the cells’ endogenous loading machinery. In vitro, we observed that delivering Dox with both EVs increased cytotoxicity while dramatically lowering the dosage of the drug. Dox-loaded EVs, on the other hand, inhibited cancer cell growth by activating caspase-3/7. Direct interaction of EV membrane moieties with retinoblastoma cell surface receptors resulted in an effective drug delivery to cancer cells. Our findings emphasize the intriguing potential of EVs as optimum methods for delivering Dox to retinoblastoma.
Collapse
Affiliation(s)
- Wissam Farhat
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
- Correspondence: (W.F.); (J.B.C.)
| | - Vincent Yeung
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Francesca Kahale
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Mohit Parekh
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - John Cortinas
- Division of Newborn Medicine, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Lin Chen
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
- Department of Ophthalmology, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Amy E. Ross
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Joseph B. Ciolino
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
- Correspondence: (W.F.); (J.B.C.)
| |
Collapse
|
10
|
Suri K, D'Souza A, Huang D, Bhavsar A, Amiji M. Bacterial extracellular vesicle applications in cancer immunotherapy. Bioact Mater 2022; 22:551-566. [PMID: 36382022 PMCID: PMC9637733 DOI: 10.1016/j.bioactmat.2022.10.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/10/2022] [Accepted: 10/22/2022] [Indexed: 12/03/2022] Open
Abstract
Cancer therapy is undergoing a paradigm shift toward immunotherapy focusing on various approaches to activate the host immune system. As research to identify appropriate immune cells and activate anti-tumor immunity continues to expand, scientists are looking at microbial sources given their inherent ability to elicit an immune response. Bacterial extracellular vesicles (BEVs) are actively studied to control systemic humoral and cellular immune responses instead of using whole microorganisms or other types of extracellular vesicles (EVs). BEVs also provide the opportunity as versatile drug delivery carriers. Unlike mammalian EVs, BEVs have already made it to the clinic with the meningococcal vaccine (Bexsero®). However, there are still many unanswered questions in the use of BEVs, especially for chronic systemically administered immunotherapies. In this review, we address the opportunities and challenges in the use of BEVs for cancer immunotherapy and provide an outlook towards development of BEV products that can ultimately translate to the clinic.
Collapse
Affiliation(s)
- Kanika Suri
- Department of Bioengineering, College of Engineering, Northeastern University, Boston, MA, 02115, USA
| | - Anisha D'Souza
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA, 02115, USA,Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, 20115, USA
| | - Di Huang
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA, 02115, USA,Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, 20115, USA
| | - Aashray Bhavsar
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA, 02115, USA
| | - Mansoor Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA, 02115, USA,Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, MA, 02115, USA,Corresponding author. Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA, 02115, USA.
| |
Collapse
|
11
|
DeRose PC, Benkstein KD, Elsheikh EB, Gaigalas AK, Lehman SE, Ripple DC, Tian L, Vreeland WN, Welch EJ, York AW, Zhang YZ, Wang L. Number Concentration Measurements of Polystyrene Submicrometer Particles. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3118. [PMID: 36144906 PMCID: PMC9501160 DOI: 10.3390/nano12183118] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/15/2022] [Accepted: 09/02/2022] [Indexed: 06/01/2023]
Abstract
The number of techniques to measure number concentrations and size distributions of submicrometer particles has recently increased. Submicrometer particle standards are needed to improve the accuracy and reproducibility of these techniques. The number concentrations of fluorescently labeled polystyrene submicrometer sphere suspensions with nominal 100 nm, 200 nm and 500 nm diameters were measured using seven different techniques. Diameter values were also measured where possible. The diameter values were found to agree within 20%, but the number concentration values differed by as much as a factor of two. Accuracy and reproducibility related with the different techniques are discussed with the goal of using number concentration standards for instrument calibration. Three of the techniques were used to determine SI-traceable number concentration values, and the three independent values were averaged to give consensus values. This consensus approach is proposed as a protocol for certifying SI-traceable number concentration standards.
Collapse
Affiliation(s)
- Paul C. DeRose
- Biosystems and Biomaterials Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899, USA
| | - Kurt D. Benkstein
- Biomolecular Measurement Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899, USA
| | - Elzafir B. Elsheikh
- Biosystems and Biomaterials Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899, USA
| | - Adolfas K. Gaigalas
- Biosystems and Biomaterials Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899, USA
| | - Sean E. Lehman
- Biomolecular Measurement Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899, USA
| | - Dean C. Ripple
- Biomolecular Measurement Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899, USA
| | - Linhua Tian
- Biosystems and Biomaterials Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899, USA
| | - Wyatt N. Vreeland
- Biomolecular Measurement Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899, USA
| | - Eric J. Welch
- Protein and Cell Analysis, Thermo Fisher Scientific, Eugene, OR 97402, USA
| | - Adam W. York
- Protein and Cell Analysis, Thermo Fisher Scientific, Eugene, OR 97402, USA
| | - Yu-Zhong Zhang
- Protein and Cell Analysis, Thermo Fisher Scientific, Eugene, OR 97402, USA
| | - Lili Wang
- Biosystems and Biomaterials Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899, USA
| |
Collapse
|
12
|
Extracellular Vesicles—Oral Therapeutics of the Future. Int J Mol Sci 2022; 23:ijms23147554. [PMID: 35886902 PMCID: PMC9315796 DOI: 10.3390/ijms23147554] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 02/06/2023] Open
Abstract
Considered an artifact just after discovery, the possibility of oral delivery of extracellular vesicles (EVs) and their functional cargos has recently gained much research attention. EVs from various sources, including edible plants, milk, bacteria and mammalian cells, have emerged as a platform for miRNA and drug delivery that seem to induce the expected immune effects locally and in distant tissues after oral administration. Such a possibility greatly expands the clinical applicability of EVs. The present review summarizes research findings that either support or deny the biological/therapeutical activity of orally administered EVs and their role in cross-species and cross-kingdom signaling.
Collapse
|
13
|
Ren S, Zhang G, Shi W, Li W, Jia X. Fabrication of pH/H 2O 2-responsive polyhedral oligomeric silsesquioxane self-assembled fluorescent vesicles for enhanced in vivo anti-tumor efficacy. Nanomedicine (Lond) 2022; 17:671-682. [PMID: 35475381 DOI: 10.2217/nnm-2021-0302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: The rational design of a fluorescence imaging-guided, highly efficient multiresponsive delivery system is important for improving drug delivery efficiency. Materials and methods: Herein, pH/H2O2-responsive polyhedral oligomeric silsesquioxane (POSS) molecule functionalized 4-(phenyl(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-phenyl)amino)benzaldehyde (OTB) copolymer (PEG-POSS-OTB) was synthesized to encapsulate doxorubicin (DOX) for precise drug delivery. Results: The self-assembly fluorescent vesicles exhibited excellent pH/H2O2-responsive drug release properties under physiological conditions and efficient drug-targeting ability. In vitro, compared with the DOX group, PEG-POSS-OTB fluorescent vesicles exhibited improved drug delivery and reduced toxicity. Importantly, we performed a proof-of-concept study demonstrating that PEG-POSS-OTB fluorescent vesicles were a high-efficiency nanoassembly drug-delivery platform for improving drug delivery efficiency. In vivo studies demonstrated that PEG-POSS-OTB vesicles with enhanced stability could be used in targeted drug delivery and controlled intelligent release.
Collapse
Affiliation(s)
- Shuxian Ren
- State Key Laboratory of Coordination Chemistry, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Guiyang Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Wanling Shi
- State Key Laboratory of Coordination Chemistry, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Weizhi Li
- State Key Laboratory of Coordination Chemistry, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Xudong Jia
- State Key Laboratory of Coordination Chemistry, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
14
|
Van den Broek B, Wuyts C, Irobi J. Extracellular vesicle-associated small heat shock proteins as therapeutic agents in neurodegenerative diseases and beyond. Adv Drug Deliv Rev 2021; 179:114009. [PMID: 34673130 DOI: 10.1016/j.addr.2021.114009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/11/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022]
Abstract
Increasing evidence points towards using extracellular vesicles (EVs) as a therapeutic strategy in neurodegenerative diseases such as multiple sclerosis, Parkinson's, and Alzheimer's disease. EVs are nanosized carriers that play an essential role in intercellular communication and cellular homeostasis by transporting an active molecular cargo, including a large variety of proteins. Recent publications demonstrate that small heat shock proteins (HSPBs) exhibit a beneficial role in neurodegenerative diseases. Moreover, it is defined that HSPBs target the autophagy and the apoptosis pathway, playing a prominent role in chaperone activity and cell survival. This review elaborates on the therapeutic potential of EVs and HSPBs, in particular HSPB1 and HSPB8, in neurodegenerative diseases. We conclude that EVs and HSPBs positively influence neuroinflammation, central nervous system (CNS) repair, and protein aggregation in CNS disorders. Moreover, we propose the use of HSPB-loaded EVs as advanced nanocarriers for the future development of neurodegenerative disease therapies.
Collapse
Affiliation(s)
- Bram Van den Broek
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Charlotte Wuyts
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Joy Irobi
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium.
| |
Collapse
|
15
|
Zhuo Z, Wang J, Luo Y, Zeng R, Zhang C, Zhou W, Guo K, Wu H, Sha W, Chen H. Targeted extracellular vesicle delivery systems employing superparamagnetic iron oxide nanoparticles. Acta Biomater 2021; 134:13-31. [PMID: 34284151 DOI: 10.1016/j.actbio.2021.07.027] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 02/05/2023]
Abstract
In the past decade, the study of extracellular vesicles (EVs), especially exosomes (50-150 nm) have attracted growing interest in numerous areas of cancer and tissue regeneration due to their unique biological features. A low isolation yield and insufficient targeting abilities limit their therapeutic applicability. Recently, superparamagnetic iron oxide nanoparticles (SPIONs) with magnetic navigation have been exploited to enhance the targeting ability of EVs. To construct targeted EV delivery systems engineered by SPIONs, several groups have pioneered the use of different techniques, such as electroporation, natural incubation, and cell extrusion, to directly internalize SPIONs into EVs. Furthermore, some endogenous ligands, such as transferrins, antibodies, aptamers, and streptavidin, were shown to enable modification of SPIONs, which increases binding with EVs. In this review, we summarized recent advances in targeted EV delivery systems engineered by SPIONs and focused on the key methodological approaches and the current applications of magnetic EVs. This report aims to address the existing challenges and provide comprehensive insights into targeted EV delivery systems. STATEMENT OF SIGNIFICANCE: Targeted extracellular vesicle (EV) delivery systems engineered by superparamagnetic iron oxide nanoparticles (SPIONs) have attracted wide attention and research interest in recent years. Such strategies employ external magnet fields to manipulate SPION-functionalized EVs remotely, aiming to enhance their accumulation and penetration in vivo. Although iron oxide nanoparticle laden EVs are interesting, they are controversial at present, hampering the progress in their clinical application. A thorough integration of these studies is needed for an advanced insight and rational design of targeted EV delivery systems. In this review, we summarize the latest advances in the design strategies of targeted EV delivery systems engineered by SPIONs with a focus on their key methodological approaches, current applications, limitation and future perspectives, which may facilitate the development of natural theranostic nanoplatforms.
Collapse
Affiliation(s)
- Zewei Zhuo
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China; School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China
| | - Jinghua Wang
- Department of Hematology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Yujun Luo
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China; Shantou University Medical College, Shantou 515041, China
| | - Ruijie Zeng
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China; Shantou University Medical College, Shantou 515041, China
| | - Chen Zhang
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Weijie Zhou
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Kehang Guo
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Huihuan Wu
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Weihong Sha
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.
| | - Hao Chen
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.
| |
Collapse
|
16
|
Claridge B, Lozano J, Poh QH, Greening DW. Development of Extracellular Vesicle Therapeutics: Challenges, Considerations, and Opportunities. Front Cell Dev Biol 2021; 9:734720. [PMID: 34616741 PMCID: PMC8488228 DOI: 10.3389/fcell.2021.734720] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 07/30/2021] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) hold great promise as therapeutic modalities due to their endogenous characteristics, however, further bioengineering refinement is required to address clinical and commercial limitations. Clinical applications of EV-based therapeutics are being trialed in immunomodulation, tissue regeneration and recovery, and as delivery vectors for combination therapies. Native/biological EVs possess diverse endogenous properties that offer stability and facilitate crossing of biological barriers for delivery of molecular cargo to cells, acting as a form of intercellular communication to regulate function and phenotype. Moreover, EVs are important components of paracrine signaling in stem/progenitor cell-based therapies, are employed as standalone therapies, and can be used as a drug delivery system. Despite remarkable utility of native/biological EVs, they can be improved using bio/engineering approaches to further therapeutic potential. EVs can be engineered to harbor specific pharmaceutical content, enhance their stability, and modify surface epitopes for improved tropism and targeting to cells and tissues in vivo. Limitations currently challenging the full realization of their therapeutic utility include scalability and standardization of generation, molecular characterization for design and regulation, therapeutic potency assessment, and targeted delivery. The fields' utilization of advanced technologies (imaging, quantitative analyses, multi-omics, labeling/live-cell reporters), and utility of biocompatible natural sources for producing EVs (plants, bacteria, milk) will play an important role in overcoming these limitations. Advancements in EV engineering methodologies and design will facilitate the development of EV-based therapeutics, revolutionizing the current pharmaceutical landscape.
Collapse
Affiliation(s)
- Bethany Claridge
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, VIC, Australia
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Jonathan Lozano
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC, Australia
| | - Qi Hui Poh
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, VIC, Australia
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - David W. Greening
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, VIC, Australia
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Central Clinical School, Monash University, Melbourne, VIC, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
17
|
Lavker RM, Kaplan N, McMahon KM, Calvert AE, Henrich SE, Onay UV, Lu KQ, Peng H, Thaxton CS. Synthetic high-density lipoprotein nanoparticles: Good things in small packages. Ocul Surf 2021; 21:19-26. [PMID: 33894397 PMCID: PMC8328934 DOI: 10.1016/j.jtos.2021.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/26/2021] [Accepted: 03/06/2021] [Indexed: 12/26/2022]
Abstract
Medicine has been a great beneficiary of the nanotechnology revolution. Nanotechnology involves the synthesis of functional materials with at least one size dimension between 1 and 100 nm. Advances in the field have enabled the synthesis of bio-nanoparticles that can interface with physiological systems to modulate fundamental cellular processes. One example of a diverse acting nanoparticle-based therapeutic is synthetic high-density lipoprotein (HDL) nanoparticles (NP), which have great potential for treating diseases of the ocular surface. Our group has developed a spherical HDL NP using a gold nanoparticle core. HDL NPs: (i) closely mimic the physical and chemical features of natural HDLs; (ii) contain apoA-I; (iii) bind with high-affinity to SR-B1, which is the major receptor through which HDL modulates cell cholesterol metabolism and controls the selective uptake of HDL cargo into cells; (iv) are non-toxic to cells and tissues; and (v) can be chemically engineered to display nearly any surface or core composition desired. With respect to the ocular surface, topical application of HDL NPs accelerates re-epithelization of the cornea following wounding, attenuates inflammation resulting from chemical burns and/or other stresses, and effectively delivers microRNAs with biological activity to corneal cells and tissues. HDL NPs will be the foundation of a new class of topical eye drops with great translational potential and exemplify the impact that nanoparticles can have in medicine.
Collapse
Affiliation(s)
- Robert M Lavker
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | - Nihal Kaplan
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Kaylin M McMahon
- Department of Dermatology Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Andrea E Calvert
- Department of Dermatology Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Stephen E Henrich
- Department of Dermatology Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Ummiye V Onay
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Kurt Q Lu
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Han Peng
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - C Shad Thaxton
- Department of Dermatology Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
18
|
Park DJ, Seo YJ. Engineering of Extracellular Vesicles Based on Payload Changes for Tissue Regeneration. Tissue Eng Regen Med 2021; 18:485-497. [PMID: 34050888 DOI: 10.1007/s13770-021-00349-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 12/20/2022] Open
Abstract
In the field of tissue regeneration and tissue engineering, many years ago, various nano to macroscopic-sized materials have been used to reduce inflammation and restore damaged tissue. Whether it is safe to study the regeneration of all tissues based on the biological mechanisms of an organism composed of cells is still debated, and studies using extracellular vesicles derived from cells have become popular in the past decade. It has been reported that exosomes with a size of 100 nm or less, which plays an important role in cell-cell communication, contain various factors, such as proliferation, anti-inflammatory, and growth factors. In addition, the payload of exosomes varies depending on the parent cell and the recipient cell, and a technology to differentiate the selective payload must treat specific diseases. In this review, we examined the current trends in research using exosomes derived from cells or tissues and analyzed various research reports on factors that can affect tissue regeneration.
Collapse
Affiliation(s)
- Dong Jun Park
- Department of Surgery, University of California San Diego, 212 Dickinson Street, MC 8236, San Diego, CA, 92103, USA.,Department of Otorhinolaryngology, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju, Gangwon-do, 26426, South Korea.,Research Institute of Hearing Enhancement, Yonsei University Wonju College of Medicine, Wonju, Gangwon-do, 26426, South Korea
| | - Young Joon Seo
- Department of Otorhinolaryngology, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju, Gangwon-do, 26426, South Korea. .,Research Institute of Hearing Enhancement, Yonsei University Wonju College of Medicine, Wonju, Gangwon-do, 26426, South Korea. .,School of Pharmacy and Biomedical Sciences, Curtin University, Bentley, WA, Australia.
| |
Collapse
|