1
|
Liu J, Xi Z, Fan C, Mei Y, Zhao J, Jiang Y, Zhao M, Xu L. Hydrogels for Nucleic Acid Drugs Delivery. Adv Healthc Mater 2024:e2401895. [PMID: 39152918 DOI: 10.1002/adhm.202401895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/05/2024] [Indexed: 08/19/2024]
Abstract
Nucleic acid drugs are one of the hot spots in the field of biomedicine in recent years, and play a crucial role in the treatment of many diseases. However, its low stability and difficulty in target drug delivery are the bottlenecks restricting its application. Hydrogels are proven to be promising for improving the stability of nucleic acid drugs, reducing the adverse effects of rapid degradation, sudden release, and unnecessary diffusion of nucleic acid drugs. In this review, the strategies of loading nucleic acid drugs in hydrogels are summarized for various biomedical research, and classify the mechanism principles of these strategies, including electrostatic binding, hydrogen bond based binding, hydrophobic binding, covalent bond based binding and indirect binding using various carriers. In addition, this review also describes the release strategies of nucleic acid drugs, including photostimulation-based release, enzyme-responsive release, pH-responsive release, and temperature-responsive release. Finally, the applications and future research directions of hydrogels for delivering nucleic acid drugs in the field of medicine are discussed.
Collapse
Affiliation(s)
- Jiaping Liu
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, P. R. China
| | - Ziyue Xi
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, P. R. China
| | - Chuanyong Fan
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, P. R. China
| | - Yihua Mei
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, P. R. China
| | - Jiale Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, P. R. China
| | - Yingying Jiang
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, P. R. China
| | - Ming Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, P. R. China
| | - Lu Xu
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, P. R. China
| |
Collapse
|
2
|
Dai D, Zhang Y, Yang S, Kong W, Yang J, Zhang J. Recent Advances in Functional Materials for Optical Data Storage. Molecules 2024; 29:254. [PMID: 38202837 PMCID: PMC10780730 DOI: 10.3390/molecules29010254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/26/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
In the current data age, the fundamental research related to optical applications has been rapidly developed. Countless new-born materials equipped with distinct optical properties have been widely explored, exhibiting tremendous values in practical applications. The optical data storage technique is one of the most significant topics of the optical applications, which is considered as the prominent solution for conquering the challenge of the explosive increase in mass data, to achieve the long-life, low-energy, and super high-capacity data storage. On this basis, our review outlines the representative reports for mainly introducing the functional systems based on the newly established materials applied in the optical storage field. According to the material categories, the representative functional systems are divided into rare-earth doped nanoparticles, graphene, and diarylethene. In terms of the difference of structural features and delicate properties among the three materials, the application in optical storage is comprehensively illustrated in the review. Meanwhile, the potential opportunities and critical challenges of optical storage are also discussed in detail.
Collapse
Affiliation(s)
- Dihua Dai
- China Hualu Group Co., Ltd., 717 Huangpu Road, Dalian 116023, China; (D.D.); (Y.Z.); (S.Y.); (W.K.)
| | - Yong Zhang
- China Hualu Group Co., Ltd., 717 Huangpu Road, Dalian 116023, China; (D.D.); (Y.Z.); (S.Y.); (W.K.)
| | - Siwen Yang
- China Hualu Group Co., Ltd., 717 Huangpu Road, Dalian 116023, China; (D.D.); (Y.Z.); (S.Y.); (W.K.)
| | - Weicheng Kong
- China Hualu Group Co., Ltd., 717 Huangpu Road, Dalian 116023, China; (D.D.); (Y.Z.); (S.Y.); (W.K.)
| | - Jie Yang
- School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Jijun Zhang
- China Hualu Group Co., Ltd., 717 Huangpu Road, Dalian 116023, China; (D.D.); (Y.Z.); (S.Y.); (W.K.)
| |
Collapse
|
3
|
Zhu J, Wang J, Li Y. Recent advances in magnetic nanocarriers for tumor treatment. Biomed Pharmacother 2023; 159:114227. [PMID: 36638597 DOI: 10.1016/j.biopha.2023.114227] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/25/2022] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
Magnetic nanocarriers are nano-platforms that integrate multiple moieties based on magnetic nanoparticles for diagnostic and therapeutic purposes. In recent years, they have become an advanced platform for tumor treatment due to their wide application in magnetic resonance imaging (MRI), biocatalysis, magneto-thermal therapy (MHT), and photoresponsive therapy. Drugs loaded into magnetic nanocarriers can efficiently be directed to targeted areas by precisely reshaping their structural properties. Magnetic nanocarriers allow us to track the location of the therapeutic agent, continuously control the therapeutic process and eventually assess the efficacy of the treatment. They are typically used in synergistic therapeutic applications to achieve precise and effective tumor treatment. Here we review their latest applications in tumor treatment, including stimuli-responsive drug delivery, MHT, photoresponsive therapy, immunotherapy, gene therapy, and synergistic therapy. We consider reducing toxicity, improving antitumor efficacy, and the targeting accuracy of magnetic nanocarriers. The challenges of their clinical translation and prospects in cancer therapy are also discussed.
Collapse
Affiliation(s)
- Jianmeng Zhu
- Clinical Laboratory of Chun'an First People's Hospital, Zhejiang Provincial People's Hospital Chun'an Branch, Hangzhou Medical College Affiliated Chun'an Hospital, Hangzhou, Zhejiang, PR China.
| | - Jian Wang
- Clinical Laboratory of Chun'an First People's Hospital, Zhejiang Provincial People's Hospital Chun'an Branch, Hangzhou Medical College Affiliated Chun'an Hospital, Hangzhou, Zhejiang, PR China
| | - Yiping Li
- Clinical Laboratory of Chun'an First People's Hospital, Zhejiang Provincial People's Hospital Chun'an Branch, Hangzhou Medical College Affiliated Chun'an Hospital, Hangzhou, Zhejiang, PR China
| |
Collapse
|
4
|
Sen T. Interview: insights from a career developing and applying magnetic nanoparticles. Nanomedicine (Lond) 2023; 17:2123-2125. [PMID: 36734376 DOI: 10.2217/nnm-2023-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
T Sen is a Reader in Nanomaterials Chemistry at the University of Central Lancashire (UCLan). He trained as a chemist, achieving his BSc Hons in Chemistry, MSc in Physical Chemistry and PhD in Materials Chemistry from the National Chemical Laboratory (Pune, India). Alongside his academic posting, he is an editorial board member for several journals including Nanomedicine. His work at UCLan is multidisciplinary, drawing from chemistry, material science, biology and medicine to work with industry and academic partners to address challenges in health and environmental sciences. The research group currently has three projects: magneto-optical nanocomposites for liver cancer therapeutics; the separation and identification of viral RNAs using magnetic nanoparticles in the context of coronavirus and developing multifunctional nanocomposites for the detection and separation of wastewater toxicity and treatment.
Collapse
Affiliation(s)
- Tapas Sen
- School of Natural Sciences, University of Central Lancashire, Preston, PR12HE, United Kingdom
| |
Collapse
|
5
|
Maier A, van Oossanen R, van Rhoon GC, Pignol JP, Dugulan I, Denkova AG, Djanashvili K. From Structure to Function: Understanding Synthetic Conditions in Relation to Magnetic Properties of Hybrid Pd/Fe-Oxide Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3649. [PMID: 36296839 PMCID: PMC9612236 DOI: 10.3390/nano12203649] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/04/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Heterostructured magnetic nanoparticles show great potential for numerous applications in biomedicine due to their ability to express multiple functionalities in a single structure. Magnetic properties are generally determined by the morphological characteristics of nanoparticles, such as the size/shape, and composition of the nanocrystals. These in turn are highly dependent on the synthetic conditions applied. Additionally, incorporation of a non-magnetic heterometal influences the final magnetic behavior. Therefore, construction of multifunctional hybrid nanoparticles with preserved magnetic properties represents a certain nanotechnological challenge. Here, we focus on palladium/iron oxide nanoparticles designed for combined brachytherapy, the internal form of radiotherapy, and MRI-guided hyperthermia of tumors. The choice of palladium forming the nanoparticle core is envisioned for the eventual radiolabeling with 103Pd to enable the combination of hyperthermia with brachytherapy, the latter being beyond the scope of the present study. At this stage, we investigated the synthetic mechanisms and their effects on the final magnetic properties of the hybrid nanoparticles. Thermal decomposition was applied for the synthesis of Pd/Fe-oxide nanoparticles via both, one-pot and seed-mediated processes. The latter method was found to provide better control over morphology of the nanoparticles and was therefore examined closely by varying reaction conditions. This resulted in several batches of Pd/Fe-oxide nanoparticles, whose magnetic properties were evaluated, revealing the most relevant synthetic parameters leading to promising performance in hyperthermia and MRI.
Collapse
Affiliation(s)
- Alexandra Maier
- Department of Biotechnology, Delft University of Technology, Van Der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Rogier van Oossanen
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center, 3008 AE Rotterdam, The Netherlands
- Department of Radiation Science and Technology, Delft University of Technology, Mekelweg 15, 2629 JB Delft, The Netherlands
| | - Gerard C. van Rhoon
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center, 3008 AE Rotterdam, The Netherlands
- Department of Radiation Science and Technology, Delft University of Technology, Mekelweg 15, 2629 JB Delft, The Netherlands
| | - Jean-Philippe Pignol
- Department of Physics and Atmospheric Sciences, Dalhousie University, Sir James Dunn Bldg., Halifax, NS B3H 4J5, Canada
| | - Iulian Dugulan
- Department of Radiation Science and Technology, Delft University of Technology, Mekelweg 15, 2629 JB Delft, The Netherlands
| | - Antonia G. Denkova
- Department of Radiation Science and Technology, Delft University of Technology, Mekelweg 15, 2629 JB Delft, The Netherlands
| | - Kristina Djanashvili
- Department of Biotechnology, Delft University of Technology, Van Der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
6
|
Fe3O4/Graphene-Based Nanotheranostics for Bimodal Magnetic Resonance/Fluorescence Imaging and Cancer Therapy. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02457-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
7
|
Abedi M, Rahgozar S. Puzzling Out Iron Complications in Cancer Drug Resistance. Crit Rev Oncol Hematol 2022; 178:103772. [PMID: 35914667 DOI: 10.1016/j.critrevonc.2022.103772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/23/2022] [Accepted: 07/28/2022] [Indexed: 12/09/2022] Open
Abstract
Iron metabolism are frequently disrupted in cancer. Patients with cancer are prone to anemia and receive transfusions frequently; the condition which results in iron overload, contributing to serious therapeutic complications. Iron is introduced as a carcinogen that may increase tumor growth. However, investigations regarding its impact on response to chemotherapy, particularly the induction of drug resistance are still limited. Here, iron contribution to cell signaling and various molecular mechanisms underlying iron-mediated drug resistance are described. A dual role of this vital element in cancer treatment is also addressed. On one hand, the need to administer iron chelators to surmount iron overload and improve the sensitivity of tumor cells to chemotherapy is discussed. On the other hand, the necessary application of iron as a therapeutic option by iron-oxide nanoparticles or ferroptosis inducers is explained. Authors hope that this paper can help unravel the clinical complications related to iron in cancer therapy.
Collapse
Affiliation(s)
- Marjan Abedi
- Department of Cell and Molecular biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Soheila Rahgozar
- Department of Cell and Molecular biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| |
Collapse
|
8
|
Theranostic Applications of Nanoparticle-Mediated Photoactivated Therapies. JOURNAL OF NANOTHERANOSTICS 2021. [DOI: 10.3390/jnt2030009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Nanoparticle-mediated light-activated therapies, such as photodynamic therapy and photothermal therapy, are earnestly being viewed as efficient interventional strategies against several cancer types. Theranostics is a key hallmark of cancer nanomedicine since it allows diagnosis and therapy of both primary and metastatic cancer using a single nanoprobe. Advanced in vivo diagnostic imaging using theranostic nanoparticles not only provides precise information about the location of tumor/s but also outlines the narrow time window corresponding to the maximum tumor-specific drug accumulation. Such information plays a critical role in guiding light-activated therapies with high spatio-temporal accuracy. Furthermore, theranostics facilitates monitoring the progression of therapy in real time. Herein, we provide a general review of the application of theranostic nanoparticles for in vivo image-guided light-activated therapy in cancer. The imaging modalities considered here include fluorescence imaging, photoacoustic imaging, thermal imaging, magnetic resonance imaging, X-ray computed tomography, positron emission tomography, and single-photon emission computed tomography. The review concludes with a brief discussion about the broad scope of theranostic light-activated nanomedicine.
Collapse
|
9
|
Sen T, Mahmoudi M. Special Focus Issue Part I: Functional nanomaterials in cancer therapy. Nanomedicine (Lond) 2021; 16:879-882. [PMID: 34015970 DOI: 10.2217/nnm-2021-0150] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Tapas Sen
- Nano-biomaterials Research Group, School of Natural Sciences, University of Central Lancashire, Preston, PR1 2HE, UK
| | - Morteza Mahmoudi
- Department of Radiology & Precision Health Program, Michigan State University, 766 Service Road, East Lansing, MI 48824, USA
| |
Collapse
|