1
|
Chen G, Bao B, Cheng Y, Tian M, Song J, Zheng L, Tong Q. Acetyl-CoA metabolism as a therapeutic target for cancer. Biomed Pharmacother 2023; 168:115741. [PMID: 37864899 DOI: 10.1016/j.biopha.2023.115741] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/16/2023] [Accepted: 10/16/2023] [Indexed: 10/23/2023] Open
Abstract
Acetyl-coenzyme A (acetyl-CoA), an essential metabolite, not only takes part in numerous intracellular metabolic processes, powers the tricarboxylic acid cycle, serves as a key hub for the biosynthesis of fatty acids and isoprenoids, but also serves as a signaling substrate for acetylation reactions in post-translational modification of proteins, which is crucial for the epigenetic inheritance of cells. Acetyl-CoA links lipid metabolism with histone acetylation to create a more intricate regulatory system that affects the growth, aggressiveness, and drug resistance of malignancies such as glioblastoma, breast cancer, and hepatocellular carcinoma. These fascinating advances in the knowledge of acetyl-CoA metabolism during carcinogenesis and normal physiology have raised interest regarding its modulation in malignancies. In this review, we provide an overview of the regulation and cancer relevance of main metabolic pathways in which acetyl-CoA participates. We also summarize the role of acetyl-CoA in the metabolic reprogramming and stress regulation of cancer cells, as well as medical application of inhibitors targeting its dysregulation in therapeutic intervention of cancers.
Collapse
Affiliation(s)
- Guo Chen
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, PR China
| | - Banghe Bao
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, PR China
| | - Yang Cheng
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, PR China
| | - Minxiu Tian
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, PR China
| | - Jiyu Song
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, PR China
| | - Liduan Zheng
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, PR China.
| | - Qiangsong Tong
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, PR China.
| |
Collapse
|
2
|
Xing X, Zhong W, Tang P, Tao Q, Lu X, Zhong L. Tracking intracellular nuclear targeted-chemotherapy of chidamide-loaded Prussian blue nanocarriers by SERS mapping. Colloids Surf B Biointerfaces 2023; 229:113469. [PMID: 37536167 DOI: 10.1016/j.colsurfb.2023.113469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/16/2023] [Accepted: 04/08/2023] [Indexed: 08/05/2023]
Abstract
The novel histone deacetylase drug chidamide (CHI) has been proven to regulate gene expression associated with oncogenesis via epigenetic mechanisms. However, huge side effects such as non-targeting, poor intracellular accumulation and low nuclear entry efficiency severely restrict its therapeutic efficacy. Dual-targeted nanodrug delivery systems have been proposed as the solution. Herein, we developed a CHI-loaded drug delivery nanosystem based on Prussian blue (PB) nanocarrier, which combines surface-enhanced Raman scattering (SERS) tracking function with cancer cell/nuclear-targeted chemotherapy capability. With the property of background-free SERS mapping, PB nanocarriers can serve as tracking agents to localize intracellular CHI. The incorporation of targeted molecules specifically enhances the cancer cell/nuclear internalization and chemotherapeutic effects of CHI-loaded PB nanocarriers. In vitro cytotoxicity assay clearly shows that the constructed CHI-loaded PB nanocarriers have significant inhibitory on Jurkat cell proliferation. Furthermore, SERS spectral analysis of Jurkat cells incubated with the CHI-loaded PB nanocarriers reveals obvious features of cellular apoptosis: DNA skeleton fragmentation, chromatin depolymerization, histone acetylation, and nucleosome conformation change. Importantly, this CHI-loaded PB nanocarrier will provide a new insight for lymphoblastic leukemia targeted chemotherapy.
Collapse
Affiliation(s)
- Xinyue Xing
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou, China
| | - Wanqing Zhong
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou, China
| | - Ping Tang
- China Guangdong Provincial Key Laboratory of Photonics Information Technology, Guangdong University of Technology, Guangzhou, China
| | - Qiao Tao
- China Guangdong Provincial Key Laboratory of Photonics Information Technology, Guangdong University of Technology, Guangzhou, China
| | - Xiaoxu Lu
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou, China.
| | - Liyun Zhong
- China Guangdong Provincial Key Laboratory of Photonics Information Technology, Guangdong University of Technology, Guangzhou, China.
| |
Collapse
|
3
|
Abdelgalil R, Khattab SN, Ebrahim S, Elkhodairy KA, Teleb M, Bekhit AA, Sallam MA, Elzoghby AO. Engineered Sericin-Tagged Layered Double Hydroxides for Combined Delivery of Pemetrexed and ZnO Quantum Dots as Biocompatible Cancer Nanotheranostics. ACS OMEGA 2023; 8:5655-5671. [PMID: 36816638 PMCID: PMC9933221 DOI: 10.1021/acsomega.2c07128] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/20/2023] [Indexed: 05/25/2023]
Abstract
Despite extensive progress in the field of cancer nanotheranostics, clinical development of biocompatible theranostic nanomedicine remains a formidable challenge. Herein, we engineered biocompatible silk-sericin-tagged inorganic nanohybrids for efficient treatment and imaging of cancer cells. The developed nanocarriers are anticipated to overcome the premature release of the chemotherapeutic drug pemetrexed (PMX), enhance the colloidal stability of layered double hydroxides (LDHs), and maintain the luminescence properties of ZnO quantum dots (QDs). Materials and Methods: PMX-intercalated LDHs were modified with sericin and coupled to ZnO QDs for therapy and imaging of breast cancer cells. Results: The optimized nanomedicine demonstrated a sustained release profile of PMX, and high cytotoxicity against MDA-MB-231 cells compared to free PMX. In addition, high cellular uptake of the engineered nanocarriers into MDA-MB-231 breast cancer cells was accomplished. Conclusions: Conclusively, the LDH-sericin nanohybrids loaded with PMX and conjugated to ZnO QDs offered a promising cancer theranostic nanomedicine.
Collapse
Affiliation(s)
- Riham
M. Abdelgalil
- Department
of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
- Cancer
Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Sherine N. Khattab
- Chemistry
Department, Faculty of Science, Alexandria
University, Alexandria 21321, Egypt
| | - Shaker Ebrahim
- Department
of Materials Science, Institute of Graduate Studies and Research, Alexandria 21526, Egypt
| | - Kadria A. Elkhodairy
- Department
of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
- Cancer
Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Mohamed Teleb
- Cancer
Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Adnan A. Bekhit
- Cancer
Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
- Pharmacy
Program, Allied Health Department, College of Health and Sport Sciences, University of Bahrain, Zallaq 32038, Kingdom of Bahrain
| | - Marwa A. Sallam
- Department
of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Ahmed O. Elzoghby
- Department
of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
- Cancer
Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
- Division
of Engineering in Medicine, Department of Medicine, Brigham and Women’s
Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
4
|
Sim W, Lim WM, Hii LW, Leong CO, Mai CW. Targeting pancreatic cancer immune evasion by inhibiting histone deacetylases. World J Gastroenterol 2022; 28:1934-1945. [PMID: 35664961 PMCID: PMC9150054 DOI: 10.3748/wjg.v28.i18.1934] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/17/2022] [Accepted: 04/04/2022] [Indexed: 02/06/2023] Open
Abstract
The immune system plays a vital role in maintaining the delicate balance between immune recognition and tumor development. Regardless, it is not uncommon that cancerous cells can intelligently acquire abilities to bypass the antitumor immune responses, thus allowing continuous tumor growth and development. Immune evasion has emerged as a significant factor contributing to the progression and immune resistance of pancreatic cancer. Compared with other cancers, pancreatic cancer has a tumor microenvironment that can resist most treatment modalities, including emerging immunotherapy. Sadly, the use of immunotherapy has yet to bring significant clinical breakthrough among pancreatic cancer patients, suggesting that pancreatic cancer has successfully evaded immunomodulation. In this review, we summarize the impact of genetic alteration and epigenetic modification (especially histone deacetylases, HDAC) on immune evasion in pancreatic cancer. HDAC overexpression significantly suppresses tumor suppressor genes, contributing to tumor growth and progression. We review the evidence on HDAC inhibitors in tumor eradication, improving T cells activation, restoring tumor immunogenicity, and modulating programmed death 1 interaction. We provide our perspective in targeting HDAC as a strategy to reverse immune evasion in pancreatic cancer.
Collapse
Affiliation(s)
- Wynne Sim
- School of Medicine, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Wei-Meng Lim
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
- Center for Cancer and Stem Cell Research, Institute for Research, Development, and Innovation, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Ling-Wei Hii
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
- Center for Cancer and Stem Cell Research, Institute for Research, Development, and Innovation, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Chee-Onn Leong
- Center for Cancer and Stem Cell Research, Institute for Research, Development, and Innovation, International Medical University, Kuala Lumpur 57000, Malaysia
- AGTC Genomics, Kuala Lumpur 57000, Malaysia
| | - Chun-Wai Mai
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| |
Collapse
|