1
|
Vogt PM, Radtke C, Krezdorn N, Kollewe K, Liebsch C, Dastagir K, Strauß S. Biological conduits based on spider silk for reconstruction of extended nerve defects. Innov Surg Sci 2024; 9:133-142. [PMID: 39309196 PMCID: PMC11416034 DOI: 10.1515/iss-2023-0050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 05/06/2024] [Indexed: 09/25/2024] Open
Abstract
Objectives The availability of appropriate conduits remains an obstacle for successful reconstruction of long-distance nerve defects. In previous sheep trials, we were able to bridge 6 cm nerve gaps with nerve conduits based on spider silk fibers with full functional outcomes. Here, we describe the first application of spider silk for nerve repair in humans. Methods Four patients with extended nerve defects (>20 cm) underwent nerve reconstruction by interposition of conduits that were composed of spider silk fibers contained in autologous veins. The longitudinal luminal fibers (approx. 2500 fibers per graft) consisted of drag line silk from Trichonephila spiders. All patients were evaluated between 2 and 10 years postreconstruction, clinically, and by neurography. Results In all patients, primary wound healing and no adverse reactions to the implanted spider silk material were observed. Patients regained the following relevant functions: protective sensibility, full flexor function with near-normal grasp and powerful function after microvascular gracilis muscle transfer, and key grip function and gross finger flexion after additional tenodesis. One patient with sciatic nerve reconstruction developed protective sensibility of the lower leg, foot, and gait, enabling normal walking and jogging. No neuroma formation or neuropathic or chronic pain occurred in any of the patients. Conclusions For patients with extended peripheral nerve defects in the extremities, use of conduits based on spider silk fibers offers the possibility of restoring sensory function and protection from neuroma. This kind of nerve bridges provides new perspectives for the reconstruction of complex and long-distance nerve defects.
Collapse
Affiliation(s)
- Peter M. Vogt
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery and Spider Silk Laboratories, Hannover Medical School, Hannover, Germany
| | - Christine Radtke
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery and Spider Silk Laboratories, Hannover Medical School, Hannover, Germany
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University, Vienna, Austria
| | - Nicco Krezdorn
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery and Spider Silk Laboratories, Hannover Medical School, Hannover, Germany
| | - Katja Kollewe
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Christina Liebsch
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery and Spider Silk Laboratories, Hannover Medical School, Hannover, Germany
| | - Khaled Dastagir
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery and Spider Silk Laboratories, Hannover Medical School, Hannover, Germany
| | - Sarah Strauß
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery and Spider Silk Laboratories, Hannover Medical School, Hannover, Germany
| |
Collapse
|
2
|
Shi S, Ou X, Cheng D. Nanoparticle-Facilitated Therapy: Advancing Tools in Peripheral Nerve Regeneration. Int J Nanomedicine 2024; 19:19-34. [PMID: 38187908 PMCID: PMC10771795 DOI: 10.2147/ijn.s442775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 12/21/2023] [Indexed: 01/09/2024] Open
Abstract
Peripheral nerve injuries, arising from a diverse range of etiologies such as trauma and underlying medical conditions, pose substantial challenges in both clinical management and subsequent restoration of functional capacity. Addressing these challenges, nanoparticles have emerged as a promising therapeutic modality poised to augment the process of peripheral nerve regeneration. However, a comprehensive elucidation of the complicated mechanistic foundations responsible for the favorable effects of nanoparticle-based therapy on nerve regeneration remains imperative. This review aims to scrutinize the potential of nanoparticles as innovative therapeutic carriers for promoting peripheral nerve repair. This review encompasses an in-depth exploration of the classifications and synthesis methodologies associated with nanoparticles. Additionally, we discuss and summarize the multifaceted roles that nanoparticles play, including neuroprotection, facilitation of axonal growth, and efficient drug delivery mechanisms. Furthermore, we present essential considerations and highlight the potential synergies of integrating nanoparticles with emerging technologies. Through this comprehensive review, we highlight the indispensable role of nanoparticles in propelling advancements in peripheral nerve regeneration.
Collapse
Affiliation(s)
- Shaoyan Shi
- Department of Hand Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an Honghui Hospital North District, Xi’an, Shaanxi, 710000, People’s Republic of China
| | - Xuehai Ou
- Department of Hand Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an Honghui Hospital North District, Xi’an, Shaanxi, 710000, People’s Republic of China
| | - Deliang Cheng
- Department of Hand Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an Honghui Hospital North District, Xi’an, Shaanxi, 710000, People’s Republic of China
| |
Collapse
|
3
|
Sun W, Ye B, Chen S, Zeng L, Lu H, Wan Y, Gao Q, Chen K, Qu Y, Wu B, Lv X, Guo X. Neuro-bone tissue engineering: emerging mechanisms, potential strategies, and current challenges. Bone Res 2023; 11:65. [PMID: 38123549 PMCID: PMC10733346 DOI: 10.1038/s41413-023-00302-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/08/2023] [Accepted: 10/31/2023] [Indexed: 12/23/2023] Open
Abstract
The skeleton is a highly innervated organ in which nerve fibers interact with various skeletal cells. Peripheral nerve endings release neurogenic factors and sense skeletal signals, which mediate bone metabolism and skeletal pain. In recent years, bone tissue engineering has increasingly focused on the effects of the nervous system on bone regeneration. Simultaneous regeneration of bone and nerves through the use of materials or by the enhancement of endogenous neurogenic repair signals has been proven to promote functional bone regeneration. Additionally, emerging information on the mechanisms of skeletal interoception and the central nervous system regulation of bone homeostasis provide an opportunity for advancing biomaterials. However, comprehensive reviews of this topic are lacking. Therefore, this review provides an overview of the relationship between nerves and bone regeneration, focusing on tissue engineering applications. We discuss novel regulatory mechanisms and explore innovative approaches based on nerve-bone interactions for bone regeneration. Finally, the challenges and future prospects of this field are briefly discussed.
Collapse
Affiliation(s)
- Wenzhe Sun
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Bing Ye
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Siyue Chen
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Lian Zeng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Hongwei Lu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yizhou Wan
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Qing Gao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Kaifang Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yanzhen Qu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Bin Wu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xiao Lv
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.
| | - Xiaodong Guo
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.
| |
Collapse
|
4
|
Yi D, Zhang Y, Li M, Chen J, Chen X, Wang L, Xing G, Chen S, Zhu Y, Wang Y. Ultrasound-Targeted Microbubble Destruction Assisted Delivery of Platelet-Rich Plasma-Derived Exosomes Promoting Peripheral Nerve Regeneration. Tissue Eng Part A 2023; 29:645-662. [PMID: 37612613 DOI: 10.1089/ten.tea.2023.0133] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023] Open
Abstract
Peripheral nerve injury is prevalent and has a high disability rate in clinical settings. Current therapeutic methods have not achieved satisfactory efficacy, underscoring the need for novel approaches to nerve restoration that remains an active area of research in neuroscience and regenerative medicine. In this study, we isolated platelet-rich plasma-derived exosomes (PRP-exos) and found that they can significantly enhance the proliferation, migration, and secretion of trophic factors by Schwann cells (SCs). In addition, there were marked changes in transcriptional and expression profiles of SCs, particularly via the upregulation of genes related to biological functions involved in nerve regeneration and repair. In the rat model of sciatic nerve crush injury, ultrasound-targeted microbubble destruction (UTMD) enhanced the efficiency of PRP-exos delivery to the injury site. This approach ensured a high concentration of PRP-exos in the injured nerve and improved the therapeutic outcomes. In conclusion, PRP-exos may promote nerve regeneration and repair, and UTMD may increase the effectiveness of targeted PRP-exos delivery to the injured nerve and enhance the therapeutic effect.
Collapse
Affiliation(s)
- Dan Yi
- Medical School of Chinese PLA, Beijing, China
- Department of Ultrasound, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
- Department of Nephrology, The First Medical Centre, Chinese PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Yongyi Zhang
- Medical School of Chinese PLA, Beijing, China
- Department of Rehabilitation Medicine, The Second Medical Centre, Chinese PLA General Hospital, Beijing, China
- No.962 Hospital of the PLA Joint Logistic Support Force, Harbin, China
| | - Molin Li
- Medical School of Chinese PLA, Beijing, China
- Department of Ultrasound, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Jian Chen
- Department of Ultrasound, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
- Medical College of Nankai University, Tianjin, China
| | - Xianghui Chen
- Medical School of Chinese PLA, Beijing, China
- Department of Ultrasound, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Li Wang
- Medical School of Chinese PLA, Beijing, China
- Department of Ultrasound, The Sixth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Guanghui Xing
- Medical School of Chinese PLA, Beijing, China
- Department of Ultrasound, The Fourth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Siming Chen
- Department of Ultrasound, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Yaqiong Zhu
- Department of Ultrasound, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Yuexiang Wang
- Department of Ultrasound, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
5
|
Abstract
PURPOSE OF REVIEW To review advances in the diagnostic evaluation and management of traumatic peripheral nerve injuries. RECENT FINDINGS Serial multimodal assessment of peripheral nerve injuries facilitates assessment of spontaneous axonal regeneration and selection of appropriate patients for early surgical intervention. Novel surgical and rehabilitative approaches have been developed to complement established strategies, particularly in the area of nerve grafting, targeted rehabilitation strategies and interventions to promote nerve regeneration. However, several management challenges remain, including incomplete reinnervation, traumatic neuroma development, maladaptive central remodeling and management of fatigue, which compromise functional recovery. SUMMARY Innovative approaches to the assessment and treatment of peripheral nerve injuries hold promise in improving the degree of functional recovery; however, this remains a complex and evolving area.
Collapse
|
6
|
Development of Two-Layer Hybrid Scaffolds Based on Oxidized Polyvinyl Alcohol and Bioactivated Chitosan Sponges for Tissue Engineering Purposes. Int J Mol Sci 2022; 23:ijms232012059. [PMID: 36292917 PMCID: PMC9603651 DOI: 10.3390/ijms232012059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/26/2022] [Accepted: 10/03/2022] [Indexed: 11/30/2022] Open
Abstract
Oxidized polyvinyl alcohol (OxPVA) is a new polymer for the fabrication of nerve conduits (NCs). Looking for OxPVA device optimization and coupling it with a natural sheath may boost bioactivity. Thus, OxPVA/chitosan sponges (ChS) as hybrid scaffolds were investigated to predict in the vivo behaviour of two-layered NCs. To encourage interaction with cells, ChS were functionalized with the self-assembling-peptide (SAP) EAK, without/with the laminin-derived sequences -IKVAV/-YIGSR. Thus, ChS and the hybrid scaffolds were characterized for mechanical properties, ultrastructure (Scanning Electron Microscopy, SEM), bioactivity, and biocompatibility. Regarding mechanical analysis, the peptide-free ChS showed the highest values of compressive modulus and maximum stress. However, among +EAK groups, ChS+EAK showed a significantly higher maximum stress than that found for ChS+EAK-IKVAV and ChS+EAK-YIGSR. Considering ultrastructure, microporous interconnections were tighter in both the OxPVA/ChS and +EAK groups than in the others; all the scaffolds induced SH-SY5Y cells’ adhesion/proliferation, with significant differences from day 7 and a higher total cell number for OxPVA/ChS+EAK scaffolds, in accordance with SEM. The scaffolds elicited only a slight inflammation after 14 days of subcutaneous implantation in Balb/c mice, proving biocompatibility. ChS porosity, EAK 3D features and neuro-friendly attitude (shared with IKVAV/YIGSR motifs) may confer to OxPVA certain bioactivity, laying the basis for future appealing NCs.
Collapse
|
7
|
Fornaro M, Dipollina C, Giambalvo D, Garcia R, Sigerson C, Sharthiya H, Liu C, Nealey PF, Kristjansdottir K, Gasiorowski JZ. Submicron Topographically Patterned 3D Substrates Enhance Directional Axon Outgrowth of Dorsal Root Ganglia Cultured Ex Vivo. Biomolecules 2022; 12:biom12081059. [PMID: 36008953 PMCID: PMC9405616 DOI: 10.3390/biom12081059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 11/26/2022] Open
Abstract
A peripheral nerve injury results in disruption of the fiber that usually protects axons from the surrounding environment. Severed axons from the proximal nerve stump are capable of regenerating, but axons are exposed to a completely new environment. Regeneration recruits cells that produce and deposit key molecules, including growth factor proteins and fibrils in the extracellular matrix (ECM), thus changing the chemical and geometrical environment. The regenerating axons thus surf on a newly remodeled micro-landscape. Strategies to enhance and control axonal regeneration and growth after injury often involve mimicking the extrinsic cues that are found in the natural nerve environment. Indeed, nano- and micropatterned substrates have been generated as tools to guide axons along a defined path. The mechanical cues of the substrate are used as guides to orient growth or change the direction of growth in response to impediments or cell surface topography. However, exactly how axons respond to biophysical information and the dynamics of axonal movement are still poorly understood. Here we use anisotropic, groove-patterned substrate topography to direct and enhance sensory axonal growth of whole mouse dorsal root ganglia (DRG) transplanted ex vivo. Our results show significantly enhanced and directed growth of the DRG sensory fibers on the hemi-3D topographic substrates compared to a 0 nm pitch, flat control surface. By assessing the dynamics of axonal movement in time-lapse microscopy, we found that the enhancement was not due to increases in the speed of axonal growth, but to the efficiency of growth direction, ensuring axons minimize movement in undesired directions. Finally, the directionality of growth was reproduced on topographic patterns fabricated as fully 3D substrates, potentially opening new translational avenues of development incorporating these specific topographic feature sizes in implantable conduits in vivo.
Collapse
Affiliation(s)
- Michele Fornaro
- Department of Anatomy, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA;
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA; (C.D.); (D.G.); (C.S.)
- Correspondence: (M.F.); (J.Z.G.)
| | - Christopher Dipollina
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA; (C.D.); (D.G.); (C.S.)
- Department of Biomedical Sciences, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA; (R.G.); (K.K.)
| | - Darryl Giambalvo
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA; (C.D.); (D.G.); (C.S.)
- Department of Biomedical Sciences, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA; (R.G.); (K.K.)
| | - Robert Garcia
- Department of Biomedical Sciences, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA; (R.G.); (K.K.)
| | - Casey Sigerson
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA; (C.D.); (D.G.); (C.S.)
| | - Harsh Sharthiya
- Department of Anatomy, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA;
| | - Claire Liu
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA; (C.L.); (P.F.N.)
| | - Paul F. Nealey
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA; (C.L.); (P.F.N.)
| | - Kolbrun Kristjansdottir
- Department of Biomedical Sciences, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA; (R.G.); (K.K.)
| | - Joshua Z. Gasiorowski
- Department of Biomedical Sciences, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA; (R.G.); (K.K.)
- Correspondence: (M.F.); (J.Z.G.)
| |
Collapse
|