1
|
Haidar LL, Bilek M, Akhavan B. Surface Bio-engineered Polymeric Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310876. [PMID: 38396265 DOI: 10.1002/smll.202310876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/05/2024] [Indexed: 02/25/2024]
Abstract
Surface bio-engineering of polymeric nanoparticles (PNPs) has emerged as a cornerstone in contemporary biomedical research, presenting a transformative avenue that can revolutionize diagnostics, therapies, and drug delivery systems. The approach involves integrating bioactive elements on the surfaces of PNPs, aiming to provide them with functionalities to enable precise, targeted, and favorable interactions with biological components within cellular environments. However, the full potential of surface bio-engineered PNPs in biomedicine is hampered by obstacles, including precise control over surface modifications, stability in biological environments, and lasting targeted interactions with cells or tissues. Concerns like scalability, reproducibility, and long-term safety also impede translation to clinical practice. In this review, these challenges in the context of recent breakthroughs in developing surface-biofunctionalized PNPs for various applications, from biosensing and bioimaging to targeted delivery of therapeutics are discussed. Particular attention is given to bonding mechanisms that underlie the attachment of bioactive moieties to PNP surfaces. The stability and efficacy of surface-bioengineered PNPs are critically reviewed in disease detection, diagnostics, and treatment, both in vitro and in vivo settings. Insights into existing challenges and limitations impeding progress are provided, and a forward-looking discussion on the field's future is presented. The paper concludes with recommendations to accelerate the clinical translation of surface bio-engineered PNPs.
Collapse
Affiliation(s)
- Laura Libnan Haidar
- School of Physics, University of Sydney, Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Marcela Bilek
- School of Physics, University of Sydney, Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
- School of Biomedical Engineering, University of Sydney, Sydney, NSW, 2006, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Behnam Akhavan
- School of Physics, University of Sydney, Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
- School of Biomedical Engineering, University of Sydney, Sydney, NSW, 2006, Australia
- School of Engineering, University of Newcastle, Callaghan, NSW, 2308, Australia
- Hunter Medical Research Institute (HMRI), Precision Medicine Program, New Lambton Heights, NSW, 2305, Australia
| |
Collapse
|
2
|
Ardelean IL, Ficai D, Sonmez M, Oprea O, Nechifor G, Andronescu E, Ficai A, Titu MA. Hybrid Magnetic Nanostructures For Cancer Diagnosis And Therapy. Anticancer Agents Med Chem 2019; 19:6-16. [PMID: 30411694 DOI: 10.2174/1871520618666181109112655] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 03/17/2018] [Accepted: 10/23/2018] [Indexed: 12/24/2022]
Abstract
Cancer is the second disease in the world from the point of view of mortality. The conventional routes of treatment were found to be not sufficient and thus alternative ways are imposed. The use of hybrid, magnetic nanostructures is a promising way for simultaneous targeted diagnosis and treatment of various types of cancer. For this reason, the development of core@shell structures was found to be an efficient way to develop stable, biocompatible, non-toxic carriers with shell-dependent internalization capacity in cancer cells. So, the multicomponent approach can be the most suitable way to assure the multifunctionality of these nanostructures to achieve the desired/necessary properties. The in vivo stability is mostly assured by the coating of the magnetic core with various polymers (including polyethylene glycol, silica etc.), while the targeting capacity is mostly assured by the decoration of these nanostructures with folic acid. Unfortunately, there are also some limitations related to the multilayered approach. For instance, the increasing of the thickness of layers leads to a decrease the magnetic properties, (hyperthermia and guiding ability in the magnetic field, for instance), the outer shell should contain the targeting molecules (as well as the agents helping the internalization into the cancer cells), etc.
Collapse
Affiliation(s)
- Ioana L Ardelean
- University POLITEHNICA of Bucharest, Faculty of Applied Chemistry and Material Science; 1-7 Polizu Str., 011061 Bucharest, Romania
| | - Denisa Ficai
- University POLITEHNICA of Bucharest, Faculty of Applied Chemistry and Material Science; 1-7 Polizu Str., 011061 Bucharest, Romania
| | - Maria Sonmez
- Leather and Footwear Research Institute, Department of Rubber, 93 Ion Minulescu street, 031215, Bucharest, Romania
| | - Ovidiu Oprea
- University POLITEHNICA of Bucharest, Faculty of Applied Chemistry and Material Science; 1-7 Polizu Str., 011061 Bucharest, Romania
| | - Gheorghe Nechifor
- University POLITEHNICA of Bucharest, Faculty of Applied Chemistry and Material Science; 1-7 Polizu Str., 011061 Bucharest, Romania
| | - Ecaterina Andronescu
- University POLITEHNICA of Bucharest, Faculty of Applied Chemistry and Material Science; 1-7 Polizu Str., 011061 Bucharest, Romania
| | - Anton Ficai
- University POLITEHNICA of Bucharest, Faculty of Applied Chemistry and Material Science; 1-7 Polizu Str., 011061 Bucharest, Romania
| | - Mihail A Titu
- "Lucian Blaga" University of Sibiu, Faculty of Engineering, Industrial Engineering and Management Departament, Sibiu, Romania
| |
Collapse
|
3
|
Jiang JH, Pi J, Jin H, Cai JY. Functional graphene oxide as cancer-targeted drug delivery system to selectively induce oesophageal cancer cell apoptosis. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:S297-S307. [DOI: 10.1080/21691401.2018.1492418] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jin-Huan Jiang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Jiang Pi
- Department of Microbiology, Zhongshan School of Medicine, Key Laboratory for Tropical Diseases Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, China
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, USA
| | - Hua Jin
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, USA
| | - Ji-Ye Cai
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
- Department of Chemistry, Jinan University, GuangZhou, China
| |
Collapse
|
4
|
Russo M, Ponsiglione AM, Forte E, Netti PA, Torino E. Hydrodenticity to enhance relaxivity of gadolinium-DTPA within crosslinked hyaluronic acid nanoparticles. Nanomedicine (Lond) 2017; 12:2199-2210. [PMID: 28816102 DOI: 10.2217/nnm-2017-0098] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
AIM The efficacy of gadolinium (Gd) chelates as contrast agents for magnetic resonance imaging remains limited owing to poor relaxivity and toxic effects. Here, the effect of the hydration of the hydrogel structure on the relaxometric properties of Gd-DTPA is explained for the first time and called Hydrodenticity. RESULTS The ability to tune the hydrogel structure is proved through a microfluidic flow-focusing approach able to produce crosslinked hyaluronic acid nanoparticles, analyzed regarding the crosslink density and mesh size, and connected to the characteristic correlation times of the Gd-DTPA. CONCLUSION Hydrodenticity explains the boosting (12-times) of the Gd-DTPA relaxivity by tuning hydrogel structural parameters, potentially enabling the reduction of the administration dosage as approved for clinical use. [Formula: see text].
Collapse
Affiliation(s)
- Maria Russo
- Department of Chemical, Materials & Production Engineering, University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Naples, Italy.,Center for Advanced Biomaterials for Healthcare IIT@CRIB, Istituto Italiano di Tecnologia (IIT), Largo Barsanti e Matteucci 53, 80125 Naples, Italy
| | - Alfonso Maria Ponsiglione
- Department of Chemical, Materials & Production Engineering, University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Naples, Italy.,Center for Advanced Biomaterials for Healthcare IIT@CRIB, Istituto Italiano di Tecnologia (IIT), Largo Barsanti e Matteucci 53, 80125 Naples, Italy
| | - Ernesto Forte
- IRCCS SDN, Via E. Gianturco 113, 80143 Naples, Italy
| | - Paolo Antonio Netti
- Department of Chemical, Materials & Production Engineering, University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Naples, Italy.,Center for Advanced Biomaterials for Healthcare IIT@CRIB, Istituto Italiano di Tecnologia (IIT), Largo Barsanti e Matteucci 53, 80125 Naples, Italy.,Interdisciplinary Research Center on Biomaterials, University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Naples, Italy
| | - Enza Torino
- Center for Advanced Biomaterials for Healthcare IIT@CRIB, Istituto Italiano di Tecnologia (IIT), Largo Barsanti e Matteucci 53, 80125 Naples, Italy.,Interdisciplinary Research Center on Biomaterials, University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Naples, Italy
| |
Collapse
|
5
|
Chan JMW, Wojtecki RJ, Sardon H, Lee ALZ, Smith CE, Shkumatov A, Gao S, Kong H, Yang YY, Hedrick JL. Self-Assembled, Biodegradable Magnetic Resonance Imaging Agents: Organic Radical-Functionalized Diblock Copolymers. ACS Macro Lett 2017; 6:176-180. [PMID: 35632889 DOI: 10.1021/acsmacrolett.6b00924] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report the design, synthesis, and evaluation of biodegradable amphiphilic poly(ethylene glycol)-b-polycarbonate-based diblock copolymers containing pendant persistent organic radicals (e.g., PROXYL). These paramagnetic radical-functionalized polymers self-assemble into micellar nanoparticles in aqueous media, which preferentially accumulate in tumor tissue via the enhanced permeability and retention (EPR) effect. Through T1 relaxation NMR studies, as well as magnetic resonance imaging (MRI) studies on mice, we show that these nanomaterials are effective as metal-free, biodegradable MRI contrast agents. We also demonstrate anticancer drugs can be readily loaded into the nanoparticles, conferring therapeutic delivery properties in addition to their imaging properties making these materials potential theranostic agents in the treatment of cancer.
Collapse
Affiliation(s)
- Julian M. W. Chan
- IBM Almaden Research
Center, 650 Harry Road, San Jose, California 95120, United States
| | - Rudy J. Wojtecki
- IBM Almaden Research
Center, 650 Harry Road, San Jose, California 95120, United States
| | - Haritz Sardon
- POLYMAT, University of the Basque Country UPV/EHU Joxe Mari Korta Center, Avda. Tolosa
72, 20018 Donostia-San
Sebastián, Spain
| | - Ashlynn L. Z. Lee
- Institute of Bioengineering
and Nanotechnology, 31 Biopolis Way, Singapore 138669, Singapore
| | - Cartney E. Smith
- Department
of Chemical and Biomolecular Engineering, Carl R. Woese Institute
for Genomic Biology, University of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Artem Shkumatov
- Department
of Chemical and Biomolecular Engineering, Carl R. Woese Institute
for Genomic Biology, University of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Shujun Gao
- Institute of Bioengineering
and Nanotechnology, 31 Biopolis Way, Singapore 138669, Singapore
| | - Hyunjoon Kong
- Department
of Chemical and Biomolecular Engineering, Carl R. Woese Institute
for Genomic Biology, University of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Yi Yan Yang
- Institute of Bioengineering
and Nanotechnology, 31 Biopolis Way, Singapore 138669, Singapore
| | - James L. Hedrick
- IBM Almaden Research
Center, 650 Harry Road, San Jose, California 95120, United States
| |
Collapse
|
6
|
Petinov VI. Obtaining gadolinium nanoparticles and studying their properties in a helium flow. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2016. [DOI: 10.1134/s0036024416070232] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Zhang L, Liang S, Liu R, Yuan T, Zhang S, Xu Z, Xu H. Facile preparation of multifunctional uniform magnetic microspheres for T1-T2 dual modal magnetic resonance and optical imaging. Colloids Surf B Biointerfaces 2016; 144:344-354. [PMID: 27110910 DOI: 10.1016/j.colsurfb.2016.04.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 03/23/2016] [Accepted: 04/07/2016] [Indexed: 12/29/2022]
Abstract
Molecular imaging is of significant importance for early detection and diagnosis of cancer. Herein, a novel core-shell magnetic microsphere for dual modal magnetic resonance imaging (MRI) and optical imaging was produced by one-pot emulsifier-free emulsion polymerization, which could provide high resolution rate of histologic structure information and realize high sensitive detection at the same time. The synthesized magnetic microspheres composed of cores containing oleic acid (OA) and sodium undecylenate (NaUA) modified Fe3O4 nanoparticles and styrene (St), Glycidyl methacrylate (GMA), and polymerizable lanthanide complexes (Gd(AA)3Phen and Eu(AA)3Phen) polymerized on the surface for outer shells. Fluorescence spectra show characteristic emission peaks from Eu(3+) at 590nm and 615nm and vivid red fluorescence luminescence can be observed by 2-photon confocal scanning laser microscopy (CLSM). In vitro cytotoxicity tests based on the MTT assay demonstrate good cytocompatibility, the composites have longitudinal relaxivity value (r1) of 8.39mM(-1)s(-1) and also have transverse relaxivity value (r2) of 71.18mM(-1)s(-1) at clinical 3.0 T MR scanner. In vitro and in vivo MRI studies exhibit high signal enhancement on both T1- and T2-weighted MR images. These fascinating multifunctional properties suggest that the polymer microspheres have large clinical potential as multi-modal MRI/optical probes.
Collapse
Affiliation(s)
- Li Zhang
- Hubei Collaborative Innovation Center for Advance Organic Chemical Materials; Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan, Hubei 430062, China
| | - Shuang Liang
- Department of Radiology at Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ruiqing Liu
- Hubei Collaborative Innovation Center for Advance Organic Chemical Materials; Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan, Hubei 430062, China
| | - Tianmeng Yuan
- Hubei Collaborative Innovation Center for Advance Organic Chemical Materials; Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan, Hubei 430062, China
| | - Shulai Zhang
- Hubei Collaborative Innovation Center for Advance Organic Chemical Materials; Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan, Hubei 430062, China
| | - Zushun Xu
- Hubei Collaborative Innovation Center for Advance Organic Chemical Materials; Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan, Hubei 430062, China.
| | - Haibo Xu
- Department of Radiology at Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
8
|
Ban Y, Wang Y. Preparation and characterization of pentapeptide-grafted poly(D,L-lactide)/nanohydroxyapatite/poly(D,L-lactide) composite membrane. POLYMER SCIENCE SERIES B 2015. [DOI: 10.1134/s1560090415050012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Dumont MF, Hoffman HA, Yoon PRS, Conklin LS, Saha SR, Paglione J, Sze RW, Fernandes R. Biofunctionalized gadolinium-containing prussian blue nanoparticles as multimodal molecular imaging agents. Bioconjug Chem 2013; 25:129-37. [PMID: 24328306 DOI: 10.1021/bc4004266] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Molecular imaging agents enable the visualization of phenomena with cellular and subcellular level resolutions and therefore have enormous potential in improving disease diagnosis and therapy assessment. In this article, we describe the synthesis, characterization, and demonstration of core-shell, biofunctionalized, gadolinium-containing Prussian blue nanoparticles as multimodal molecular imaging agents. Our multimodal nanoparticles combine the advantages of MRI and fluorescence. The core of our nanoparticles consists of a Prussian blue lattice with gadolinium ions located within the lattice interstices that confer high relaxivity to the nanoparticles providing MRI contrast. The relaxivities of our nanoparticles are nearly nine times those observed for the clinically used Magnevist. The nanoparticle MRI core is biofunctionalized with a layer of fluorescently labeled avidin that enables fluorescence imaging. Biotinylated antibodies are attached to the surface avidin and confer molecular specificity to the nanoparticles by targeting cell-specific biomarkers. We demonstrate our nanoparticles as multimodal molecular imaging agents in an in vitro model consisting of a mixture of eosinophilic cells and squamous epithelial cells. Our nanoparticles specifically detect eosinophilic cells and not squamous epithelial cells, via both fluorescence imaging and MRI in vitro. These results suggest the potential of our biofunctionalized Prussian blue nanoparticles as multimodal molecular imaging agents in vivo.
Collapse
Affiliation(s)
- Matthieu F Dumont
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Medical Center , 111 Michigan Avenue NW, Washington, DC 20010, United States
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Zhu D, Liu F, Ma L, Liu D, Wang Z. Nanoparticle-based systems for T(1)-weighted magnetic resonance imaging contrast agents. Int J Mol Sci 2013; 14:10591-607. [PMID: 23698781 PMCID: PMC3676856 DOI: 10.3390/ijms140510591] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 05/09/2013] [Accepted: 05/13/2013] [Indexed: 12/29/2022] Open
Abstract
Because magnetic resonance imaging (MRI) contrast agents play a vital role in diagnosing diseases, demand for new MRI contrast agents, with an enhanced sensitivity and advanced functionalities, is very high. During the past decade, various inorganic nanoparticles have been used as MRI contrast agents due to their unique properties, such as large surface area, easy surface functionalization, excellent contrasting effect, and other size-dependent properties. This review provides an overview of recent progress in the development of nanoparticle-based T1-weighted MRI contrast agents. The chemical synthesis of the nanoparticle-based contrast agents and their potential applications were discussed and summarized. In addition, the recent development in nanoparticle-based multimodal contrast agents including T1-weighted MRI/computed X-ray tomography (CT) and T1-weighted MRI/optical were also described, since nanoparticles may curtail the shortcomings of single mode contrast agents in diagnostic and clinical settings by synergistically incorporating functionality.
Collapse
Affiliation(s)
- Derong Zhu
- Department of Medicinal Chemistry and Pharmaceutical Analysis, Guangdong Medical College, Dongwan 523770, Guangdong, China; E-Mail:
| | - Fuyao Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China; E-Mails: (F.L.); (D.L.)
| | - Lina Ma
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China; E-Mails: (F.L.); (D.L.)
| | - Dianjun Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China; E-Mails: (F.L.); (D.L.)
| | - Zhenxin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China; E-Mails: (F.L.); (D.L.)
| |
Collapse
|
11
|
Personalized nanomedicine advancements for stem cell tracking. Adv Drug Deliv Rev 2012; 64:1488-507. [PMID: 22820528 DOI: 10.1016/j.addr.2012.07.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 07/11/2012] [Indexed: 12/12/2022]
Abstract
Recent technological developments in biomedicine have facilitated the generation of data on the anatomical, physiological and molecular level for individual patients and thus introduces opportunity for therapy to be personalized in an unprecedented fashion. Generation of patient-specific stem cells exemplifies the efforts toward this new approach. Cell-based therapy is a highly promising treatment paradigm; however, due to the lack of consistent and unbiased data about the fate of stem cells in vivo, interpretation of therapeutic effects remains challenging hampering the progress in this field. The advent of nanotechnology with a wide palette of inorganic and organic nanostructures has expanded the arsenal of methods for tracking transplanted stem cells. The diversity of nanomaterials has revolutionized personalized nanomedicine and enables individualized tailoring of stem cell labeling materials for the specific needs of each patient. The successful implementation of stem cell tracking will likely be a significant driving force that will contribute to the further development of nanotheranostics. The purpose of this review is to emphasize the role of cell tracking using currently available nanoparticles.
Collapse
|