1
|
Liu H, Lu C, Han L, Zhang X, Song G. Optical – Magnetic probe for evaluating cancer therapy. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
2
|
Kumari S, Sharma N, Sahi SV. Advances in Cancer Therapeutics: Conventional Thermal Therapy to Nanotechnology-Based Photothermal Therapy. Pharmaceutics 2021; 13:1174. [PMID: 34452135 PMCID: PMC8398544 DOI: 10.3390/pharmaceutics13081174] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 12/21/2022] Open
Abstract
In this review, advancement in cancer therapy that shows a transition from conventional thermal therapies to laser-based photothermal therapies is discussed. Laser-based photothermal therapies are gaining popularity in cancer therapeutics due to their overall outcomes. In photothermal therapy, light is converted into heat to destruct the various types of cancerous growth. The role of nanoparticles as a photothermal agent is emphasized in this review article. Magnetic, as well as non-magnetic, nanoparticles have been effectively used in the photothermal-based cancer therapies. The discussion includes a critical appraisal of in vitro and in vivo, as well as the latest clinical studies completed in this area. Plausible evidence suggests that photothermal therapy is a promising avenue in the treatment of cancer.
Collapse
Affiliation(s)
- Sangeeta Kumari
- Department of Biological Sciences, University of the Sciences, Philadelphia, PA 19104-4495, USA
| | - Nilesh Sharma
- Department of Biology, Western Kentucky University, 1906 College Heights Boulevard, Bowling Green, KY 42101-1080, USA;
| | - Shivendra V. Sahi
- Department of Biological Sciences, University of the Sciences, Philadelphia, PA 19104-4495, USA
| |
Collapse
|
3
|
Zuniga K, Gadde M, Scheftel J, Senecal K, Cressman E, Van Dyke M, Rylander MN. Collagen/kerateine multi-protein hydrogels as a thermally stable extracellular matrix for 3D in vitro models. Int J Hyperthermia 2021; 38:830-845. [PMID: 34058945 PMCID: PMC10523628 DOI: 10.1080/02656736.2021.1930202] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/16/2021] [Accepted: 05/08/2021] [Indexed: 12/30/2022] Open
Abstract
Objective: To determine whether the addition of kerateine (reduced keratin) in rat tail collagen type I hydrogels increases thermal stability and changes material properties and supports cell growth for use in cellular hyperthermia studies for tumor treatment.Methods: Collagen type I extracted from rat tail tendon was combined with kerateine extracted from human hair fibers. Thermal, mechanical, and biocompatibility properties and cell behavior was assessed and compared to 100% collagen type I hydrogels to demonstrate their utility as a tissue model for 3D in vitro testing.Results: A combination (i.e., containing both collagen 'C/KNT') hydrogel was more thermally stable than pure collagen hydrogels and resisted thermal degradation when incubated at a hyperthermic temperature of 47°C for heating durations up to 60 min with a higher melting temperature measured by DSC. An increase in the storage modulus was only observed with an increased collagen concentration rather than an increased KTN concentration; however, a change in ECM structure was observed with greater fiber alignment and width with an increase in KTN concentration. The C/KTN hydrogels, specifically 50/50 C/KTN hydrogels, also supported the growth and of fibroblasts and MDA-MB-231 breast cancer cells similar to those seeded in 100% collagen hydrogels.Conclusion: This multi-protein C/KTN hydrogel shows promise for future studies involving thermal stress studies without compromising the 3D ECM environment or cell growth.
Collapse
Affiliation(s)
- Kameel Zuniga
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Manasa Gadde
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Jacob Scheftel
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Kris Senecal
- Natick Soldier Center, U.S. Army Soldier and Biological Chemical Command, Natick, MA, USA
| | - Erik Cressman
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mark Van Dyke
- College of Biomedical Engineering, The University of Arizona, Tucson, AZ, USA
| | - Marissa Nichole Rylander
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
4
|
Stolley DL, Crouch AC, Özkan A, Seeley EH, Whitley EM, Rylander MN, Cressman ENK. Combining Chemistry and Engineering for Hepatocellular Carcinoma: Nano-Scale and Smaller Therapies. Pharmaceutics 2020; 12:E1243. [PMID: 33419304 PMCID: PMC7766014 DOI: 10.3390/pharmaceutics12121243] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/14/2020] [Accepted: 12/17/2020] [Indexed: 12/24/2022] Open
Abstract
Primary liver cancer, or hepatocellular carcinoma (HCC), is a major worldwide cause of death from carcinoma. Most patients are not candidates for surgery and medical therapies, including new immunotherapies, have not shown major improvements since the modest benefit seen with the introduction of sorafenib over a decade ago. Locoregional therapies for intermediate stage disease are not curative but provide some benefit. However, upon close scrutiny, there is still residual disease in most cases. We review the current status for treatment of intermediate stage disease, summarize the literature on correlative histopathology, and discuss emerging methods at micro-, nano-, and pico-scales to improve therapy. These include transarterial hyperthermia methods and thermoembolization, along with microfluidics model systems and new applications of mass spectrometry imaging for label-free analysis of pharmacokinetics and pharmacodynamics.
Collapse
Affiliation(s)
- Danielle L. Stolley
- Department of Biomedical Engineering, The University of Texas, Austin, TX 78712, USA; (D.L.S.); (M.N.R.)
| | - Anna Colleen Crouch
- Interventional Radiology, M.D. Anderson Cancer Center, Houston, TX 77030, USA; (A.C.C.); (E.M.W.)
| | - Aliçan Özkan
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA;
| | - Erin H. Seeley
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA;
| | - Elizabeth M. Whitley
- Interventional Radiology, M.D. Anderson Cancer Center, Houston, TX 77030, USA; (A.C.C.); (E.M.W.)
| | - Marissa Nichole Rylander
- Department of Biomedical Engineering, The University of Texas, Austin, TX 78712, USA; (D.L.S.); (M.N.R.)
| | - Erik N. K. Cressman
- Interventional Radiology, M.D. Anderson Cancer Center, Houston, TX 77030, USA; (A.C.C.); (E.M.W.)
| |
Collapse
|
5
|
Wang Y, Leng S, Huang J, Shu M, Papavassiliou DV. Modeling of cancer photothermal therapy using near-infrared radiation and functionalized graphene nanosheets. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2020; 36:e3275. [PMID: 31680480 DOI: 10.1002/cnm.3275] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 10/08/2019] [Accepted: 10/11/2019] [Indexed: 06/10/2023]
Abstract
Photothermal therapy using near-infrared radiation and local heating agents can induce selective tumor ablation with limited harm to the surrounding normal tissue. Graphene sheets are promising local heating agents because of their strong absorbance of near-infrared radiation. Experimental studies have been conducted to study the heating effect of graphene in photothermal therapy, yet few efforts have been devoted to the quantitative understanding of energy conversion and transport in such systems. Herein, a computational study of cancer photothermal therapy using near-infrared radiation and graphene is presented using a Monte Carlo approach. A three-dimensional model was built with a cancer cell inside a cube of healthy tissue. Functionalized graphene nanosheets were randomly distributed on the surface of the cancer cell. The effects of the concentration and morphology of the graphene nanosheets on the thermal behavior of the system were quantitatively investigated. The interfacial thermal resistance around the graphene sheets, which affects the transfer of heat in the nanoscale, was also varied to probe its effect on the temperature increase of the cancer cell and the healthy tissue. The results of this study could guide researchers to optimize photothermal therapy with graphene, while the modeling approach has the potential to be applied for investigating alternative treatment plans.
Collapse
Affiliation(s)
- Yijuan Wang
- West China School of Stomatology, Sichuan University, Chengdu, China
| | - Sha Leng
- West China School of Stomatology, Sichuan University, Chengdu, China
| | - Jigang Huang
- School of Mechanical Engineering, Sichuan University, Chengdu, China
| | - Mingyang Shu
- Department of Stomatology, Huai'an Second People's Hospital, Huai'an Hospital of XuzhouMedical University, Huai'an, China
| | | |
Collapse
|
6
|
Fu G, Zhu L, Yang K, Zhuang R, Xie J, Zhang F. Diffusion-Weighted Magnetic Resonance Imaging for Therapy Response Monitoring and Early Treatment Prediction of Photothermal Therapy. ACS APPLIED MATERIALS & INTERFACES 2016; 8:5137-47. [PMID: 26845246 PMCID: PMC6375691 DOI: 10.1021/acsami.5b11936] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Photothermal therapy (PTT) as a relatively new cancer treatment method has attracted worldwide attention. Previous research on PTT has focused on its therapy efficiency and selectivity. The early prognosis of PTT, which is pivotal for the assessment of the treatment and the therapy stratification, however, has been rarely studied. In the present study, we investigated diffusion-weighted magnetic resonance imaging (DW-MRI) as a tool for therapy monitoring and early prognosis of PTT. To this end, we injected PEGylated graphene oxide (GO-PEG) or iron oxide deposited graphene oxide (GO-IONP-PEG) to 4T1 tumor models and irradiated the tumors at different drug-light intervals to induce PTT. For GO-IONP-PEG injected animals, we also included therapy arms where an external magnetic field was applied to the tumors to improve the delivery of the nanoparticle transducers. DW-MRI was performed at different time points after PTT and the tumor apparent diffusion coefficients (ADCs) were analyzed and compared. Our studies show that photothermal agents, magnetic guidance, and drug-light intervals can all affect PTT treatment efficacy. Impressively, ADC value changes at early time points after PTT (less than 48 h) were found to be well-correlated with tumor growth suppression that was apparent days or weeks later. The changes were most sensitive to conditions that can extend the survival for more than 4 weeks, in which cases the 48 h ADC values were increased by more than 80%. These studies demonstrate for the first time that DW-MRI can be an accurate prognosis tool for PTT, suggesting an important role it can play in the future PTT evaluation and clinical translation of the modality.
Collapse
Affiliation(s)
- Guifeng Fu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361005, China
| | - Lei Zhu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361005, China
| | - Kai Yang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
| | - Rongqiang Zhuang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361005, China
| | - Jin Xie
- Department of Chemistry, University of Georgia, Athens, United States
- Bio-Imaging Research Center, University of Georgia, Athens, United States
| | - Fan Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361005, China
| |
Collapse
|
7
|
Proskurnin MA, Volkov DS, Gor’kova TA, Bendrysheva SN, Smirnova AP, Nedosekin DA. Advances in thermal lens spectrometry. JOURNAL OF ANALYTICAL CHEMISTRY 2015. [DOI: 10.1134/s1061934815030168] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Gong F, Hongyan Z, Papavassiliou DV, Bui K, Lim C, Duong HM. Mesoscopic modeling of cancer photothermal therapy using single-walled carbon nanotubes and near infrared radiation: insights through an off-lattice Monte Carlo approach. NANOTECHNOLOGY 2014; 25:205101. [PMID: 24784034 DOI: 10.1088/0957-4484/25/20/205101] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Single-walled carbon nanotubes (SWNTs) are promising heating agents in cancer photothermal therapy when under near infrared radiation, yet few efforts have been focused on the quantitative understanding of the photothermal energy conversion in biological systems. In this article, a mesoscopic study that takes into account SWNT morphologies (diameter and aspect ratio) and dispersions (orientation and concentration), as well as thermal boundary resistance, is performed by means of an off-lattice Monte Carlo simulation. Results indicate that SWNTs with orientation perpendicular to the laser, smaller diameter and better dispersion have higher heating efficiency in cancer photothermal therapy. Thermal boundary resistances greatly inhibit thermal energy transfer away from SWNTs, thereby affecting their heating efficiency. Through appropriate interfacial modification around SWNTs, compared to the surrounding healthy tissue, a higher temperature of the cancer cell can be achieved, resulting in more effective cancer photothermal therapy. These findings promise to bridge the gap between macroscopic and microscopic computational studies of cancer photothermal therapy.
Collapse
Affiliation(s)
- Feng Gong
- Department of Mechanical Engineering, National University of Singapore, 117576, Singapore
| | | | | | | | | | | |
Collapse
|
9
|
Whitney J, DeWitt M, Whited BM, Carswell W, Simon A, Rylander CG, Rylander MN. 3D viability imaging of tumor phantoms treated with single-walled carbon nanohorns and photothermal therapy. NANOTECHNOLOGY 2013; 24:275102. [PMID: 23780336 PMCID: PMC3786715 DOI: 10.1088/0957-4484/24/27/275102] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
A new image analysis method called the spatial phantom evaluation of cellular thermal response in layers (SPECTRL) is presented for assessing spatial viability response to nanoparticle enhanced photothermal therapy in tissue representative phantoms. Sodium alginate phantoms seeded with MDA-MB-231 breast cancer cells and single-walled nanohorns were laser irradiated with an ytterbium fiber laser at a wavelength of 1064 nm and irradiance of 3.8 W cm(-2) for 10-80 s. SPECTRL quantitatively assessed and correlated 3D viability with spatiotemporal temperature. Based on this analysis, kill and transition zones increased from 3.7 mm(3) and 13 mm(3) respectively to 44.5 mm(3) and 44.3 mm(3) as duration was increased from 10 to 80 s. SPECTRL provides a quantitative tool for measuring precise spatial treatment regions, providing information necessary to tailor therapy protocols.
Collapse
Affiliation(s)
- Jon Whitney
- Department of Mechanical Engineering, Virgina Tech., Blacksburg, VA 24061, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Buchanan CF, Voigt EE, Szot CS, Freeman JW, Vlachos PP, Rylander MN. Three-dimensional microfluidic collagen hydrogels for investigating flow-mediated tumor-endothelial signaling and vascular organization. Tissue Eng Part C Methods 2013; 20:64-75. [PMID: 23730946 DOI: 10.1089/ten.tec.2012.0731] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Hyperpermeable tumor vessels are responsible for elevated interstitial fluid pressure and altered flow patterns within the tumor microenvironment. These aberrant hydrodynamic stresses may enhance tumor development by stimulating the angiogenic activity of endothelial cells lining the tumor vasculature. However, it is currently not known to what extent shear forces affect endothelial organization or paracrine signaling during tumor angiogenesis. The objective of this study was to develop a three-dimensional (3D), in vitro microfluidic tumor vascular model for coculture of tumor and endothelial cells under varying flow shear stress conditions. A central microchannel embedded within a collagen hydrogel functions as a single neovessel through which tumor-relevant hydrodynamic stresses are introduced and quantified using microparticle image velocimetry (μ-PIV). This is the first use of μ-PIV in a tumor representative, 3D collagen matrix comprised of cylindrical microchannels, rather than planar geometries, to experimentally measure flow velocity and shear stress. Results demonstrate that endothelial cells develop a confluent endothelium on the microchannel lumen that maintains integrity under physiological flow shear stresses. Furthermore, this system provides downstream molecular analysis capability, as demonstrated by quantitative RT-PCR, in which, tumor cells significantly increase expression of proangiogenic genes in response to coculture with endothelial cells under low flow conditions. This work demonstrates that the microfluidic in vitro cell culture model can withstand a range of physiological flow rates and permit quantitative measurement of wall shear stress at the fluid-collagen interface using μ-PIV optical flow diagnostics, ultimately serving as a versatile platform for elucidating the role of fluid forces on tumor-endothelial cross talk.
Collapse
Affiliation(s)
- Cara F Buchanan
- 1 School of Biomedical Engineering and Sciences, Virginia Tech-Wake Forest University , Blacksburg, Virginia
| | | | | | | | | | | |
Collapse
|
11
|
Whitney J, Carswell W, Rylander N. Arrhenius parameter determination as a function of heating method and cellular microenvironment based on spatial cell viability analysis. Int J Hyperthermia 2013; 29:281-95. [DOI: 10.3109/02656736.2013.802375] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
12
|
Hood RL, Carswell WF, Rodgers A, Kosoglu MA, Rylander MN, Grant D, Robertson JL, Rylander CG. Spatially controlled photothermal heating of bladder tissue through single-walled carbon nanohorns delivered with a fiberoptic microneedle device. Lasers Med Sci 2012; 28:1143-50. [PMID: 23053245 DOI: 10.1007/s10103-012-1202-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 09/03/2012] [Indexed: 11/28/2022]
Abstract
Laser-based photothermal therapies for urothelial cell carcinoma (UCC) are limited to thermal ablation of superficial tumors, as treatment of invasive lesions is hampered by shallow light penetration in bladder tissue at commonly used therapeutic wavelengths. This study evaluates the utilization of sharp, silica, fiberoptic microneedle devices (FMDs) to deliver single-walled carbon nanohorns (SWNHs) serving as exogenous chromophores in conjunction with a 1,064-nm laser to amplify thermal treatment doses in a spatially controlled manner. Experiments were conducted to determine the lateral and depth dispersal of SWNHs in aqueous solution (0.05 mg/mL) infused through FMDs into the wall of healthy, inflated, ex vivo porcine bladders. SWNH-perfused bladder regions were irradiated with a free-space, CW, 1,064-nm laser in order to determine the SWNH efficacy as exogenous chromophores within the organ. SWNHs infused at a rate of 50 μL/min resulted in an average lateral expansion rate of 0.36 ± 0.08 cm(2)/min. Infused SWNHs dispersal depth was limited to the urothelium and muscular propria for 50 μL/min infusions of 10 min or less, but dispersed through the entire thickness after a 15-min infusion period. Irradiation of SWNH-perfused bladder tissue with 1,064 nm laser light at 0.95 W/cm(2) over 40 s exhibited a maximum increase of approximately 19 °C compared with an increase of approximately 3 °C in a non-perfused control. The results indicate that these silica FMDs can successfully penetrate into the bladder wall to rapidly distribute SWNHs with some degree of lateral and depth control and that SWNHs may be a viable exogenous chromophore for photothermal amplification of laser-based UCC treatments.
Collapse
Affiliation(s)
- R Lyle Hood
- School of Biomedical Engineering and Sciences, Virginia Tech, 325 ICTAS Bldg. Stanger St. (0298), Blacksburg, VA 24061, USA
| | | | | | | | | | | | | | | |
Collapse
|