1
|
Kesharwani P, Halwai K, Jha SK, Al Mughram MH, Almujri SS, Almalki WH, Sahebkar A. Folate-engineered chitosan nanoparticles: next-generation anticancer nanocarriers. Mol Cancer 2024; 23:244. [PMID: 39482651 PMCID: PMC11526716 DOI: 10.1186/s12943-024-02163-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 10/19/2024] [Indexed: 11/03/2024] Open
Abstract
Chitosan nanoparticles (NPs) are well-recognized as promising vehicles for delivering anticancer drugs due to their distinctive characteristics. They have the potential to enclose hydrophobic anticancer molecules, thereby enhancing their solubilities, permeabilities, and bioavailabilities; without the use of surfactant, i.e., through surfactant-free solubilization. This allows for higher drug concentrations at the tumor sites, prevents excessive toxicity imparted by surfactants, and could circumvent drug resistance. Moreover, biomedical engineers and formulation scientists can also fabricate chitosan NPs to slowly release anticancer agents. This keeps the drugs at the tumor site longer, makes therapy more effective, and lowers the frequency of dosing. Notably, some types of cancer cells (fallopian tube, epithelial tumors of the ovary, and primary peritoneum; lung, kidney, ependymal brain, uterus, breast, colon, and malignant pleural mesothelioma) have overexpression of folate receptors (FRs) on their outer surface, which lets folate-drug conjugate-incorporated NPs to target and kill them more effectively. Strikingly, there is evidence suggesting that the excessively produced FR&αgr (isoforms of the FR) stays consistent throughout treatment in ovarian and endometrial cancer, indicating resistance to conventional treatment; and in this regard, folate-anchored chitosan NPs can overcome it and improve the therapeutic outcomes. Interestingly, overly expressed FRs are present only in certain tumor types, which makes them a promising biomarker for predicting the effectiveness of FR-targeted therapy. On the other hand, the folate-modified chitosan NPs can also enhance the oral absorption of medicines, especially anticancer drugs, and pave the way for effective and long-term low-dose oral metronomic scheduling of poorly soluble and permeable drugs. In this review, we talked briefly about the techniques used to create, characterize, and tailor chitosan-based NPs; and delved deeper into the potential applications of folate-engineered chitosan NPs in treating various cancer types.
Collapse
Affiliation(s)
- Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| | - Kratika Halwai
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Saurav Kumar Jha
- Department of Biological Sciences and Bioengineering (BSBE), Indian Institute of Technology, Uttar Pradesh, Kanpur, 208016, India
| | - Mohammed H Al Mughram
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Postal Code 61421, Abha, Saudi Arabia
| | - Salem Salman Almujri
- Department of Pharmacology, College of Pharmacy, King Khalid University, Postal Code 61421, Abha, Saudi Arabia
| | - Waleed H Almalki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Raikwar S, Yadav V, Jain S, Jain SK. Antibody-conjugated pH-sensitive liposomes for HER-2 positive breast cancer: development, characterization, in vitro and in vivo assessment. J Liposome Res 2024; 34:239-263. [PMID: 37594466 DOI: 10.1080/08982104.2023.2248505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/27/2023] [Accepted: 08/04/2023] [Indexed: 08/19/2023]
Abstract
The object of the current study was to develop and evaluate trastuzumab-conjugated Paclitaxel (PTX) and Elacridar (ELA)-loaded PEGylated pH-sensitive liposomes (TPPLs) for site-specific delivery of an anticancer drug. In this study, paclitaxel is used as an anticancer drug which promotes microtubules polymerization and arrest cell cycle progression at mitosis and subsequently leading to cell death. The single use of PTX causes multiple drug resistance (MDR) and results failure of the therapy. Hence, the combination of PTX and P-glycoprotein inhibitor (ELA) are used to achieve maximum therapeutic effects of PTX. Moreover, monoclonal antibody (trastuzumab) is used as ligand for the targeting the drug bearing carriers to BC. Thus, trastuzumab anchored pH-sensitive liposomes bearing PTX and ELA were developed using thin film hydration method and Box-Behnken Design (BBD) for optimizing various formulation variables. The optimized liposomes undergo characterization such as vesicle size, PDI, and zeta potential, which were observed to be 122 ± 2.14 nm, 0.224, and -15.5 mV for PEGylated pH-sensitive liposomes (PEG-Ls) and 134 ± 1.88 nm, 0.238, and -13.98 mV for TPPLs, respectively. The results of the in vitro drug release study of both formulations (PEG-Ls and TPPLs) showed enhanced percentage drug release at an acidic pH 5 as compared to drug release at a physiological pH 7.4. Further, the in vitro cytotoxicity studies were performed in the SK-BR-3 and MDA-MB-231 cell lines. The cellular uptake study of FITC-loaded TPPLs in SK-BR-3 cells showed greater uptake than FITC-loaded PEG-Ls, while in MDA-MB-231 cells there was no significant difference in cell uptake between FITC-loaded TPPLs and FITC-loaded PEG-Ls. Hence, it can be concluded that the HER-2 overexpressing cancer cell line (SK-BR-3) was showed better cytotoxicity and cell uptake of TPPLs than the cells that expressed low levels of HER2 (MDA-MB-231). The in vivo tumor regression study, TPPLs showed significantly more tumor burden reduction i.e. up ∼74% as compared to other liposomes after 28 days. Furthermore, the in vivo studies of TPPLs showed a minimal toxicity profile, minimal hemolysis, higher tumor tissue distribution, and superior antitumor efficacy as compared to other formulations. These studies confirmed that TPPLs are a safe and efficacious treatment for breast cancer.
Collapse
Affiliation(s)
- Sarjana Raikwar
- Pharmaceutics Research Projects Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar (M.P.), India
| | - Vivek Yadav
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, India
| | - Sanyog Jain
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, India
| | - Sanjay K Jain
- Pharmaceutics Research Projects Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar (M.P.), India
| |
Collapse
|
3
|
Kesharwani P, Chadar R, Shukla R, Jain GK, Aggarwal G, Abourehab MAS, Sahebkar A. Recent advances in multifunctional dendrimer-based nanoprobes for breast cancer theranostics. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:2433-2471. [PMID: 35848467 DOI: 10.1080/09205063.2022.2103627] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Breast cancer (BC) undoubtedly is one of the most common type of cancers amongst women, which causes about 5 million deaths annually. The treatments and diagnostic therapy choices currently available for Breast Cancer is very much limited . Advancements in novel nanocarrier could be a promising strategy for diagnosis and treatments of this deadly disease. Dendrimer nanoformulation could be functionalized and explored for efficient targeting of overexpressed receptors on Breast Cancer cells to achieve targeted drug delivery, for diagnostics and to overcome the resistance of the cells towards particular chemotherapeutic. Additionally, the dendrimer have shown promising potential in the improvement of therapeutic value for Breast Cancer therapy by achieving synergistic co-delivery of chemotherapeutics and genetic materials for multidirectional treatment. In this review, we have highlighted the application of dendrimer as novel multifunctional nanoplatforms for the treatment and diagnosis of Breast Cancer.
Collapse
Affiliation(s)
- Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India.,University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India
| | - Rahul Chadar
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, U.P, India
| | - Gaurav K Jain
- Department of Pharmaceutics, Delhi Pharmaceutical Science and Research University, New Delhi, India
| | - Geeta Aggarwal
- Department of Pharmaceutics, Delhi Pharmaceutical Science and Research University, New Delhi, India
| | - Mohammed A S Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia.,Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Minia University, Minia, Egypt
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Foudah AI, Alqarni MH, Ross SA, Alam A, Salkini MA, Kumar P. Site-Specific Evaluation of Bioactive Coumarin-Loaded Dendrimer G4 Nanoparticles against Methicillin Resistant Staphylococcus aureus. ACS OMEGA 2022; 7:34990-34996. [PMID: 36211083 PMCID: PMC9535722 DOI: 10.1021/acsomega.2c03659] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a foremost treatment challenge in today's clinical practice. Natural coumarins contain a variety of bioactivities and have the ability to alter resistance in several ways. In developing effective drug delivery methods, the goal is to maximize biocompatibility while minimizing toxicity. With this in mind, this work investigated the site-specific potential of dendrimer G4 poloxamer nanoparticles loaded with bioactive coumarin. The goal of the current work is to deliver a complete evaluation of dendrimer G4 poloxamer nanoparticles against MRSA. Coumarin-loaded dendrimer G4 poloxamer nanoparticles were thoroughly investigated and characterized using various techniques, including particle size, shape, entrapment efficiency, in vitro drug release, hemolysis assay, cytotoxicity, antibacterial activity, and bactericidal kinetics. Studies showed that the newly developed dendrimer G4 poloxamer nanoparticles exhibited significantly lower levels of hemolysis and cytotoxicity. The results showed that the in vitro drug release of coumarin from dendrimer G4 poloxamer nanoparticles was slower compared to coumarin in its free form. This innovative therapeutic delivery technology may enhance the defense of coumarin against MRSA.
Collapse
Affiliation(s)
- Ahmed I. Foudah
- Department
of Pharmacognosy, College of Pharmacy, Prince
Sattam Bin Abdulaziz University, PO Box 173, Al-Kharj 11942, Saudi Arabia
| | - Mohammed H. Alqarni
- Department
of Pharmacognosy, College of Pharmacy, Prince
Sattam Bin Abdulaziz University, PO Box 173, Al-Kharj 11942, Saudi Arabia
| | - Samir A. Ross
- National
Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, Oxford, Mississippi 38677, United States
- Department
of Biomolecular Sciences, School of Pharmacy, The University of Mississippi, University, Oxford, Mississippi 38677, United States
| | - Aftab Alam
- Department
of Pharmacognosy, College of Pharmacy, Prince
Sattam Bin Abdulaziz University, PO Box 173, Al-Kharj 11942, Saudi Arabia
| | - Mohammad Ayman Salkini
- Department
of Pharmacognosy, College of Pharmacy, Prince
Sattam Bin Abdulaziz University, PO Box 173, Al-Kharj 11942, Saudi Arabia
| | - Piyush Kumar
- Department
of Chemistry, Indian Institute of Technology, NH-44, PO Nagrota, Jagti, Jammu 181221, India
| |
Collapse
|
5
|
Rehman U, Parveen N, Sheikh A, Abourehab MAS, Sahebkar A, Kesharwani P. Polymeric nanoparticles-siRNA as an emerging nano-polyplexes against ovarian cancer. Colloids Surf B Biointerfaces 2022; 218:112766. [PMID: 35994990 DOI: 10.1016/j.colsurfb.2022.112766] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 10/15/2022]
Abstract
Ovarian cancer (OC) is considered fifth-deadliest cancer globally responsible for high mortality in women. As the conventional therapeutic and diagnostic approaches are ineffective in increasing the survival rates of advanced staged patients by more than 5 years, OC has resulted in high morbidity and mortality rates over the last two decades. As a result, there is a dire need for innovative treatment approaches to address the issues. RNAi and nanotechnology can be considered the most appropriate strategies that can be used to improve OC therapy and help circumvent the chemo-resistance. siRNA is considered highly successful in facilitating the knockdown of specific genes on entering the cytosol when administered in-vivo via inhibiting the mRNA expression responsible for translation of those specific genes through the mechanism called RNA interference (RNAi). However, the primary barrier of utmost importance in the clinical efficacy of employed siRNA for the treatment of OC is the systemic distribution to the targeted site from the administration site. As a result, nanoparticles are constructed to carry the siRNA molecules inside them to the targeted site by preventing serum degradation and enhancing the serum stability of administered siRNA. The present review assesses the developments made in the polymeric-based nanoparticle siRNA delivery for targeting particular genes involved in the prognosis of ovarian cancers and surpassing the chemo-resistance and thus improving the therapeutic potentials of administered agents.
Collapse
Affiliation(s)
- Urushi Rehman
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Neha Parveen
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Afsana Sheikh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohammed A S Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia; Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Minia University, Minia 61519, Egypt
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
6
|
Folic acid conjugated poly(amidoamine) dendrimer as a smart nanocarriers for tracing, imaging, and treating cancers over-expressing folate receptors. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111156] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
7
|
Aptamer grafted nanoparticle as targeted therapeutic tool for the treatment of breast cancer. Biomed Pharmacother 2021; 146:112530. [PMID: 34915416 DOI: 10.1016/j.biopha.2021.112530] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/03/2021] [Accepted: 12/08/2021] [Indexed: 12/14/2022] Open
Abstract
Breast carcinomas repeat their number and grow exponentially making it extremely frequent malignancy among women. Approximately, 70-80% of early diagnosed or non-metastatic conditions are treatable while the metastatic cases are considered ineffective to treat with current ample amount of therapy. Target based anti-cancer treatment has been in the limelight for decades and is perceived significant consideration of scientists. Aptamers are the 'coming of age' therapeutic approach, selected using an appropriate tool from the library of sequences. Aptamers are non-immunogenic, stable, and high-affinity ligand which are poised to reach the clinical benchmark. With the heed in nanoparticle application, the delivery of aptamer to the specific site could be enhanced which also protects them from nuclease degradation. Moreover, nanoparticles due to robust structure, high drug entrapment, and modifiable release of cargo could serve as a successful candidate in the treatment of breast carcinoma. This review would showcase the method and modified method of selection of aptamers, aptamers that were able to make its way towards clinical trial and their targetability and selectivity towards breast cancers. The appropriate usage of aptamer-based biosensor in breast cancer diagnosis have also been discussed.
Collapse
|
8
|
|
9
|
Poly (propylene imine) dendrimer as an emerging polymeric nanocarrier for anticancer drug and gene delivery. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110683] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
10
|
Su X, Zhang X, Liu W, Yang X, An N, Yang F, Sun J, Xing Y, Shang H. Advances in the application of nanotechnology in reducing cardiotoxicity induced by cancer chemotherapy. Semin Cancer Biol 2021; 86:929-942. [PMID: 34375726 DOI: 10.1016/j.semcancer.2021.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 02/08/2023]
Abstract
Advances in the development of anti-tumour drugs and related technologies have resulted in a significant increase in the number of cancer survivors. However, the incidence of chemotherapy-induced cardiotoxicity (CIC) has been rising continuously, threatening their long-term survival. The integration of nanotechnology and biomedicine has brought about an unprecedented technological revolution and has promoted the progress of anti-tumour therapy. In this review, we summarised the possible mechanisms of CIC, evaluated the role of nanoparticles (including liposomes, polymeric micelles, dendrimers, and hydrogels) as drug carriers in preventing cardiotoxicity and proposed five advantages of nanotechnology in reducing cardiotoxicity: Liposomes cannot easily penetrate the heart's endothelial barrier; optimized delivery strategies reduce distribution in important organs, such as the heart; targeting the tumour microenvironment and niche; stimulus-responsive polymer nano-drug carriers rapidly iterate; better economic benefits were obtained. Nanoparticles can effectively deliver chemotherapeutic drugs to tumour tissues, while reducing the toxicity to heart tissues, and break through the dilemma of existing chemotherapy to a certain extent. It is important to explore the interactions between the physicochemical properties of nanoparticles and optimize the highly specific tumour targeting strategy in the future.
Collapse
Affiliation(s)
- Xin Su
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaoyu Zhang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Wenjing Liu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xinyu Yang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Na An
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Fan Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiahao Sun
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanwei Xing
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Hongcai Shang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China; College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China.
| |
Collapse
|
11
|
Surekha B, Kommana NS, Dubey SK, Kumar AP, Shukla R, Kesharwani P. PAMAM dendrimer as a talented multifunctional biomimetic nanocarrier for cancer diagnosis and therapy. Colloids Surf B Biointerfaces 2021; 204:111837. [DOI: 10.1016/j.colsurfb.2021.111837] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 05/03/2021] [Accepted: 05/08/2021] [Indexed: 12/15/2022]
|
12
|
Singh V, Kesharwani P. Dendrimer as a promising nanocarrier for the delivery of doxorubicin as an anticancer therapeutics. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:1882-1909. [PMID: 34078252 DOI: 10.1080/09205063.2021.1938859] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dendrimers are macromolecules with high-polymeric branching capable of undergoing major modifications. These characteristics make them an efficient nanocarrier capable of encapsulating and delivering drug, antibodies, or any therapeutic gene. The failure of conventional techniques to deliver drug with higher efficacy and reduced side effects has led to the use of nanomedicines including dendrimers. Dendrimers are novel drug carriers that are modified, complexed, and conjugated with different ligands and receptors to target the delivery of drug at the specific site without impacting any of the normal cells in surrounding. Moreover, the biocompatibility and safety of the dendrimers can be altered accordingly by the process of functionalization by PEGylation, acetylation, or amination. Various dendrimers have been designed to incorporate and deliver anticancer drug either in free form or as codelivery in conjugation with other drugs or therapeutic siRNA/DNA. Doxorubicin (DOX) is one such chemotherapeutic drug that acts by disrupting the process of DNA repair in tumor cells and hence is, since long been used for anticancer therapy. Certain adverse effects such as cardiotoxicity has limited the use of conventional DOX and has shifted the focus on use of safe nanodelivery systems viz dendrimers. DOX either in free or salt form can be loaded or encapsulated accordingly within the core of the dendrimers and linked with different receptors expressed over tumor cells to improve targeting in any cancerous organ site. Positive results obtained after cytotoxicity assay and in vivo/in vitro studies on different cancerous cell lines, and grafted models suggested the potential use of multifunctional DOX-dendrimers characterized with controlled release, better penetration, improved bioavailability, and reduced organ toxicity. This review consolidates studies on different types of DOX-loaded dendrimers that were synthesized, investigated, and are currently being explored for better cancer targeting. Foreseeing the prospects of dendrimers and their compatibility with DOX (free/salt), the article was updated with all current insights.
Collapse
Affiliation(s)
- Vanshikha Singh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| |
Collapse
|
13
|
Srivastava S, Mahor A, Singh G, Bansal K, Singh PP, Gupta R, Dutt R, Alanazi AM, Khan AA, Kesharwani P. Formulation Development, In Vitro and In Vivo Evaluation of Topical Hydrogel Formulation of Econazole Nitrate-Loaded β-Cyclodextrin Nanosponges. J Pharm Sci 2021; 110:3702-3714. [PMID: 34293406 DOI: 10.1016/j.xphs.2021.07.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 12/17/2022]
Abstract
Econazole nitrate, an antifungal drug used in the handling of skin ailments, is commercially not efficient as these ailments typically require a more elevated concentration of the drug to offer an effective pharmacological retort. Like so, it is proposed to assess the effectiveness of the topical hydrogel of econazole-loaded nanosponge in the management of skin ailment(s). Econazole nitrate-laden β-cyclodextrin nanosponges were developed by employing the melt method using β-cyclodextrin as the organic polymer and N,N-carbonyldiimidazole as the crosslinker. The critical factors disturbing the quality of the formulation were uniquely identified by the Ishikawa diagram, and they were optimized by the statistical experiment design concept. β-cyclodextrin loaded nanosponges were uniquely designed using the Placket-Burman approach and optimized utilizing the Box-Behnken method. The optimized nanosponges (EN-CDN) were 421.37 ± 6.19 nm in size with an entrapment efficiency of 70.13% ± 5.73%. The topical hydrogel of nanosponges (EN-TG) was prepared using carbopol 934 and pyrrolidone as permeation enhancers. In vitro skin permeation studies affirmed the improved transport crosswise the goatskin for topical hydrogel in comparison to the marketed product. EN-TG was able to control the fungal infection in the selected animal model in comparison to the marketed preparation. Stability studies reported favorably that nanogel remained stable under normal and accelerated settings.
Collapse
Affiliation(s)
| | - Alok Mahor
- Institute of Pharmacy, Bundelkhand University, Jhansi, India 284128.
| | - Gyanendra Singh
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, Banaras Hindu University, (IIT-BHU), Varanasi, India 221005
| | - Kuldeep Bansal
- Pharmaceutical Science Laboratory, Faculty of Science and Engineering, Abo Akademi University, Turku, Finland 20520
| | | | - Rishikesh Gupta
- Institute of Pharmacy, Bundelkhand University, Jhansi, India 284128
| | - Rohit Dutt
- School of Medical and Allied Sciences, G.D. Goenka University, Gurgaon Sohna Road, Gurgaon, India 122103
| | - Amer M Alanazi
- Pharmaceutical Chemistry Department, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Azmat Ali Khan
- Pharmaceutical Chemistry Department, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
14
|
Calorimetric and spectroscopic studies of interactions of PPI G4 dendrimer with tegafur in aqueous solutions. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Kesharwani P, Md S, Alhakamy NA, Hosny KM, Haque A. QbD Enabled Azacitidine Loaded Liposomal Nanoformulation and Its In Vitro Evaluation. Polymers (Basel) 2021; 13:250. [PMID: 33451016 PMCID: PMC7828524 DOI: 10.3390/polym13020250] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/23/2020] [Accepted: 12/29/2020] [Indexed: 12/13/2022] Open
Abstract
Azacitidine (AZA), an inhibitor of DNA methyltransferase, is a commonly recognized drug used in clinical treatment for myelodysplastic syndrome and breast cancer. Due to higher aqueous solubility and negative log P of AZA causes poor cancer cell permeation and controlled release. The objective of the present study was to formulate and optimize AZA-loaded liposome (AZA-LIPO) for breast cancer chemotherapy by using Box Behnken design (BBD) and in vitro evaluation using MCF-7 cells. AZA-LIPO were prepared using a thin film hydration technique and characterization study was performed by using FTIR and DSC. The prepared formulations were optimized using BBD and the optimized formulation was further subjected for particle size, surface charges, polydispersity index (PDI), drug loading, entrapment efficiency, TEM, XRD, in-vitro drug release and hemolytic toxicity. The mean particle size of optimized AZA-LIPO was 127 nm. Entrapment efficiency and drug loading of AZA-LIPO was found to be 85.2% ± 0.5 and 6.82 ± 1.6%, respectively. Further, in vitro drug release study showed preliminary burst release in 2 h followed by a sustained release for 36 h in phosphate buffer at different pH (4.0, 5.5, and 7.4) as compared to free drug. Drug release was found to be pH dependent, as the pH was increased, the drug release rate was found to be low. Time-dependent cell viability assay exhibited significant higher cell viability and higher internalization than free AZA in MCF-7 cells. AZA-LIPO were more effective than the free AZA in reducing Bcl2 expression, while increasing pro-apoptotic Bax and caspase-3 activity. The result showed that the formulated biocompatible AZA-LIPO nano-formulations may be used as an efficient anti-cancer drug delivery system for the treatment of breast cancer after establishing preclinical and clinical studies.
Collapse
Affiliation(s)
- Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.M.); (N.A.A.); (K.M.H.)
- Center of Excellence for Drug Research & Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.M.); (N.A.A.); (K.M.H.)
- Center of Excellence for Drug Research & Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Khaled M. Hosny
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.M.); (N.A.A.); (K.M.H.)
- Center of Excellence for Drug Research & Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Anzarul Haque
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-kharj 16278, Saudi Arabia;
| |
Collapse
|
16
|
Zeng Y, Li Z, Zhu H, Gu Z, Zhang H, Luo K. Recent Advances in Nanomedicines for Multiple Sclerosis Therapy. ACS APPLIED BIO MATERIALS 2020; 3:6571-6597. [PMID: 35019387 DOI: 10.1021/acsabm.0c00953] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yujun Zeng
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhiqian Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hongyan Zhu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhongwei Gu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hu Zhang
- Amgen Bioprocessing Centre, Keck Graduate Institute, Claremont, California 91711, United States
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
17
|
Ali I, Mukhtar SD, Ali HS, Scotti MT, Scotti L. Advances in Nanoparticles as Anticancer Drug Delivery Vector: Need of this Century. Curr Pharm Des 2020; 26:1637-1649. [DOI: 10.2174/1381612826666200203124330] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/02/2019] [Indexed: 12/17/2022]
Abstract
Background:
Nanotechnology has contributed a great deal to the field of medical science. Smart drugdelivery
vectors, combined with stimuli-based characteristics, are becoming increasingly important. The use of
external and internal stimulating factors can have enormous benefits and increase the targeting efficiency of
nanotechnology platforms. The pH values of tumor vascular tissues are acidic in nature, allowing the improved
targeting of anticancer drug payloads using drug-delivery vectors. Nanopolymers are smart drug-delivery vectors
that have recently been developed and recommended for use by scientists because of their potential targeting
capabilities, non-toxicity and biocompatibility, and make them ideal nanocarriers for personalized drug delivery.
Method:
The present review article provides an overview of current advances in the use of nanoparticles (NPs) as
anticancer drug-delivery vectors.
Results:
This article reviews the molecular basis for the use of NPs in medicine, including personalized medicine,
personalized therapy, emerging vistas in anticancer therapy, nanopolymer targeting, passive and active targeting
transports, pH-responsive drug carriers, biological barriers, computer-aided drug design, future challenges and
perspectives, biodegradability and safety.
Conclusions:
This article will benefit academia, researchers, clinicians, and government authorities by providing a
basis for further research advancements.
Collapse
Affiliation(s)
- Imran Ali
- Department of Chemistry, College of Sciences, Taibah University, Al-Medina Al-Munawara – 41477, Saudi Arabia
| | - Sofi D. Mukhtar
- Department of Chemistry, Jamia Millia Islamia (Central University) New Delhi-110025, India
| | - Heyam S. Ali
- Department of Pharmaceutics, University of Khartoum, Khartoum, Sudan
| | - Marcus T. Scotti
- Cheminformatics Laboratory- Postgraduate Program in Natural Products and Synthetic Bioactive, Federal University of Paraíba-Campus I 58051-970, João Pessoa, PB, Brazil
| | - Luciana Scotti
- Teaching and Research Management - University Hospital, Cheminformatics Laboratory- Postgraduate Program in Natural Products and Synthetic Bioactive, Federal University of Paraíba-Campus I, 58051-970, João Pessoa, PB, Brazil
| |
Collapse
|
18
|
Tagde P, Kulkarni GT, Mishra DK, Kesharwani P. Recent advances in folic acid engineered nanocarriers for treatment of breast cancer. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101613] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
19
|
Tripathi PK, Gupta S, Rai S, Shrivatava A, Tripathi S, Singh S, Khopade AJ, Kesharwani P. Curcumin loaded poly (amidoamine) dendrimer-plamitic acid core-shell nanoparticles as anti-stress therapeutics. Drug Dev Ind Pharm 2020; 46:412-426. [PMID: 32011185 DOI: 10.1080/03639045.2020.1724132] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Despite poor bioavailability of the drug and in vivo stability, curcumin has been reported for many pharmacological activities. Considering the potential of dendrimers as a drug delivery system, current research work is focused on the formulation and characterization of G4 PAMAM dendrimer-Palmitic acid core-shell nanoparticle-containing curcumin as antistress therapeutics to maximize the bioavailability of curcumin. Various formulations were prepared using different concentrations of palmitic acid and an optimized ratio of dendrimer and curcumin. All formulations were investigated for evaluation of physicochemical parameters, encapsulation efficiency, and in vitro release. Particle size, PDI, zeta-potential, and encapsulation efficiency of final formulation was found to be 257.9 ± 0.365 nm, 0.10 ± 0.004, 3.59 ± 0.167 mV, and 80.87%, respectively. In vitro release studies have shown that 53.62 ± 2.431% of the drug was released after 24 h. In vivo studies pharmacokinetic parameters, drug distribution, pharmacological, and toxicological were also estimated using swiss albino mice. The findings have shown the selected formulation is better than plain curcumin formulation.
Collapse
Affiliation(s)
- Pushpendra Kumar Tripathi
- Department of Pharmacy, RITM, Dr APJ Abdual Kalam Technical University, Lucknow, Uttar Pradesh, India
| | - Shraddha Gupta
- Department of Pharmacy, RITM, Dr APJ Abdual Kalam Technical University, Lucknow, Uttar Pradesh, India
| | - Suruchi Rai
- Department of Pharmacy, RITM, Dr APJ Abdual Kalam Technical University, Lucknow, Uttar Pradesh, India
| | - Ankur Shrivatava
- Department of Pharmacy, RITM, Dr APJ Abdual Kalam Technical University, Lucknow, Uttar Pradesh, India
| | - Shalini Tripathi
- Department of Pharmacy, RITM, Dr APJ Abdual Kalam Technical University, Lucknow, Uttar Pradesh, India
| | - Sima Singh
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Ajay J Khopade
- Sun Pharma Advanced Research Company Limited, Mumbai, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
20
|
Targeting luteinizing hormone-releasing hormone: A potential therapeutics to treat gynecological and other cancers. J Control Release 2018; 269:277-301. [DOI: 10.1016/j.jconrel.2016.11.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 11/04/2016] [Accepted: 11/05/2016] [Indexed: 01/05/2023]
|
21
|
Choudhury H, Gorain B, Pandey M, Kumbhar SA, Tekade RK, Iyer AK, Kesharwani P. Recent advances in TPGS-based nanoparticles of docetaxel for improved chemotherapy. Int J Pharm 2017; 529:506-522. [PMID: 28711640 DOI: 10.1016/j.ijpharm.2017.07.018] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/06/2017] [Accepted: 07/07/2017] [Indexed: 12/27/2022]
Abstract
Docetaxel (DTX) is one of the important antitumor drugs, being used in several common chemotherapies to control leading cancer types. Severe toxicities of the DTX are prominent due to sudden parenteral exposure of desired loading dose to maintain the therapeutic concentration. Field of nanotechnology is leading to resist sudden systemic exposure of DTX with more specific delivery to the site of cancer. Further nanometric size range of the formulation aid for prolonged circulation, thereby extensive exposure results better efficacy. In this article, we extensively reviewed the therapeutic benefit of incorporating d-α-tocopheryl polyethylene glycol 1000 succinate (vitamin E TPGS, or simply TPGS) in the nanoparticle (NP) formulation of DTX for improved delivery, tumor control and tolerability. TPGS is well accepted nonionic-ampiphilic polymer which has been identified in the role of emulsifier, stabilizer, penetration enhancer, solubilizer and in protection in micelle. Simultaneously, P-glycoprotein inhibitory activity of TPGS in the multidrug resistant (MDR) cancer cells along with its apoptotic potential are the added advantage of TPGS to be incorporated in nano-chemotherapeutics. Thus, it could be concluded that TPGS based nanoparticulate application is an advanced approach to improve therapeutic efficacy of chemotherapeutic agents by better internalization and sustained retention of the NPs.
Collapse
Affiliation(s)
- Hira Choudhury
- International Medical University, School of Pharmacy, Department of Pharmaceutical Technology, 57000, Kuala Lumpur, Malaysia
| | - Bapi Gorain
- Faculty of Pharmacy, Lincoln University College, Petalling Jaya, Selangor, Kuala Lumpur, 47301, Malaysia.
| | - Manisha Pandey
- International Medical University, School of Pharmacy, Department of Pharmaceutical Technology, 57000, Kuala Lumpur, Malaysia
| | - Santosh Ashok Kumbhar
- Faculty of Pharmacy, GSMT'S Genba Sopanrao Moze College of Pharmacy, Wagholi, Pune, 411207, India
| | - Rakesh Kumar Tekade
- National Institute of Pharmaceutical Education and Research (NIPER), Sarkhej - Gandhinagar Highway, Thaltej, Ahmedabad, 380054, Gujarat, India
| | - Arun K Iyer
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48201, USA
| | - Prashant Kesharwani
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow, UP, 226031, India.
| |
Collapse
|
22
|
Role of generation on folic acid-modified poly(amidoamine) dendrimers for targeted delivery of baicalin to cancer cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 75:182-190. [DOI: 10.1016/j.msec.2016.12.134] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 11/18/2016] [Accepted: 12/17/2016] [Indexed: 11/21/2022]
|
23
|
Perspectives on dendritic architectures and their biological applications: From core to cell. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 173:61-83. [PMID: 28564631 DOI: 10.1016/j.jphotobiol.2017.05.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 05/15/2017] [Accepted: 05/18/2017] [Indexed: 12/24/2022]
Abstract
The challenges of medicine today include the increasing stipulation for sensitive and effective systems that can improve the pathological responses with a simultaneous reduction in accumulation and drug side effects. The demand can be fulfilled through the advancements in nanomedicine that includes nanostructures and nanodevices for diagnosing, treating, and prevention of various diseases. In this respect, the nanoscience provides various novel techniques with carriers such as micelles, dendrimers, particles and vesicles for the transportation of active moieties. Further, an efficient way to improve these systems is through stimuli a responsive system that utilizes supramolecular hyperbranched structures to meet the above criteria. The stimuli-responsive dendritic architectures exhibit spatial, temporal, convenient, effective, safety and controlled drug release in response to specific trigger through electrostatic interactions plus π stacking. The stimuli-responsive systems are capable of sequestering the drug molecules underneath a predefined set of conditions and discharge them in a different environment through either exogenous or endogenous stimulus. The incorporation of photoresponsive moieties at various components of dendrimer such as core, branches or at the peripheral end exaggerates its significance in various allied fields of nanotechnology which includes sensors, photoswitch, electronic widgets and in drug delivery systems. This is due to the light instigated geometrical modifications at the core or at the surface molecules which generates huge conformational changes throughout the hyperbranched structure. Further, numerous synthetic methodologies have been investigated for utilization of dendrimers in therapeutic drug delivery and its applicability towards stimuli responsive systems such as photo-instigated, thermal-instigated, and pH-instigated hyperbranched structures and their advancement in the field of nanomedicine. This paper highlights the fascinating theoretical advances and principal mechanisms of dendrimer synthesis and their ability to capture light that strengthens its applicability from radiant energy to medical photonics.
Collapse
|
24
|
Golshan M, Salami-Kalajahi M, Roghani-Mamaqani H, Mohammadi M. Poly(propylene imine) dendrimer-grafted nanocrystalline cellulose: Doxorubicin loading and release behavior. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.04.047] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
25
|
Gorain B, Tekade M, Kesharwani P, Iyer AK, Kalia K, Tekade RK. The use of nanoscaffolds and dendrimers in tissue engineering. Drug Discov Today 2017; 22:652-664. [PMID: 28219742 DOI: 10.1016/j.drudis.2016.12.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 11/02/2016] [Accepted: 12/16/2016] [Indexed: 01/02/2023]
Abstract
To avoid tissue rejection during organ transplantation, research has focused on the use of tissue engineering to regenerate required tissues or organs for patients. The biomedical applications of hyperbranched, multivalent, structurally uniform, biocompatible dendrimers in tissue engineering include the mimicking of natural extracellular matrices (ECMs) in the 3D microenvironment. Dendrimers are unimolecular architects that can incorporate a variety of biological and/or chemical substances in a 3D architecture to actively support the scaffold microenvironment during cell growth. Here, we review the use of dendritic delivery systems in tissue engineering. We discuss the available literature, highlighting the 3D architecture and preparation of these nanoscaffolds, and also review challenges to, and advances in, the use dendrimers in tissue engineering. Advances in the manufacturing of dendritic nanoparticles and scaffold architectures have resulted in the successful incorporation of dendritic scaffolds in tissue engineering.
Collapse
Affiliation(s)
- Bapi Gorain
- Faculty of Pharmacy, Lincoln University College, Kuala Lumpur, Malaysia
| | - Muktika Tekade
- TIT College of Pharmacy, Technocrats Institute of Technology, Anand Nagar, Bhopal, MP 462021, India
| | - Prashant Kesharwani
- The International Medical University, School of Pharmacy, Department of Pharmaceutical Technology, Jalan Jalil Perkasa 19, 57000 Kuala Lumpur, Malaysia
| | - Arun K Iyer
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Kiran Kalia
- National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Palaj, Opposite Air Force Station, Gandhinagar 382355, Gujarat, India
| | - Rakesh Kumar Tekade
- National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Palaj, Opposite Air Force Station, Gandhinagar 382355, Gujarat, India.
| |
Collapse
|
26
|
Augmented delivery of gemcitabine in lung cancer cells exploring mannose anchored solid lipid nanoparticles. J Colloid Interface Sci 2016; 481:107-16. [DOI: 10.1016/j.jcis.2016.07.020] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 07/10/2016] [Accepted: 07/11/2016] [Indexed: 12/11/2022]
|
27
|
Luong D, Kesharwani P, Killinger BA, Moszczynska A, Sarkar FH, Padhye S, Rishi AK, Iyer AK. Solubility enhancement and targeted delivery of a potent anticancer flavonoid analogue to cancer cells using ligand decorated dendrimer nano-architectures. J Colloid Interface Sci 2016; 484:33-43. [PMID: 27585998 DOI: 10.1016/j.jcis.2016.08.061] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 08/22/2016] [Accepted: 08/23/2016] [Indexed: 12/20/2022]
Abstract
Conventional chemotherapy using small molecule drugs is marred by several challenges such as short half-life, low therapeutic index and adverse systemic side effects. In this regard, targeted therapies using ligand directed polyamidoamine (PAMAM) dendrimers could be a promising strategy to specifically deliver anticancer drugs to cancer cells overexpressing complementary receptor binding domains. The aim of this study was to utilize folate decorated PAMAM to enhance the aqueous solubility of a highly hydrophobic but very potent anticancer flavonoid analogue, 3,4-difluorobenzylidene diferuloylmethane (CDF) and to deliver it specifically to folate receptor overexpressing cervical cancer cells (HeLa) and ovarian cancer cells (SKOV3). As compared to the non-targeted formulation, the targeted formulation exhibited significant anticancer activity with higher accumulation in folate receptor overexpressing cells, larger population of apoptotic cancer cells, elevated expression of tumor suppressor phosphatase and tensin homolog (PTEN), and inhibition of nuclear factor kappa B (NFκB) which further confirmed the targeting ability and the promising anticancer activity of the folate based nanoformulation.
Collapse
Affiliation(s)
- Duy Luong
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, 259 Mack Ave, Wayne State University, Detroit, MI 48201, USA
| | - Prashant Kesharwani
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, 259 Mack Ave, Wayne State University, Detroit, MI 48201, USA
| | - Bryan A Killinger
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, 259 Mack Ave, Wayne State University, Detroit, MI 48201, USA
| | - Anna Moszczynska
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, 259 Mack Ave, Wayne State University, Detroit, MI 48201, USA
| | - Fazlul H Sarkar
- Department of Pathology, Barbara Ann Karmanos Cancer Institute, Wayne State University, School of Medicine, Detroit, MI 48201, USA
| | - Subhash Padhye
- Interdisciplinary Science & Technology Research Academy, Department of Chemistry, Abeda Inamdar College, Azam Campus, University of Pune, Pune 411001, India
| | - Arun K Rishi
- John D. Dingell VA Medical Center, Wayne State University, Detroit, MI 48201, USA; Department of Oncology, Wayne State University, Detroit, MI 48201, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University, School of Medicine, Detroit, MI 48201, USA
| | - Arun K Iyer
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, 259 Mack Ave, Wayne State University, Detroit, MI 48201, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University, School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|
28
|
Ghalamfarsa G, Hojjat-Farsangi M, Mohammadnia-Afrouzi M, Anvari E, Farhadi S, Yousefi M, Jadidi-Niaragh F. Application of nanomedicine for crossing the blood–brain barrier: Theranostic opportunities in multiple sclerosis. J Immunotoxicol 2016; 13:603-19. [DOI: 10.3109/1547691x.2016.1159264] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ghasem Ghalamfarsa
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Mohammad Hojjat-Farsangi
- Department of Oncology-Pathology, Immune and Gene Therapy Lab, Cancer Center Karolinska (CCK), Karolinska University Hospital Solna and Karolinska Institute, Stockholm, Sweden
- Department of Immunology, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mousa Mohammadnia-Afrouzi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Enayat Anvari
- Department of Physiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Shohreh Farhadi
- Department of Agricultural Engineering, Islamic Azad University, Tehran
| | - Mehdi Yousefi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
Mansuri S, Kesharwani P, Tekade RK, Jain NK. Lyophilized mucoadhesive-dendrimer enclosed matrix tablet for extended oral delivery of albendazole. Eur J Pharm Biopharm 2016; 102:202-13. [DOI: 10.1016/j.ejpb.2015.10.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 10/26/2015] [Accepted: 10/28/2015] [Indexed: 12/17/2022]
|
30
|
Dwivedi N, Shah J, Mishra V, Mohd Amin MCI, Iyer AK, Tekade RK, Kesharwani P. Dendrimer-mediated approaches for the treatment of brain tumor. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2016; 27:557-80. [PMID: 26928261 DOI: 10.1080/09205063.2015.1133155] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Worldwide, the cancer appeared as one of the most leading cause of morbidity and mortality. Among the various cancer types, brain tumors are most life threatening with low survival rate. Every year approximately 238,000 new cases of brain and other central nervous system tumors are diagnosed. The dendrimeric approaches have a huge potential for diagnosis and treatment of brain tumor with targeting abilities of molecular cargoes to the tumor sites and the efficiency of crossing the blood brain barrier and penetration to brain after systemic administration. The various generations of dendrimers have been designed as novel targeted drug delivery tools for new therapies including sustained drug release, gene therapy, and antiangiogenic activities. At present era, various types of dendrimers like PAMAM, PPI, and PLL dendrimers validated them as milestones for the treatment and diagnosis of brain tumor as well as other cancers. This review highlights the recent research, opportunities, advantages, and challenges involved in development of novel dendrimeric complex for the therapy of brain tumor.
Collapse
Affiliation(s)
- Nitin Dwivedi
- a Pharmacology Research Laboratory, Institute of Pharmacy , Nirma University , Ahmedabad , India
| | - Jigna Shah
- a Pharmacology Research Laboratory, Institute of Pharmacy , Nirma University , Ahmedabad , India
| | - Vijay Mishra
- b Pharmaceutical Nanotechnology Research Laboratory , Adina Institute of Pharmaceutical Sciences , Sagar , India
| | - Mohd Cairul Iqbal Mohd Amin
- c Faculty of Pharmacy, Centre for Drug Delivery Research , Universiti Kebangsaan Malaysia , Kuala Lumpur , Malaysia
| | - Arun K Iyer
- d Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences , Wayne State University , Detroit , MI , USA
| | - Rakesh Kumar Tekade
- e Department of Pharmaceutical Technology , School of Pharmacy , The International Medical University , Jalan Jalil Perkasa, Kuala Lumpur , Malaysia
| | - Prashant Kesharwani
- d Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences , Wayne State University , Detroit , MI , USA
| |
Collapse
|
31
|
Ghosh S, Chakraborty P, Chakrabarti A, Ghosh M, Mandal A, Saha P, Mukherjee A, Acharya S, Ray M. Biological activity of dendrimer–methylglyoxal complexes for improved therapeutic efficacy against malignant cells. RSC Adv 2016. [DOI: 10.1039/c5ra23477h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A facile strategy to synthesize polymer based conjugation of methylglyoxal which demonstrated inhibition against malignant cells with desired selectivity can revolutionize the cancer treatment via minimizing the human health risks.
Collapse
Affiliation(s)
- Srabanti Ghosh
- Centre for Advanced Materials
- Indian Association for the Cultivation of Science
- Kolkata-700032
- India
| | - Prabal Chakraborty
- Crystallography and Molecular Biology Division
- Saha Institute of Nuclear Physics
- Kolkata-700064
- India
| | - Adrita Chakrabarti
- Biological Chemistry
- Indian Association for the Cultivation of Science
- Kolkata-700032
- India
| | - Manosij Ghosh
- Centre of Advanced Study
- Department of Botany
- University of Calcutta
- Kolkata-700019
- India
| | - Amit Mandal
- Polymer Science Unit
- Indian Association for the Cultivation of Science
- Kolkata-700032
- India
| | - Partha Saha
- Crystallography and Molecular Biology Division
- Saha Institute of Nuclear Physics
- Kolkata-700064
- India
| | - Anita Mukherjee
- Centre of Advanced Study
- Department of Botany
- University of Calcutta
- Kolkata-700019
- India
| | - Somobrata Acharya
- Centre for Advanced Materials
- Indian Association for the Cultivation of Science
- Kolkata-700032
- India
| | - Manju Ray
- Biological Chemistry
- Indian Association for the Cultivation of Science
- Kolkata-700032
- India
- Division of Molecular Medicine
| |
Collapse
|
32
|
Kesharwani P, Xie L, Banerjee S, Mao G, Padhye S, Sarkar FH, Iyer AK. Hyaluronic acid-conjugated polyamidoamine dendrimers for targeted delivery of 3,4-difluorobenzylidene curcumin to CD44 overexpressing pancreatic cancer cells. Colloids Surf B Biointerfaces 2015; 136:413-23. [DOI: 10.1016/j.colsurfb.2015.09.043] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 09/22/2015] [Accepted: 09/23/2015] [Indexed: 12/20/2022]
|
33
|
Jain A, Kesharwani P, Garg NK, Jain A, Jain SA, Jain AK, Nirbhavane P, Ghanghoria R, Tyagi RK, Katare OP. Galactose engineered solid lipid nanoparticles for targeted delivery of doxorubicin. Colloids Surf B Biointerfaces 2015; 134:47-58. [PMID: 26142628 DOI: 10.1016/j.colsurfb.2015.06.027] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 05/17/2015] [Accepted: 06/11/2015] [Indexed: 02/07/2023]
Abstract
The present investigation reports the preparation, optimization, and characterization of surface engineered solid lipid nanoparticles (SLNs) encapsulated with doxorubicin (DOX). Salient features such as biocompatibility, controlled release, target competency, potential of penetration, improved physical stability, low cost and ease of scaling-up make SLNs viable alternative to liposomes for effective drug delivery. Galactosylation of SLNs instructs some gratifying characteristic, which leads to the evolution of promising delivery vehicles. The impendence of lectin receptors on different cell surfaces makes the galactosylated carriers admirable for targeted delivery of drugs to ameliorate their therapeutic index. Active participation of some lectin receptors in immune responses to antigen overlaid the application of galactosylated carriers in delivery of antigen and immunotherapy for treatment of maladies like cancer. These advantages revealed the promising potential of galactosylated carriers in each perspective of drug delivery. The developed DOX loaded galactosylated SLNs formulation was found to have particle size 239 ± 2.40 nm, PDI 0.307 ± 0.004, entrapment efficiency 72.3 ± 0.9%. Higher cellular uptake, cytotoxicity, and nuclear localization of galactosylated SLNs against A549 cells revealed higher efficiency of the formulation. In a nutshell, the galactosylation strategy with SLNs could be a promising approach in improving the delivery of DOX for cancer therapy.
Collapse
Affiliation(s)
- Ashay Jain
- Drug Delivery Research Group, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh 160014, India; Department of Pharmaceutical Sciences, Dr. Hari Singh Gour University, Sagar 470003, MP, India
| | - Prashant Kesharwani
- Department of Pharmaceutical Sciences, Dr. Hari Singh Gour University, Sagar 470003, MP, India; Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA.
| | - Neeraj K Garg
- Drug Delivery Research Group, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh 160014, India; Department of Pharmaceutical Sciences, Dr. Hari Singh Gour University, Sagar 470003, MP, India
| | - Atul Jain
- Drug Delivery Research Group, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh 160014, India; Department of Pharmaceutical Sciences, Dr. Hari Singh Gour University, Sagar 470003, MP, India
| | - Som Akshay Jain
- Department of Pharmaceutical Sciences, Dr. Hari Singh Gour University, Sagar 470003, MP, India
| | - Amit Kumar Jain
- Department of Pharmaceutical Sciences, Dr. Hari Singh Gour University, Sagar 470003, MP, India
| | - Pradip Nirbhavane
- Drug Delivery Research Group, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh 160014, India
| | - Raksha Ghanghoria
- Department of Pharmaceutical Sciences, Dr. Hari Singh Gour University, Sagar 470003, MP, India
| | - Rajeev Kumar Tyagi
- Department of Periodontics, College of Dental Medicine Georgia Regents University, 1120 15th Street, Augusta, GA 30912, USA; Biosafety Support Unit, Regional Centre for Biotechnology-DBT, C.G.O. Complex, Lodhi Road, New Delhi 110003, India
| | - Om Prakash Katare
- Drug Delivery Research Group, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
34
|
Synthesis and characterization of dendro-PLGA nanoconjugate for protein stabilization. Colloids Surf B Biointerfaces 2015. [DOI: 10.1016/j.colsurfb.2015.06.064] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
35
|
Generation dependent hemolytic profile of folate engineered poly(propyleneimine) dendrimer. J Drug Deliv Sci Technol 2015. [DOI: 10.1016/j.jddst.2015.04.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
36
|
Synthesis of poly(2-hydroxyethyl methacrylate)-grafted poly(aminoamide) dendrimers as polymeric nanostructures. Colloid Polym Sci 2015. [DOI: 10.1007/s00396-015-3559-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
37
|
Thakur S, Kesharwani P, Tekade RK, Jain NK. Impact of pegylation on biopharmaceutical properties of dendrimers. POLYMER 2015. [DOI: 10.1016/j.polymer.2014.12.051] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
38
|
Mehra NK, Jain NK. One Platform Comparison of Estrone and Folic Acid Anchored Surface Engineered MWCNTs for Doxorubicin Delivery. Mol Pharm 2015; 12:630-43. [DOI: 10.1021/mp500720a] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Neelesh Kumar Mehra
- Pharmaceutics
Research Laboratory, Department of Pharmaceutical Sciences, Dr. H. S. Gour University, Sagar 470 003, India
- Pharmaceutical
Nanotechnology Research Laboratory, ISF College of Pharmacy, Moga 142 001, India
| | - N. K. Jain
- Pharmaceutics
Research Laboratory, Department of Pharmaceutical Sciences, Dr. H. S. Gour University, Sagar 470 003, India
- Pharmaceutical
Nanotechnology Research Laboratory, ISF College of Pharmacy, Moga 142 001, India
| |
Collapse
|
39
|
Kesharwani P, Iyer AK. Recent advances in dendrimer-based nanovectors for tumor-targeted drug and gene delivery. Drug Discov Today 2014; 20:536-47. [PMID: 25555748 DOI: 10.1016/j.drudis.2014.12.012] [Citation(s) in RCA: 222] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 11/24/2014] [Accepted: 12/22/2014] [Indexed: 01/09/2023]
Abstract
Advances in the application of nanotechnology in medicine have given rise to multifunctional smart nanocarriers that can be engineered with tunable physicochemical characteristics to deliver one or more therapeutic agent(s) safely and selectively to cancer cells, including intracellular organelle-specific targeting. Dendrimers having properties resembling biomolecules, with well-defined 3D nanopolymeric architectures, are emerging as a highly attractive class of drug and gene delivery vector. The presence of numerous peripheral functional groups on hyperbranched dendrimers affords efficient conjugation of targeting ligands and biomarkers that can recognize and bind to receptors overexpressed on cancer cells for tumor-cell-specific delivery. The present review compiles the recent advances in dendrimer-mediated drug and gene delivery to tumors by passive and active targeting principles with illustrative examples.
Collapse
Affiliation(s)
- Prashant Kesharwani
- Use-inspired Biomaterials and Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Arun K Iyer
- Use-inspired Biomaterials and Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA.
| |
Collapse
|
40
|
Kesharwani P, Tekade RK, Jain NK. Generation Dependent Safety and Efficacy of Folic Acid Conjugated Dendrimer Based Anticancer Drug Formulations. Pharm Res 2014; 32:1438-50. [DOI: 10.1007/s11095-014-1549-2] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 10/07/2014] [Indexed: 11/29/2022]
|
41
|
Kesharwani P, Tekade RK, Jain NK. Generation dependent cancer targeting potential of poly(propyleneimine) dendrimer. Biomaterials 2014; 35:5539-48. [DOI: 10.1016/j.biomaterials.2014.03.064] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Accepted: 03/22/2014] [Indexed: 01/14/2023]
|