1
|
Haddouti EM, Reinhardt N, Ossendorff R, Burger C, Wirtz DC, de la Fuente M, Schildberg FA. Effects of single and repeated shock wave application on the osteogenic differentiation potential of human primary mesenchymal stromal cells and the osteoblastic cell line MG63 in vitro. Front Bioeng Biotechnol 2023; 11:1207655. [PMID: 37901841 PMCID: PMC10602737 DOI: 10.3389/fbioe.2023.1207655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 09/19/2023] [Indexed: 10/31/2023] Open
Abstract
Introduction: Extracorporeal shock wave therapy is a non-invasive and effective option for treating various musculoskeletal disorders. Recent literature indicates that the parameters for extracorporeal shock wave therapy, such as the optimal intensity, treatment frequency, and localization, are yet to be determined. Studies reporting on the effects of shock wave application on primary mesenchymal stromal cells (MSCs) as well as osteoblastic cell lines in vitro are barely available and not standardized. Methods: In this study, we designed a special setup to precisely expose primary MSCs and the osteoblastic cell line MG63 to shock waves and subsequently analyzed the resulting cellular responses using standardized protocols to investigate their viability, proliferation behavior, cytokine secretion, and osteogenic differentiation potential in vitro. The shock wave transducer was coupled to a specifically designed water bath containing a 5 mL tube holder. Primary human MSCs and MG63 cells were trypsinated and centrifuged in a 5 mL tube and exposed to single and repeated shock wave application using different intensities and numbers of pulses. Results: Single treatment of MSCs using intensities 5, 10, 15, and 20 and pulse numbers 100, 250, 500, 750, and 1,000 at a constant pulse repetition frequency of 1 Hz resulted in a decreased viability and proliferation of both cell types with an increase in the intensity and number of pulses compared to controls. No significant difference in the osteogenic differentiation was observed at different time intervals in both cell types when a single shock wave application was performed. However, repeated shock wave sessions over three consecutive days of primary MSCs using low intensity levels 0.1 and 1 showed significant osteogenic differentiation 4-fold higher than that of the extracted Alizarin Red S at day 14, whereas MG63 cells showed no significant osteogenic differentiation compared to their corresponding controls. More specifically, repeated shock wave application triggered a significant downregulation of COL1A1, upregulation of RUNX2, and sustained increase of OCN in primary MSCs but not in the cell line MG63 when induced toward the osteogenic differentiation. Discussion: The effects of shock wave application on MSCs make it an effective therapy in regenerative medicine. We established a protocol to analyze a standardized shock wave application on MSCs and were able to determine conditions that enhance the osteogenic differentiation of MSCs in vitro.
Collapse
Affiliation(s)
- El-Mustapha Haddouti
- Department of Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - Nina Reinhardt
- Chair of Medical Engineering, Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Robert Ossendorff
- Department of Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - Christof Burger
- Department of Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - Dieter C. Wirtz
- Department of Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - Matias de la Fuente
- Chair of Medical Engineering, Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Frank A. Schildberg
- Department of Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
2
|
Ambattu LA, Yeo LY. Sonomechanobiology: Vibrational stimulation of cells and its therapeutic implications. BIOPHYSICS REVIEWS 2023; 4:021301. [PMID: 38504927 PMCID: PMC10903386 DOI: 10.1063/5.0127122] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 02/27/2023] [Indexed: 03/21/2024]
Abstract
All cells possess an innate ability to respond to a range of mechanical stimuli through their complex internal machinery. This comprises various mechanosensory elements that detect these mechanical cues and diverse cytoskeletal structures that transmit the force to different parts of the cell, where they are transcribed into complex transcriptomic and signaling events that determine their response and fate. In contrast to static (or steady) mechanostimuli primarily involving constant-force loading such as compression, tension, and shear (or forces applied at very low oscillatory frequencies (≤ 1 Hz) that essentially render their effects quasi-static), dynamic mechanostimuli comprising more complex vibrational forms (e.g., time-dependent, i.e., periodic, forcing) at higher frequencies are less well understood in comparison. We review the mechanotransductive processes associated with such acoustic forcing, typically at ultrasonic frequencies (> 20 kHz), and discuss the various applications that arise from the cellular responses that are generated, particularly for regenerative therapeutics, such as exosome biogenesis, stem cell differentiation, and endothelial barrier modulation. Finally, we offer perspectives on the possible existence of a universal mechanism that is common across all forms of acoustically driven mechanostimuli that underscores the central role of the cell membrane as the key effector, and calcium as the dominant second messenger, in the mechanotransduction process.
Collapse
Affiliation(s)
- Lizebona August Ambattu
- Micro/Nanophysics Research Laboratory, School of Engineering, RMIT University, Melbourne VIC 3000, Australia
| | - Leslie Y. Yeo
- Micro/Nanophysics Research Laboratory, School of Engineering, RMIT University, Melbourne VIC 3000, Australia
| |
Collapse
|
3
|
Frequency-specific sensitivity of 3T3-L1 preadipocytes to low-intensity vibratory stimulus during adipogenesis. In Vitro Cell Dev Biol Anim 2022; 58:452-461. [PMID: 35713773 DOI: 10.1007/s11626-022-00696-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/20/2022] [Indexed: 11/05/2022]
Abstract
Adipocyte accumulation in the bone marrow is a severe complication leading to bone defects and reduced regenerative capacity. Application of external mechanical signals to bone marrow cellular niche is a non-invasive and non-pharmaceutical methodology to improve osteogenesis and suppress adipogenesis. However, in the literature, the specific parameters related to the nature of low-intensity vibratory (LIV) signals appear to be arbitrarily selected for amplitude, bouts, and applied frequency. In this study, we performed a LIV frequency sweep ranging from 30 to 120 Hz with increments of 15 Hz applied onto preadipocytes during adipogenesis for 10 d. We addressed the effect of LIV with different frequencies on single-cell density, adipogenic gene expression, lipid morphology, and triglycerides content. Results showed that LIV signals with 75-Hz frequency had the most significant suppressive effect during adipogenesis. Our results support the premise that mechanical-based interventions for suppressing adipogenesis may benefit from optimizing input parameters.
Collapse
|
4
|
Montorsi M, Genchi GG, De Pasquale D, De Simoni G, Sinibaldi E, Ciofani G. Design, Fabrication, and Characterization of a Multimodal Reconfigurable Bioreactor for Bone Tissue Engineering. Biotechnol Bioeng 2022; 119:1965-1979. [PMID: 35383894 PMCID: PMC9324218 DOI: 10.1002/bit.28100] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/15/2022] [Accepted: 03/31/2022] [Indexed: 11/18/2022]
Abstract
In the past decades, bone tissue engineering developed and exploited many typologies of bioreactors, which, besides providing proper culture conditions, aimed at integrating those bio‐physical stimulations that cells experience in vivo, to promote osteogenic differentiation. Nevertheless, the highly challenging combination and deployment of many stimulation systems into a single bioreactor led to the generation of several unimodal bioreactors, investigating one or at mostly two of the required biophysical stimuli. These systems miss the physiological mimicry of bone cells environment, and often produced contrasting results, thus making the knowledge of bone mechanotransduction fragmented and often inconsistent. To overcome this issue, in this study we developed a perfusion and electroactive‐vibrational reconfigurable stimulation bioreactor to investigate the differentiation of SaOS‐2 bone‐derived cells, hosting a piezoelectric nanocomposite membrane as cell culture substrate. This multimodal perfusion bioreactor is designed based on a numerical (finite element) model aimed at assessing the possibility to induce membrane nano‐scaled vibrations (with ~12 nm amplitude at a frequency of 939 kHz) during perfusion (featuring 1.46 dyn cm−2 wall shear stress), large enough for inducing a physiologically‐relevant electric output (in the order of 10 mV on average) on the membrane surface. This study explored the effects of different stimuli individually, enabling to switch on one stimulation at a time, and then to combine them to induce a faster bone matrix deposition rate. Biological results demonstrate that the multimodal configuration is the most effective in inducing SaOS‐2 cell differentiation, leading to 20‐fold higher collagen deposition compared to static cultures, and to 1.6‐ and 1.2‐fold higher deposition than the perfused‐ or vibrated‐only cultures. These promising results can provide tissue engineering scientists with a comprehensive and biomimetic stimulation platform for a better understanding of mechanotransduction phenomena beyond cells differentiation.
Collapse
Affiliation(s)
- Margherita Montorsi
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025, Pontedera, Italy.,Scuola Superiore Sant'Anna, The BioRobotics Institute, Viale Rinaldo Piaggio 34, 56025, Pontedera, Italy
| | - Giada Graziana Genchi
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025, Pontedera, Italy
| | - Daniele De Pasquale
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025, Pontedera, Italy
| | - Giorgio De Simoni
- CNR, Nanoscience Institute, NEST Laboratory, Piazza San Silvestro 12, 56127, Pisa, Italy
| | - Edoardo Sinibaldi
- Istituto Italiano di Tecnologia, Bioinspired Soft Robotics, Via Morego 30, 16163, Genova, Italy
| | - Gianni Ciofani
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025, Pontedera, Italy
| |
Collapse
|
5
|
Ambattu LA, Gelmi A, Yeo LY. Short-Duration High Frequency MegaHertz-Order Nanomechanostimulation Drives Early and Persistent Osteogenic Differentiation in Mesenchymal Stem Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106823. [PMID: 35023629 DOI: 10.1002/smll.202106823] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/12/2021] [Indexed: 06/14/2023]
Abstract
Stem cell fate can be directed through the application of various external physical stimuli, enabling a controlled approach to targeted differentiation. Studies involving the use of dynamic mechanical cues driven by vibrational excitation to date have, however, been limited to low frequency (Hz to kHz) forcing over extended durations (typically continuous treatment for >7 days). Contrary to previous assertions that there is little benefit in applying frequencies beyond 1 kHz, we show here that high frequency MHz-order mechanostimulation in the form of nanoscale amplitude surface reflected bulk waves are capable of triggering differentiation of human mesenchymal stem cells from various donor sources toward an osteoblast lineage, with early, short time stimuli inducing long-term osteogenic commitment. More specifically, rapid treatments (10 min daily over 5 days) of the high frequency (10 MHz) mechanostimulation are shown to trigger significant upregulation in early osteogenic markers (RUNX2, COL1A1) and sustained increase in late markers (osteocalcin, osteopontin) through a mechanistic pathway involving piezo channel activation and Rho-associated protein kinase signaling. Given the miniaturizability and low cost of the devices, the possibility for upscaling the platform toward practical bioreactors, to address a pressing need for more efficient stem cell differentiation technologies in the pursuit of translatable regenerative medicine strategies, is ensivaged.
Collapse
Affiliation(s)
- Lizebona August Ambattu
- Micro/Nanophysics Research Laboratory, School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Amy Gelmi
- School of Science, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Leslie Y Yeo
- Micro/Nanophysics Research Laboratory, School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| |
Collapse
|
6
|
Simakou T, Freeburn R, Henriquez FL. Gene expression during THP-1 differentiation is influenced by vitamin D3 and not vibrational mechanostimulation. PeerJ 2021; 9:e11773. [PMID: 34316406 PMCID: PMC8286059 DOI: 10.7717/peerj.11773] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/23/2021] [Indexed: 11/20/2022] Open
Abstract
Background In injury or infection, monocytes migrate into the affected tissues from circulation and differentiate into macrophages which are subsequently involved in the inflammatory responses. Macrophage differentiation and activation have been studied in response to multiple chemokines and cytokines. However, mechanical, and physical stimuli can also influence macrophage differentiation, activation, cytokine production, and phagocytic activity. Methods In this study the macrophage differentiation from THP-1 monocytes was assessed upon the stimulation with 1,25-dihydroxyvitamin D3 and 1,000 Hz vibrations, using qPCR for quantification of transcript expression. Vitamin D binds the vitamin D receptor (VDR) and subsequently modulates the expression of a variety of genes in monocytes. The effects of the 1,000 Hz vibrational stimulation, and the combined treatment of vitamin D3 and 1000 Hz vibrations were unknown. The differentiation of macrophages was assessed by looking at transcription of macrophage markers (e.g., CD14, CD36), antigen presenting molecules (e.g., HLA-DRA), transcription factors (e.g., LEF-1, TCF7L2), and mechanosensors (e.g., PIEZO1 and PKD2). Results The results showed that vitamin D3 induced THP-1 macrophage differentiation, which was characterized by upregulation of CD14 and CD36, downregulation of HLA-DRA, upregulation of the PKD2 (TRPP2), and an inverse relationship between TCF7L2 and LEF-1, which were upregulated and downregulated respectively. The 1,000 Hz vibrations were sensed from the cells which upregulated PIEZO1 and TCF3, but they did not induce expression of genes that would indicate macrophage differentiation. The mRNA transcription profile in the cells stimulated with the combined treatment was comparable to that of the cells stimulated by the vitamin only. The 1,000 Hz vibrations slightly weakened the effect of the vitamin for the regulation of CD36 and HLA-DMB in the suspension cells, but without causing changes in the regulation patterns. The only exception was the upregulation of TCF3 in the suspension cells, which was influenced by the vibrations. In the adherent cells, the vitamin D3 cancelled the upregulating effect of the 1,000 Hz vibrations and downregulated TCF3. The vitamin also cancelled the upregulation of PIEZO1 gene by the 1,000 Hz vibrations in the combined treatment. Conclusion The mechanical stimulation with 1,000 Hz vibrations resulted in upregulation of PIEZO1 in THP-1 cells, but it did not affect the differentiation process which was investigated in this study. Vitamin D3 induced THP-1 macrophage differentiation and could potentially influence M2 polarization as observed by upregulation of CD36 and downregulation of HLA-DRA. In addition, in THP-1 cells undergoing the combined stimulation, the gene expression patterns were influenced by vitamin D3, which also ablated the effect of the mechanical stimulus on PIEZO1 upregulation.
Collapse
Affiliation(s)
- Theodoros Simakou
- School of Health and Life Sciences, University of West of Scotland, Paisley, United Kingdom.,Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Robin Freeburn
- School of Health and Life Sciences, University of West of Scotland, Paisley, United Kingdom
| | - Fiona L Henriquez
- School of Health and Life Sciences, University of West of Scotland, Paisley, United Kingdom
| |
Collapse
|
7
|
Abstract
Mechanotransduction, a conversion of mechanical forces into biochemical signals, is essential for human development and physiology. It is observable at all levels ranging from the whole body, organs, tissues, organelles down to molecules. Dysregulation results in various diseases such as muscular dystrophies, hypertension-induced vascular and cardiac hypertrophy, altered bone repair and cell deaths. Since mechanotransduction occurs at nanoscale, nanosciences and applied nanotechnology are powerful for studying molecular mechanisms and pathways of mechanotransduction. Atomic force microscopy, magnetic and optical tweezers are commonly used for force measurement and manipulation at the single molecular level. Force is also used to control cells, topographically and mechanically by specific types of nano materials for tissue engineering. Mechanotransduction research will become increasingly important as a sub-discipline under nanomedicine. Here we review nanotechnology approaches using force measurements and manipulations at the molecular and cellular levels during mechanotransduction, which has been increasingly play important role in the advancement of nanomedicine.
Collapse
Affiliation(s)
- Xiaowei Liu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Fumihiko Nakamura
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
8
|
Abstract
Bone is one of the most highly adaptive tissues in the body, possessing the capability to alter its morphology and function in response to stimuli in its surrounding environment. The ability of bone to sense and convert external mechanical stimuli into a biochemical response, which ultimately alters the phenotype and function of the cell, is described as mechanotransduction. This review aims to describe the fundamental physiology and biomechanisms that occur to induce osteogenic adaptation of a cell following application of a physical stimulus. Considerable developments have been made in recent years in our understanding of how cells orchestrate this complex interplay of processes, and have become the focus of research in osteogenesis. We will discuss current areas of preclinical and clinical research exploring the harnessing of mechanotransductive properties of cells and applying them therapeutically, both in the context of fracture healing and de novo bone formation in situations such as nonunion. Cite this article: Bone Joint Res 2019;9(1):1–14.
Collapse
|
9
|
Mojena-Medina D, Martínez-Hernández M, de la Fuente M, García-Isla G, Posada J, Jorcano JL, Acedo P. Design, Implementation, and Validation of a Piezoelectric Device to Study the Effects of Dynamic Mechanical Stimulation on Cell Proliferation, Migration and Morphology. SENSORS 2020; 20:s20072155. [PMID: 32290334 PMCID: PMC7180771 DOI: 10.3390/s20072155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/04/2020] [Accepted: 04/07/2020] [Indexed: 12/14/2022]
Abstract
Cell functions and behavior are regulated not only by soluble (biochemical) signals but also by biophysical and mechanical cues within the cells' microenvironment. Thanks to the dynamical and complex cell machinery, cells are genuine and effective mechanotransducers translating mechanical stimuli into biochemical signals, which eventually alter multiple aspects of their own homeostasis. Given the dominant and classic biochemical-based views to explain biological processes, it could be challenging to elucidate the key role that mechanical parameters such as vibration, frequency, and force play in biology. Gaining a better understanding of how mechanical stimuli (and their mechanical parameters associated) affect biological outcomes relies partially on the availability of experimental tools that may allow researchers to alter mechanically the cell's microenvironment and observe cell responses. Here, we introduce a new device to study in vitro responses of cells to dynamic mechanical stimulation using a piezoelectric membrane. Using this device, we can flexibly change the parameters of the dynamic mechanical stimulation (frequency, amplitude, and duration of the stimuli), which increases the possibility to study the cell behavior under different mechanical excitations. We report on the design and implementation of such device and the characterization of its dynamic mechanical properties. By using this device, we have performed a preliminary study on the effect of dynamic mechanical stimulation in a cell monolayer of an epidermal cell line (HaCaT) studying the effects of 1 Hz and 80 Hz excitation frequencies (in the dynamic stimuli) on HaCaT cell migration, proliferation, and morphology. Our preliminary results indicate that the response of HaCaT is dependent on the frequency of stimulation. The device is economic, easily replicated in other laboratories and can support research for a better understanding of mechanisms mediating cellular mechanotransduction.
Collapse
Affiliation(s)
- Dahiana Mojena-Medina
- Department of Electronics Technology, Universidad Carlos III de Madrid, 28911 Madrid, Spain; (J.P.); (P.A.)
- Correspondence:
| | - Marina Martínez-Hernández
- Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid, 28911 Madrid, Spain; (M.M.-H.); (M.d.l.F.); (G.G.-I.); (J.L.J.)
| | - Miguel de la Fuente
- Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid, 28911 Madrid, Spain; (M.M.-H.); (M.d.l.F.); (G.G.-I.); (J.L.J.)
| | - Guadalupe García-Isla
- Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid, 28911 Madrid, Spain; (M.M.-H.); (M.d.l.F.); (G.G.-I.); (J.L.J.)
| | - Julio Posada
- Department of Electronics Technology, Universidad Carlos III de Madrid, 28911 Madrid, Spain; (J.P.); (P.A.)
| | - José Luis Jorcano
- Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid, 28911 Madrid, Spain; (M.M.-H.); (M.d.l.F.); (G.G.-I.); (J.L.J.)
| | - Pablo Acedo
- Department of Electronics Technology, Universidad Carlos III de Madrid, 28911 Madrid, Spain; (J.P.); (P.A.)
| |
Collapse
|
10
|
Heng W, Bhavsar M, Han Z, Barker JH. Effects of Electrical Stimulation on Stem Cells. Curr Stem Cell Res Ther 2020; 15:441-448. [PMID: 31995020 DOI: 10.2174/1574888x15666200129154747] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/08/2019] [Accepted: 11/14/2019] [Indexed: 11/22/2022]
Abstract
Recent interest in developing new regenerative medicine- and tissue engineering-based treatments has motivated researchers to develop strategies for manipulating stem cells to optimize outcomes in these potentially, game-changing treatments. Cells communicate with each other, and with their surrounding tissues and organs via electrochemical signals. These signals originate from ions passing back and forth through cell membranes and play a key role in regulating cell function during embryonic development, healing, and regeneration. To study the effects of electrical signals on cell function, investigators have exposed cells to exogenous electrical stimulation and have been able to increase, decrease and entirely block cell proliferation, differentiation, migration, alignment, and adherence to scaffold materials. In this review, we discuss research focused on the use of electrical stimulation to manipulate stem cell function with a focus on its incorporation in tissue engineering-based treatments.
Collapse
Affiliation(s)
- Wang Heng
- Frankfurt Initiative for Regenerative Medicine, Experimental Trauma & Orthopedic Surgery, J.W. Goethe University, Frankfurt, Germany
| | - Mit Bhavsar
- Frankfurt Initiative for Regenerative Medicine, Experimental Trauma & Orthopedic Surgery, J.W. Goethe University, Frankfurt, Germany
| | - Zhihua Han
- Frankfurt Initiative for Regenerative Medicine, Experimental Trauma & Orthopedic Surgery, J.W. Goethe University, Frankfurt, Germany
| | - John H Barker
- Frankfurt Initiative for Regenerative Medicine, Experimental Trauma & Orthopedic Surgery, J.W. Goethe University, Frankfurt, Germany
| |
Collapse
|
11
|
Wang W, Li J, Liu H, Ge S. Advancing Versatile Ferroelectric Materials Toward Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 8:2003074. [PMID: 33437585 PMCID: PMC7788502 DOI: 10.1002/advs.202003074] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/09/2020] [Indexed: 05/08/2023]
Abstract
Ferroelectric materials (FEMs), possessing piezoelectric, pyroelectric, inverse piezoelectric, nonlinear optic, ferroelectric-photovoltaic, and many other properties, are attracting increasing attention in the field of biomedicine in recent years. Because of their versatile ability of interacting with force, heat, electricity, and light to generate electrical, mechanical, and optical signals, FEMs are demonstrating their unique advantages for biosensing, acoustics tweezer, bioimaging, therapeutics, tissue engineering, as well as stimulating biological functions. This review summarizes the current-available FEMs and their state-of-the-art fabrication techniques, as well as provides an overview of FEMs-based applications in the field of biomedicine. Challenges and prospects for future development of FEMs for biomedical applications are also outlined.
Collapse
Affiliation(s)
- Wenjun Wang
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of MedicineShandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue RegenerationJinan250012China
| | - Jianhua Li
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of MedicineShandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue RegenerationJinan250012China
| | - Hong Liu
- State Key Laboratory of Crystal MaterialsShandong UniversityJinan250013China
| | - Shaohua Ge
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of MedicineShandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue RegenerationJinan250012China
| |
Collapse
|
12
|
Robertson SN, Childs PG, Akinbobola A, Henriquez FL, Ramage G, Reid S, Mackay WG, Williams C. Reduction of Pseudomonas aeruginosa biofilm formation through the application of nanoscale vibration. J Biosci Bioeng 2019; 129:379-386. [PMID: 31623950 DOI: 10.1016/j.jbiosc.2019.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 08/13/2019] [Accepted: 09/06/2019] [Indexed: 01/30/2023]
Abstract
Bacterial biofilms pose a significant burden in both healthcare and industrial environments. With the limited effectiveness of current biofilm control strategies, novel or adjunctive methods in biofilm control are being actively pursued. Reported here, is the first evidence of the application of nanovibrational stimulation (nanokicking) to reduce the biofilm formation of Pseudomonas aeruginosa. Nanoscale vertical displacements (approximately 60 nm) were imposed on P. aeruginosa cultures, with a significant reduction in biomass formation observed at frequencies between 200 and 4000 Hz at 24 h. The optimal reduction of biofilm formation was observed at 1 kHz, with changes in the physical morphology of the biofilms. Scanning electron microscope imaging of control and biofilms formed under nanovibrational stimulation gave indication of a reduction in extracellular matrix (ECM). Quantification of the carbohydrate and protein components of the ECM was performed and showed a significant reduction at 24 h at 1 kHz frequency. To model the forces being exerted by nanovibrational stimulation, laser interferometry was performed to measure the amplitudes produced across the Petri dish surfaces. Estimated peak forces on each cell, associated with the nanovibrational stimulation technique, were calculated to be in the order of 10 pN during initial biofilm formation. This represents a potential method of controlling microbial biofilm formation in a number of important settings in industry and medical related processes.
Collapse
Affiliation(s)
- Shaun N Robertson
- Institute of Healthcare, Policy and Practice, School of Health & Life Sciences, University of the West of Scotland, High Street, Paisley PA1 2BE, Scotland, UK; SUPA, Institute of Thin Films, Sensors and Imaging, School of Engineering and Computing, University of the West of Scotland, High Street, Paisley PA1 2BE, Scotland, UK; SUPA, Department of Biomedical Engineering, University of Strathclyde, 40 George Street, Glasgow G1 1QE, Scotland, UK
| | - Peter G Childs
- SUPA, Institute of Thin Films, Sensors and Imaging, School of Engineering and Computing, University of the West of Scotland, High Street, Paisley PA1 2BE, Scotland, UK; Centre for the Cellular Microenvironments (CeMi), School of Engineering, University of Glasgow, G12 8LT, Scotland, UK
| | - Ayorinde Akinbobola
- Institute of Healthcare, Policy and Practice, School of Health & Life Sciences, University of the West of Scotland, High Street, Paisley PA1 2BE, Scotland, UK
| | - Fiona L Henriquez
- Institute of Biomedical and Environmental Health Research, School of Health & Life Sciences, University of the West of Scotland, High Street, Paisley PA1 2BE, Scotland, UK
| | - Gordon Ramage
- School of Medicine, Dentistry and Nursing, MVLS, University of Glasgow, 378 Sauchiehall St, Glasgow G2 3JZ, Scotland, UK
| | - Stuart Reid
- SUPA, Institute of Thin Films, Sensors and Imaging, School of Engineering and Computing, University of the West of Scotland, High Street, Paisley PA1 2BE, Scotland, UK; SUPA, Department of Biomedical Engineering, University of Strathclyde, 40 George Street, Glasgow G1 1QE, Scotland, UK
| | - William G Mackay
- Institute of Healthcare, Policy and Practice, School of Health & Life Sciences, University of the West of Scotland, High Street, Paisley PA1 2BE, Scotland, UK.
| | - Craig Williams
- Institute of Healthcare, Policy and Practice, School of Health & Life Sciences, University of the West of Scotland, High Street, Paisley PA1 2BE, Scotland, UK
| |
Collapse
|
13
|
Campsie P, Childs PG, Robertson SN, Cameron K, Hough J, Salmeron-Sanchez M, Tsimbouri PM, Vichare P, Dalby MJ, Reid S. Design, construction and characterisation of a novel nanovibrational bioreactor and cultureware for osteogenesis. Sci Rep 2019; 9:12944. [PMID: 31506561 PMCID: PMC6736847 DOI: 10.1038/s41598-019-49422-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 08/23/2019] [Indexed: 11/17/2022] Open
Abstract
In regenerative medicine, techniques which control stem cell lineage commitment are a rapidly expanding field of interest. Recently, nanoscale mechanical stimulation of mesenchymal stem cells (MSCs) has been shown to activate mechanotransduction pathways stimulating osteogenesis in 2D and 3D culture. This has the potential to revolutionise bone graft procedures by creating cellular graft material from autologous or allogeneic sources of MSCs without using chemical induction. With the increased interest in mechanical stimulation of cells and huge potential for clinical use, it is apparent that researchers and clinicians require a scalable bioreactor system that provides consistently reproducible results with a simple turnkey approach. A novel bioreactor system is presented that consists of: a bioreactor vibration plate, calibrated and optimised for nanometre vibrations at 1 kHz, a power supply unit, which supplies a 1 kHz sine wave signal necessary to generate approximately 30 nm of vibration amplitude, and custom 6-well cultureware with toroidal shaped magnets incorporated in the base of each well for conformal attachment to the bioreactor’s magnetic vibration plate. The cultureware and vibration plate were designed using finite element analysis to determine the modal and harmonic responses, and validated by interferometric measurement. This helps ensure that the vibration plate and cultureware, and thus collagen and MSCs, all move as a rigid body, avoiding large deformations close to the resonant frequency of the vibration plate and vibration damping beyond the resonance. Assessment of osteogenic protein expression was performed to confirm differentiation of MSCs after initial biological experiments with the system, as well as atomic force microscopy of the 3D gel constructs during vibrational stimulation to verify that strain hardening of the gel did not occur. This shows that cell differentiation was the result of the nanovibrational stimulation provided by the bioreactor alone, and that other cell differentiating factors, such as stiffening of the collagen gel, did not contribute.
Collapse
Affiliation(s)
- Paul Campsie
- SUPA Department of Biomedical Engineering, University of Strathclyde, Glasgow, G1 1QE, UK
| | - Peter G Childs
- Centre for the Cellular Microenvironment, Division of Biomedical Engineering, School of Engineering, College of Science and Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Shaun N Robertson
- SUPA Department of Biomedical Engineering, University of Strathclyde, Glasgow, G1 1QE, UK
| | - Kenny Cameron
- School of Computing, Engineering and Physical Sciences, University of the West of Scotland, Paisley, PA1 2BE, UK
| | - James Hough
- SUPA Institute for Gravitational Research, School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Manuel Salmeron-Sanchez
- Centre for the Cellular Microenvironment, Division of Biomedical Engineering, School of Engineering, College of Science and Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Penelope M Tsimbouri
- Centre for the Cellular Microenvironment, Institute for Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Parag Vichare
- School of Computing, Engineering and Physical Sciences, University of the West of Scotland, Paisley, PA1 2BE, UK
| | - Matthew J Dalby
- Centre for the Cellular Microenvironment, Institute for Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Stuart Reid
- SUPA Department of Biomedical Engineering, University of Strathclyde, Glasgow, G1 1QE, UK.
| |
Collapse
|
14
|
Halonen HT, Ihalainen TO, Hyväri L, Miettinen S, Hyttinen JAK. Cell adhesion and culture medium dependent changes in the high frequency mechanical vibration induced proliferation, osteogenesis, and intracellular organization of human adipose stem cells. J Mech Behav Biomed Mater 2019; 101:103419. [PMID: 31518945 DOI: 10.1016/j.jmbbm.2019.103419] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 08/05/2019] [Accepted: 09/03/2019] [Indexed: 01/21/2023]
Abstract
High frequency (HF) mechanical vibration appears beneficial for in vitro osteogenesis of mesenchymal stem cells (MSCs). However, the current mechanobiological understanding of the method remains insufficient. We designed high-throughput stimulators to apply horizontal or vertical high magnitude HF (HMHF; 2.5 Gpeak, 100 Hz) vibration on human adipose stem cells (hASCs). We analyzed proliferation, alkaline phosphatase (ALP) activity, mineralization, and effects on the actin cytoskeleton and nuclei using immunocytochemical stainings. Proliferation was studied on a standard tissue culture plastic (sTCP) surface and on an adhesion supporting tissue culture plastic (asTCP) surface in basal (BM) and osteogenic (OM) culture medium conditions. We discovered that the improved cell adhesion was a prerequisite for vibration induced changes in the proliferation of hASCs. Similarly, the adhesion supporting surface enabled us to observe vibration initiated ALP activity and mineralization changes in OM condition. The horizontal vibration increased ALP activity, while vertical stimulation reduced ALP activity. However, mineralization was not enhanced by the HMHF vibration. We performed image-based analysis of actin and nuclei to obtain novel data of the intracellular-level responses to HF vibration in BM and OM conditions. Our quantitative results suggest that actin organizations were culture medium and stimulation direction dependent. Both stimulation directions decreased OM induced changes in nuclear size and elongation. Consequently, our findings of the nuclear deformations provide supportive evidence for the involvement of the nuclei in the mechanocoupling of HF vibration. Taken together, the results of this study enhanced the knowledge of the intracellular mechanisms of HF vibration induced osteogenesis of MSCs.
Collapse
Affiliation(s)
- H T Halonen
- Computational Biophysics and Imaging Group, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520, Tampere, Finland.
| | - T O Ihalainen
- Cellular Biophysics Group, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520, Tampere, Finland.
| | - L Hyväri
- Adult Stem Cell Group, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520, Tampere, Finland; Research, Development and Innovation Centre, Tampere University Hospital, Biokatu 6, 33520, Tampere, Finland.
| | - S Miettinen
- Adult Stem Cell Group, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520, Tampere, Finland; Research, Development and Innovation Centre, Tampere University Hospital, Biokatu 6, 33520, Tampere, Finland.
| | - J A K Hyttinen
- Computational Biophysics and Imaging Group, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520, Tampere, Finland.
| |
Collapse
|
15
|
Abstract
Non-union of bone following fracture is an orthopaedic condition with a high morbidity and clinical burden. Despite its estimated global prevalence of nine million annually, the limit of bone regeneration therapy still results in patients living with pain, a reduced quality of life and associated psychological, social and financial repercussions. This review provides an overview of the current epidemiological and aetiological data, and highlights where the clinical challenges in treating non-union lie. Current treatment strategies are discussed as well as promising future research foci. Development in biotechnologies to treat non-union provides exciting scope for more effective treatment for this debilitating condition.
Collapse
Affiliation(s)
- S K Stewart
- Department of Bioengineering, Imperial College London, United Kingdom
| |
Collapse
|
16
|
Amaral DL, Zanette RS, Almeida CG, Almeida LB, Oliveira LFD, Marcomini RF, Nogueira BV, Santos MO, Brandão HM, Mc Maranduba C, Munk M. In vitro evaluation of barium titanate nanoparticle/alginate 3D scaffold for osteogenic human stem cell differentiation. ACTA ACUST UNITED AC 2019; 14:035011. [PMID: 30802890 DOI: 10.1088/1748-605x/ab0a52] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nanomaterials can mimic properties of extracellular matrix molecules, promising great potential for scaffold composition in tissue engineering. In the present study, we investigated whether barium titanate nanoparticles (BT NP) combined with alginate polymer would provide a new cytocompatible three-dimensional (3D) scaffold to induce osteogenic stem cell differentiation. In vitro cytocompatibility and osteogenic differentiation potential were investigated using human mesenchymal stem cells (MSC). Firstly, we studied the cell viability and oxidative stress by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) thiazolyl blue tetrazolium bromide (MTT) and superoxide dismutase (SOD) assays. Overall, neither pure BT NP or BT NP/alginate 3D scaffold induced cytotoxicity. The scanning electron and atomic force microscopy revealed that BT NP/alginate 3D scaffold produced exhibited highly interconnected pores and surface nanotopography that were favorable for MSC differentiation. Von Kossa staining showed mineralization nodules and MSCs morphology changed from spindle to cuboid shape after 21 d. Finally, BMP-2 and ALP mRNA were significantly upregulated on cells grown into the BT NP/alginate 3D scaffold. Thus, the BT NP/alginate 3D scaffold showed an osteogenic differentiation induction potential, without the addition of osteogenic supplements. These results indicate that the BT NP/alginate 3D scaffold provides a cytocompatible and bioactive microenvironment for osteogenic human MSC differentiation.
Collapse
Affiliation(s)
- Danielle Las Amaral
- Department of Biology, Federal University of Juiz de Fora, 36036-330, Juiz de Fora, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Robertson SN, Campsie P, Childs PG, Madsen F, Donnelly H, Henriquez FL, Mackay WG, Salmerón-Sánchez M, Tsimbouri MP, Williams C, Dalby MJ, Reid S. Control of cell behaviour through nanovibrational stimulation: nanokicking. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2018; 376:20170290. [PMID: 29661978 PMCID: PMC5915650 DOI: 10.1098/rsta.2017.0290] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/07/2018] [Indexed: 05/05/2023]
Abstract
Mechanical signals are ubiquitous in our everyday life and the process of converting these mechanical signals into a biological signalling response is known as mechanotransduction. Our understanding of mechanotransduction, and its contribution to vital cellular responses, is a rapidly expanding field of research involving complex processes that are still not clearly understood. The use of mechanical vibration as a stimulus of mechanotransduction, including variation of frequency and amplitude, allows an alternative method to control specific cell behaviour without chemical stimulation (e.g. growth factors). Chemical-independent control of cell behaviour could be highly advantageous for fields including drug discovery and clinical tissue engineering. In this review, a novel technique is described based on nanoscale sinusoidal vibration. Using finite-element analysis in conjunction with laser interferometry, techniques that are used within the field of gravitational wave detection, optimization of apparatus design and calibration of vibration application have been performed. We further discuss the application of nanovibrational stimulation, or 'nanokicking', to eukaryotic and prokaryotic cells including the differentiation of mesenchymal stem cells towards an osteoblast cell lineage. Mechanotransductive mechanisms are discussed including mediation through the Rho-A kinase signalling pathway. Optimization of this technique was first performed in two-dimensional culture using a simple vibration platform with an optimal frequency and amplitude of 1 kHz and 22 nm. A novel bioreactor was developed to scale up cell production, with recent research demonstrating that mesenchymal stem cell differentiation can be efficiently triggered in soft gel constructs. This important step provides first evidence that clinically relevant (three-dimensional) volumes of osteoblasts can be produced for the purpose of bone grafting, without complex scaffolds and/or chemical induction. Initial findings have shown that nanovibrational stimulation can also reduce biofilm formation in a number of clinically relevant bacteria. This demonstrates additional utility of the bioreactor to investigate mechanotransduction in other fields of research.This article is part of a discussion meeting issue 'The promises of gravitational-wave astronomy'.
Collapse
Affiliation(s)
- Shaun N Robertson
- SUPA, Department of Biomedical Engineering, University of Strathclyde, Graham Hills, 50 George Street, Glasgow G1 1QE, UK
| | - Paul Campsie
- SUPA, Department of Biomedical Engineering, University of Strathclyde, Graham Hills, 50 George Street, Glasgow G1 1QE, UK
| | - Peter G Childs
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK
| | - Fiona Madsen
- Institute of Healthcare, Policy and Practice, School of Health, Nursing and Midwifery, University of the West of Scotland, Paisley PA1 2BE, UK
| | - Hannah Donnelly
- Centre for Cell Engineering, Institute for Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Fiona L Henriquez
- Institute of Biomedical and Environmental Health Research, School of Science and Sport, University of the West of Scotland, Paisley PA1 2BE, UK
| | - William G Mackay
- Institute of Healthcare, Policy and Practice, School of Health, Nursing and Midwifery, University of the West of Scotland, Paisley PA1 2BE, UK
| | - Manuel Salmerón-Sánchez
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK
| | - Monica P Tsimbouri
- Centre for Cell Engineering, Institute for Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Craig Williams
- Institute of Healthcare, Policy and Practice, School of Health, Nursing and Midwifery, University of the West of Scotland, Paisley PA1 2BE, UK
| | - Matthew J Dalby
- Centre for Cell Engineering, Institute for Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Stuart Reid
- SUPA, Department of Biomedical Engineering, University of Strathclyde, Graham Hills, 50 George Street, Glasgow G1 1QE, UK
| |
Collapse
|
18
|
Stimulation of 3D osteogenesis by mesenchymal stem cells using a nanovibrational bioreactor. Nat Biomed Eng 2017; 1:758-770. [DOI: 10.1038/s41551-017-0127-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 07/31/2017] [Indexed: 12/18/2022]
|
19
|
Mechiche Alami S, Rammal H, Boulagnon-Rombi C, Velard F, Lazar F, Drevet R, Laurent Maquin D, Gangloff S, Hemmerlé J, Voegel J, Francius G, Schaaf P, Boulmedais F, Kerdjoudj H. Harnessing Wharton's jelly stem cell differentiation into bone-like nodule on calcium phosphate substrate without osteoinductive factors. Acta Biomater 2017; 49:575-589. [PMID: 27888100 DOI: 10.1016/j.actbio.2016.11.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 11/11/2016] [Accepted: 11/17/2016] [Indexed: 01/05/2023]
Abstract
An important aim of bone regenerative medicine is to design biomaterials with controlled chemical and topographical features to guide stem cell fate towards osteoblasts without addition of specific osteogenic factors. Herein, we find that sprayed bioactive and biocompatible calcium phosphate substrates (CaP) with controlled topography induce, in a well-orchestrated manner, Wharton's jelly stem cells (WJ-SCs) differentiation into osteoblastic lineage without any osteogenic supplements. The resulting WJ-SCs commitment exhibits features of native bone, through the formation of three-dimensional bone-like nodule with osteocyte-like cells embedded into a mineralized type I collagen. To our knowledge, these results present the first observation of a whole differentiation process from stem cell to osteocytes-like on a synthetic material. This suggests a great potential of sprayed CaP and WJ-SCs in bone tissue engineering. These unique features may facilitate the transition from bench to bedside and the development of successful engineered bone. STATEMENT OF SIGNIFICANCE Designing materials to direct stem cell fate has a relevant impact on stem cell biology and provides insights facilitating their clinical application in regenerative medicine. Inspired by natural bone compositions, a friendly automated spray-assisted system was used to build calcium phosphate substrate (CaP). Sprayed biomimetic solutions using mild conditions led to the formation of CaP with controlled physical properties, good bioactivity and biocompatibility. Herein, we show that via optimization of physical properties, CaP substrate induce osteogenic differentiation of Wharton's jelly stem cells (WJ-SCs) without adding osteogenic supplement factors. These results suggest a great potential of sprayed CaP and WJ-SCs in bone tissue engineering and may facilitate the transition from bench to beside and the development of clinically successful engineered bone.
Collapse
|
20
|
Baskan O, Mese G, Ozcivici E. Low-intensity vibrations normalize adipogenesis-induced morphological and molecular changes of adult mesenchymal stem cells. Proc Inst Mech Eng H 2017; 231:160-168. [PMID: 28068880 DOI: 10.1177/0954411916687338] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bone marrow mesenchymal stem cells that are committed to adipogenesis were exposed daily to high-frequency low-intensity mechanical vibrations to understand molecular, morphological and ultrastructural adaptations to mechanical signals during adipogenesis. D1-ORL-UVA mouse bone marrow mesenchymal stem cells were cultured with either growth or adipogenic medium for 1 week. Low-intensity vibration signals (15 min/day, 90 Hz, 0.1 g) were applied to one group of adipogenic cells, while the other adipogenic group served as a sham control. Cellular viability, lipid accumulation, ultrastructure and morphology were determined with MTT, Oil-Red-O staining, phalloidin staining and atomic force microscopy. Semiquantitative reverse transcription polymerase chain reaction showed expression profile of the genes responsible for adipogenesis and ultrastructure of cells. Low-intensity vibration signals increased viability of the cells in adipogenic culture that was reduced significantly compared to quiescent controls. Low-intensity vibration signals also normalized the effects of adipogenic condition on cell morphology, including area, perimeter, circularization and actin cytoskeleton. Furthermore, low-intensity vibration signals reduced the expression of some adipogenic markers significantly. Mesenchymal stem cells are sensitive and responsive to mechanical loads, but debilitating conditions such as aging or obesity may steer mesenchymal stem cells toward adipogenesis. Here, daily application of low-intensity vibration signals partially neutralized the effects of adipogenic induction on mesenchymal stem cells, suggesting that these signals may provide an alternative and/or complementary option to reduce fat deposition.
Collapse
Affiliation(s)
- Oznur Baskan
- 1 Department of Bioengineering, Izmir Institute of Technology, Izmir, Turkey
| | - Gulistan Mese
- 2 Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkey
| | - Engin Ozcivici
- 1 Department of Bioengineering, Izmir Institute of Technology, Izmir, Turkey
| |
Collapse
|
21
|
Childs PG, Boyle CA, Pemberton GD, Nikukar H, Curtis AS, Henriquez FL, Dalby MJ, Reid S. Use of nanoscale mechanical stimulation for control and manipulation of cell behaviour. Acta Biomater 2016; 34:159-168. [PMID: 26612418 DOI: 10.1016/j.actbio.2015.11.045] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 09/25/2015] [Accepted: 11/19/2015] [Indexed: 02/06/2023]
Abstract
The ability to control cell behaviour, cell fate and simulate reliable tissue models in vitro remains a significant challenge yet is crucial for various applications of high throughput screening e.g. drug discovery. Mechanotransduction (the ability of cells to convert mechanical forces in their environment to biochemical signalling) represents an alternative mechanism to attain this control with such studies developing techniques to reproducibly control the mechanical environment in techniques which have potential to be scaled. In this review, the use of techniques such as finite element modelling and precision interferometric measurement are examined to provide context for a novel technique based on nanoscale vibration, also known as "nanokicking". Studies have shown this stimulus to alter cellular responses in both endothelial and mesenchymal stem cells (MSCs), particularly in increased proliferation rate and induced osteogenesis respectively. Endothelial cell lines were exposed to nanoscale vibration amplitudes across a frequency range of 1-100 Hz, and MSCs primarily at 1 kHz. This technique provides significant potential benefits over existing technologies, as cellular responses can be initiated without the use of expensive engineering techniques and/or chemical induction factors. Due to the reproducible and scalable nature of the apparatus it is conceivable that nanokicking could be used for controlling cell behaviour within a wide array of high throughput procedures in the research environment, within drug discovery, and for clinical/therapeutic applications. STATEMENT OF SIGNIFICANCE The results discussed within this article summarise the potential benefits of using nanoscale vibration protocols for controlling cell behaviour. There is a significant need for reliable tissue models within the clinical and pharma industries, and the control of cell behaviour and stem cell differentiation would be highly beneficial. The full potential of this method of controlling cell behaviour has not yet been realised.
Collapse
|
22
|
Tsimbouri PM. Adult Stem Cell Responses to Nanostimuli. J Funct Biomater 2015; 6:598-622. [PMID: 26193326 PMCID: PMC4598673 DOI: 10.3390/jfb6030598] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 06/29/2015] [Accepted: 07/08/2015] [Indexed: 12/31/2022] Open
Abstract
Adult or mesenchymal stem cells (MSCs) have been found in different tissues in the body, residing in stem cell microenvironments called "stem cell niches". They play different roles but their main activity is to maintain tissue homeostasis and repair throughout the lifetime of an organism. Their ability to differentiate into different cell types makes them an ideal tool to study tissue development and to use them in cell-based therapies. This differentiation process is subject to both internal and external forces at the nanoscale level and this response of stem cells to nanostimuli is the focus of this review.
Collapse
Affiliation(s)
- Penelope M Tsimbouri
- Centre for Cell Engineering, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|