1
|
Zhang J, Jin N, Ji N, Chen X, Shen Y, Pan T, Li L, Li S, Zhang W, Huo F. The Encounter of Biomolecules in Metal-Organic Framework Micro/Nano Reactors. ACS APPLIED MATERIALS & INTERFACES 2021; 13:52215-52233. [PMID: 34369162 DOI: 10.1021/acsami.1c09660] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In nature, biochemical reactions often take place in confined spaces, as typically exemplified by cells. As numerous cellular reactors can be integrated to maintain the living system, researchers have made constant efforts to construct cell-like structures for achieving similar transformations in vitro. Micro/nano reactors engineered by polymers and colloids are becoming popular and being applied in many fields, especially there has been an increasing trend toward constructing metal-organic framework (MOF) micro/nano reactors with the thriving of MOF nanotechnologies. Because of the uniform pores of MOFs, the transmission of substances can be regulated more accurately. Along with properties of large specific surface area, functional diversity and precise control of the particle size, MOFs are also ideal platforms for building distinct microenvironments for biological substances. Compared with traditional polymersomes and colloidosomes, the unique characteristics of MOFs render them potent micro/nano reactor shell materials, mimicking cells for applications in enzymatic catalysis, sensing, nanotherapy, vaccine, biodegradation, etc. This review highlights recent signs of progress on the design of MOF micro/nano reactors and their applications in biology, discusses the existing problems, and prospects their promising properties for smarter multifunctional applications.
Collapse
Affiliation(s)
- Jing Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P.R. China
| | - Na Jin
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P.R. China
| | - Ning Ji
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P.R. China
| | - Xinyi Chen
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P.R. China
| | - Yu Shen
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P.R. China
| | - Ting Pan
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P.R. China
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P.R. China
| | - Sheng Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P.R. China
| | - Weina Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P.R. China
| | - Fengwei Huo
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P.R. China
| |
Collapse
|
2
|
Pinteala M, Abadie MJM, Rusu RD. Smart Supra- and Macro-Molecular Tools for Biomedical Applications. MATERIALS 2020; 13:ma13153343. [PMID: 32727155 PMCID: PMC7435709 DOI: 10.3390/ma13153343] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 12/28/2022]
Abstract
Stimuli-responsive, “smart” polymeric materials used in the biomedical field function in a bio-mimicking manner by providing a non-linear response to triggers coming from a physiological microenvironment or other external source. They are built based on various chemical, physical, and biological tools that enable pH and/or temperature-stimulated changes in structural or physicochemical attributes, like shape, volume, solubility, supramolecular arrangement, and others. This review touches on some particular developments on the topic of stimuli-sensitive molecular tools for biomedical applications. Design and mechanistic details are provided concerning the smart synthetic instruments that are employed to prepare supra- and macro-molecular architectures with specific responses to external stimuli. Five major themes are approached: (i) temperature- and pH-responsive systems for controlled drug delivery; (ii) glycodynameric hydrogels for drug delivery; (iii) polymeric non-viral vectors for gene delivery; (iv) metallic nanoconjugates for biomedical applications; and, (v) smart organic tools for biomedical imaging.
Collapse
Affiliation(s)
- Mariana Pinteala
- “Petru Poni” Institute of Macromolecular Chemistry, Romanian Academy, Grigore Ghica Voda Alley, 41A, 700487 Iasi, Romania; (M.P.); (M.J.M.A.)
| | - Marc J. M. Abadie
- “Petru Poni” Institute of Macromolecular Chemistry, Romanian Academy, Grigore Ghica Voda Alley, 41A, 700487 Iasi, Romania; (M.P.); (M.J.M.A.)
- Institute Charles Gerhardt Montpellier, Bat 15, CC 1052, University of Montpellier, 34095 Montpellier, France
| | - Radu D. Rusu
- “Petru Poni” Institute of Macromolecular Chemistry, Romanian Academy, Grigore Ghica Voda Alley, 41A, 700487 Iasi, Romania; (M.P.); (M.J.M.A.)
- Correspondence: ; Tel.: +40-232-217454
| |
Collapse
|
3
|
|
4
|
Dermatopathology of Orf Virus (Malaysian Isolates) in Mice Experimentally Inoculated at Different Sites with and without Dexamethasone Administration. J Pathog 2018; 2018:9207576. [PMID: 30155311 PMCID: PMC6093002 DOI: 10.1155/2018/9207576] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 06/20/2018] [Accepted: 07/02/2018] [Indexed: 11/17/2022] Open
Abstract
Orf is a clinical manifestation of parapoxvirus infection often fatal in goats and sheep especially when they are under stress or influenced by unfavorable environment. This study investigated the pathogenicity of two Orf virus isolates (ORFV UPM1/14 and UPM2/14) and host response in mouse model by using different inoculation sites with/without prior exposure to dexamethasone. Treatments with dexamethasone served as an immunosuppressant that may mimic stress situation in affected animals. Groups of five mice were given intradermal injection of 0.2 mL of tissue culture infective dose 50 (TCID50) of UPM1/14 (Group 1) and UPM2/14 (Group 2) at the dorsum (Group 1A; Group 2A), ear pinna (Group 1B; Group 2B), and labial commissure (Group 1C; Group 2C). An inoculum 0.2 mL of UPM1/14 was administered to animals treated with dexamethasone (n=5; 5 mg/kg/day intraperitoneally) and nondexamethasone (n=5) groups at the dorsum, ear pinna, and labial commissure. No significant difference (p>0.05) was observed in the mean lesion scores among the groups of different inoculation sites or between dexamethasone-treated and nontreated groups. However, there was a significant difference (p<0.05) in the mean stratum thickness of affected skin following inoculation with UPM2/14 isolate at the ear pinna and labial commissure. Histopathology examination revealed keratosis, acanthosis, and ballooning degeneration in the skin of affected mice. Orf virus DNA was detected in the skin samples by targeting F1L and B2L virus-specific genes in polymerase chain reaction (PCR) assay. Intradermal inoculation with UPM1/14 or UPM2/14 isolate produced a mild skin lesion in mice, and there was no significant difference in orf disease manifestation despite variation of inoculation sites. Similarly, short-term dexamethasone administration gave no adverse effects on pathogenicity of orf virus isolates.
Collapse
|
5
|
Dendritic peptide bolaamphiphiles for siRNA delivery to primary adipocytes. Biomaterials 2018; 178:458-466. [PMID: 29705001 DOI: 10.1016/j.biomaterials.2018.04.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 04/11/2018] [Accepted: 04/13/2018] [Indexed: 12/31/2022]
Abstract
Obesity is a major risk factor for diabetes, heart disease and other health problems. Adipose tissue plays a central role in the development of obesity and obesity-associated diseases. Gene therapy targeting adipose tissue may provide a promising strategy for obesity treatment. However, nucleic acid delivery to adipose tissue or even cultured adipocytes is challenging due to low delivery efficacy and high toxicity of the current cationic lipid based delivery systems, or monoamphiphiles. Herein, we report using dendritic peptide bolaamphiphiles (bolas) to deliver siRNA to primary adipocytes and hepatocytes. The bola consists of two l-Lysine dendrons connected to a fluorocarbon core through disulfide linkages. The Lysine dendrons are functionalized with l-histidine and l-tryptophan to promote endosomal escape and cellular uptake. The bola exhibited over 70% knockdown of GAPDH gene in both primary adipocytes and hepatocytes. Importantly, different from Lipofectamine that significantly reduced genes involved in lipolysis, lipogenesis, fatty acid oxidation and ketogenesis, the bolas had little to no effect on these genes. These results demonstrate the bola as a promising new vector for clinical and experimental applications for delivery of siRNA to metabolic organs.
Collapse
|
6
|
An anti-oxidant, α-lipoic acid conjugated oleoyl- sn -phosphatidylcholineas a helper lipid in cationic liposomal formulations. Colloids Surf B Biointerfaces 2017; 152:133-142. [DOI: 10.1016/j.colsurfb.2017.01.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 01/07/2017] [Accepted: 01/09/2017] [Indexed: 11/20/2022]
|
7
|
Wang H, Huang Q, Chang H, Xiao J, Cheng Y. Stimuli-responsive dendrimers in drug delivery. Biomater Sci 2017; 4:375-90. [PMID: 26806314 DOI: 10.1039/c5bm00532a] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Dendrimers have shown great promise as carriers in drug delivery due to their unique structures and superior properties. However, the precise control of payload release from a dendrimer matrix still presents a great challenge. Stimuli-responsive dendrimers that release payloads in response to a specific trigger could offer distinct clinical advantages over those dendrimers that release payloads passively. These smart polymers are designed to specifically release their payloads at targeted regions or at constant release profiles for specific therapies. They represent an attractive alternative to targeted dendrimers and enable dendrimer-based therapeutics to be more effective, more convenient, and much safer. The wide range of stimuli, either endogenous (acid, enzyme, and redox potentials) or exogenous (light, ultrasound, and temperature change), allows great flexibility in the design of stimuli-responsive dendrimers. In this review article, we will highlight recent advances and opportunities in the development of stimuli-responsive dendrimers for the treatment of various diseases, with emphasis on cancer. Specifically, the applications of stimuli-responsive dendrimers in drug delivery as well as their mechanisms are intensively reviewed.
Collapse
Affiliation(s)
- Hui Wang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, PR China. and Department of Orthopedic Oncology, Changzheng Hospital, The Second Military Medical University, Shanghai, PR China.
| | - Quan Huang
- Department of Orthopedic Oncology, Changzheng Hospital, The Second Military Medical University, Shanghai, PR China.
| | - Hong Chang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, PR China.
| | - Jianru Xiao
- Department of Orthopedic Oncology, Changzheng Hospital, The Second Military Medical University, Shanghai, PR China.
| | - Yiyun Cheng
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, PR China.
| |
Collapse
|
8
|
Detection of sulfate surface-active substances via fluorescent response using new amphiphilic thiacalix[4]arenes bearing cationic headgroups with Eosin Y dye. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2016.12.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Eldredge AC, Johnson ME, Oldenhuis NJ, Guan Z. Focused Library Approach to Discover Discrete Dipeptide Bolaamphiphiles for siRNA Delivery. Biomacromolecules 2016; 17:3138-3144. [PMID: 27563833 DOI: 10.1021/acs.biomac.6b00635] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
In this study, we report a new dipeptide functionalization strategy for developing new dendritic bolaamphiphile vectors for efficient siRNA transfection. A focused library of dipeptides was constructed using four amino acids: l-arginine, l-histidine, l-lysine, and l-tryptophan. The dipeptides were coupled to two dendritic bolaamphiphile scaffolds that we developed previously, allowing us to quickly access a focused library of discrete vectors with multivalent dendritic dipeptide functionalities. The resulting discrete bolaamphiphiles were screened for siRNA delivery in vitro in HEK-293 and HeLa cells. Bolaamphiphiles functionalized with dipeptides containing Lys or Arg and either His or Trp were the most effective for in vitro siRNA delivery. Necessary cationic charge to ensure efficient siRNA binding are provided by Arg and Lys residues, whereas endosomal escape is provided through pH responsive buffering of His or membrane interactions of Trp. The most effective vectors (F10 HR/RH) exhibited greater than 75% gene silencing in multiple cell lines and exhibited serum stability.
Collapse
Affiliation(s)
- Alexander C Eldredge
- Department of Chemistry, University of California , Irvine, California 92697, United States
| | - Mark E Johnson
- Department of Chemistry, University of California , Irvine, California 92697, United States
| | - Nathan J Oldenhuis
- Department of Chemistry, University of California , Irvine, California 92697, United States
| | - Zhibin Guan
- Department of Chemistry, University of California , Irvine, California 92697, United States
| |
Collapse
|
10
|
Shatsberg Z, Zhang X, Ofek P, Malhotra S, Krivitsky A, Scomparin A, Tiram G, Calderón M, Haag R, Satchi-Fainaro R. Functionalized nanogels carrying an anticancer microRNA for glioblastoma therapy. J Control Release 2016; 239:159-68. [PMID: 27569663 DOI: 10.1016/j.jconrel.2016.08.029] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 08/23/2016] [Accepted: 08/24/2016] [Indexed: 12/18/2022]
Abstract
Glioblastoma Multiforme (GBM) is one of the most aggressive forms of all cancers. The median survival with current standard-of-care radiation and chemotherapy is about 14months. GBM is difficult to treat due to heterogeneity in cancer cell population. MicroRNA-based drugs have rapidly become a vast and burgeoning field due to the ability of a microRNA (miRNA) to target many genes involved in key cellular pathways. However, in vivo delivery of miRNA remains a crucial challenge for its therapeutic success. To bypass this shortcoming, we designed polymeric nanogels (NGs), which are based on a polyglycerol-scaffold, as a new strategy of miRNA delivery for GBM therapy. We focused on miR-34a, which is known for its key role in important oncogenic pathways and its tumor suppression ability in GBM and other cancers. We evaluated the capability of six NG derivatives to complex with miR-34a, neutralize its negative charge and deliver active miRNA to the cell cytoplasm. Human U-87 MG GBM cells treated with our NG-miR-34a nano-polyplexes showed remarkable downregulation of miR-34a target genes, which play key roles in the regulation of apoptosis and cell cycle arrest, and induce inhibition of cells proliferation and migration. Administration of NG-miR-34a nano-polyplexes to human U-87 MG GBM-bearing SCID mice significantly inhibited tumor growth as opposed to treatment with NG-negative control miR polyplex or saline. The comparison between different polyplexes highlighted the key features for the rational design of polymeric delivery systems for oligonucleotides. Taken together, we expect that this new therapeutic approach will pave the way for safe and efficient therapies for GBM.
Collapse
Affiliation(s)
- Zohar Shatsberg
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Xuejiao Zhang
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany; Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Paula Ofek
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shashwat Malhotra
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Adva Krivitsky
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Anna Scomparin
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Galia Tiram
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Marcelo Calderón
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany.
| | - Ronit Satchi-Fainaro
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
11
|
Abstract
Current directions and emerging possibilities under investigation for the integration of synthetic and semi-synthetic multivalent architectures with biology are discussed. Attention is focussed around multivalent interactions, their fundamental role in biology, and current and potential approaches in emulating them in terms of structure and functionality using synthetic architectures.
Collapse
Affiliation(s)
- Eugene Mahon
- Conway Institute for Biomolecular and Biomedical Science, Belfield, Dublin 4, Ireland.
| | - Mihail Barboiu
- Adaptative Supramolecular Nanosystems Group, Institut Européen des Membranes, ENSCM/UMII/UMR-CNRS 5635, Pl. Eugène Bataillon, CC 047, 34095 Montpellier, Cedex 5, France.
| |
Collapse
|
12
|
Reversal of multidrug resistance in breast cancer MCF-7/ADR cells by h-R3-siMDR1-PAMAM complexes. Int J Pharm 2016; 511:436-445. [PMID: 27444552 DOI: 10.1016/j.ijpharm.2016.07.039] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 07/04/2016] [Accepted: 07/18/2016] [Indexed: 12/21/2022]
Abstract
Multidrug resistance (MDR) among breast cancer cells is the paramount obstacle for the successful chemotherapy. In this study, anti-EGFR antibody h-R3 was designed to self-assembled h-R3-siRNA-PAMAM-complexes (HSPCs) via electrostatic interactions for siRNA delivery. The physicochemical characterization, cell uptake, MDR1 silencing efficiency, cell migration, cell growth and cell apoptosis were investigated. The HSPCs presented lower cytotoxicity, higher cellular uptake and enhanced endosomal escape ability. Also, HSPCs encapsulating siMDR1 knockdowned 99.4% MDR1 gene with up to ∼6 times of enhancement compared to naked siMDR1, increased the doxorubicin accumulation, down-regulated P-glycoprotein (P-gp) expression and suppressed cellular migration in breast cancer MCF-7/ADR cells. Moreover, the combination of anticancer drug paclitaxel (PTX) and siMDR1 loaded HSPCs showed synergistic effect on overcoming MDR, which inhibited cell growth and induced cell apoptosis. This h-R3-mediated siMDR1 delivery system could be a promising vector for effective siRNA therapy of drug resistant breast cancer.
Collapse
|
13
|
Gasparini G, Bang EK, Montenegro J, Matile S. Cellular uptake: lessons from supramolecular organic chemistry. Chem Commun (Camb) 2016; 51:10389-402. [PMID: 26030211 DOI: 10.1039/c5cc03472h] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The objective of this Feature Article is to reflect on the importance of established and emerging principles of supramolecular organic chemistry to address one of the most persistent problems in life sciences. The main topic is dynamic covalent chemistry on cell surfaces, particularly disulfide exchange for thiol-mediated uptake. Examples of boronate and hydrazone exchange are added for contrast, comparison and completion. Of equal importance are the discussions of proximity effects in polyions and counterion hopping, and more recent highlights on ring tension and ion pair-π interactions. These lessons from supramolecular organic chemistry apply to cell-penetrating peptides, particularly the origin of "arginine magic" and the "pyrenebutyrate trick," and the currently emerging complementary "disulfide magic" with cell-penetrating poly(disulfide)s. They further extend to the voltage gating of neuronal potassium channels, gene transfection, and the delivery of siRNA. The collected examples illustrate that the input from conceptually innovative chemistry is essential to address the true challenges in biology beyond incremental progress and random screening.
Collapse
Affiliation(s)
- Giulio Gasparini
- School of Chemistry and Biochemistry, University of Geneva, Geneva, Switzerland.
| | | | | | | |
Collapse
|
14
|
Tschiche A, Thota BNS, Neumann F, Schäfer A, Ma N, Haag R. Crosslinked Redox-Responsive Micelles Based on Lipoic Acid-Derived Amphiphiles for Enhanced siRNA Delivery. Macromol Biosci 2016; 16:811-23. [DOI: 10.1002/mabi.201500363] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/02/2015] [Indexed: 01/29/2023]
Affiliation(s)
- Ariane Tschiche
- Institute of Chemistry and Biochemistry; Freie Universität Berlin; Takustrasse 3 Berlin 14195 Germany
| | - Bala N. S. Thota
- Institute of Chemistry and Biochemistry; Freie Universität Berlin; Takustrasse 3 Berlin 14195 Germany
| | - Falko Neumann
- Institute of Chemistry and Biochemistry; Freie Universität Berlin; Takustrasse 3 Berlin 14195 Germany
| | - Andreas Schäfer
- Institute of Chemistry and Biochemistry; Freie Universität Berlin; Takustrasse 3 Berlin 14195 Germany
| | - Nan Ma
- Institute of Chemistry and Biochemistry; Freie Universität Berlin; Takustrasse 3 Berlin 14195 Germany
| | - Rainer Haag
- Institute of Chemistry and Biochemistry; Freie Universität Berlin; Takustrasse 3 Berlin 14195 Germany
| |
Collapse
|
15
|
Gao YG, Tang Q, Shi YD, Zhang Y, Wang R, Lu ZL. A novel non-viral gene vector for hepatocyte-targeting and in situ monitoring of DNA delivery in single cells. RSC Adv 2016. [DOI: 10.1039/c6ra08935f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
16
|
Kumar A, Khan A, Malhotra S, Mosurkal R, Dhawan A, Pandey MK, Singh BK, Kumar R, Prasad AK, Sharma SK, Samuelson LA, Cholli AL, Len C, Richards NGJ, Kumar J, Haag R, Watterson AC, Parmar VS. Synthesis of macromolecular systems via lipase catalyzed biocatalytic reactions: applications and future perspectives. Chem Soc Rev 2016; 45:6855-6887. [DOI: 10.1039/c6cs00147e] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
This review highlights the application of lipases in the synthesis of pharmaceutically important small molecules and polymers for diverse applications.
Collapse
|
17
|
De León AS, Malhotra S, Molina M, Calderón M, Muñoz-Bonilla A, Rodríguez-Hernández J. Fabrication of honeycomb films from highly functional dendritic structures: electrostatic force driven immobilization of biomolecules. Polym Chem 2016. [DOI: 10.1039/c6py00601a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein we report the preparation of honeycomb porous films for selective immobilization of biomolecules via the breath figure technique, a water-assisted micropatterning method.
Collapse
Affiliation(s)
- A. S. De León
- Instituto de Ciencia y Tecnología de Polímeros (ICTP)
- Consejo Superior de Investigaciones Científicas (CSIC)
- 28006 Madrid
- Spain
| | - S. Malhotra
- Freie Universität Berlin
- Institute of Chemistry and Biochemistry
- 14195 Berlin
- Germany
| | - M. Molina
- Freie Universität Berlin
- Institute of Chemistry and Biochemistry
- 14195 Berlin
- Germany
| | - M. Calderón
- Freie Universität Berlin
- Institute of Chemistry and Biochemistry
- 14195 Berlin
- Germany
- Helmholtz Virtuelles Institut – Multifunctional Biomaterials for Medicine
| | - A. Muñoz-Bonilla
- Departamento de Química-Física Aplicada
- Facultad de Ciencias
- Universidad Autónoma de Madrid
- 28049 Madrid
- Spain
| | - J. Rodríguez-Hernández
- Instituto de Ciencia y Tecnología de Polímeros (ICTP)
- Consejo Superior de Investigaciones Científicas (CSIC)
- 28006 Madrid
- Spain
| |
Collapse
|
18
|
Meka RR, Godeshala S, Marepally S, Thorat K, Reddy Rachamalla HK, Dhayani A, Hiwale A, Banerjee R, Chaudhuri A, Vemula PK. Asymmetric cationic lipid based non-viral vectors for an efficient nucleic acid delivery. RSC Adv 2016. [DOI: 10.1039/c6ra07256a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cationic lipids have been extensively studied for their ability to complex with nucleic acids to condense and consequently deliver them into the cells.
Collapse
Affiliation(s)
- Rakeshchandra R. Meka
- Biomaterials Group
- CSIR-Indian Institute of Chemical Technology
- Hyderabad 500 007
- India
| | - Sudhakar Godeshala
- Biomaterials Group
- CSIR-Indian Institute of Chemical Technology
- Hyderabad 500 007
- India
| | - Srujan Marepally
- Institute for Stem Cell Biology and Regenerative Medicine (inStem)
- Bangalore 560065
- India
| | - Ketan Thorat
- Institute for Stem Cell Biology and Regenerative Medicine (inStem)
- Bangalore 560065
- India
- Manipal University
- Manipal
| | | | - Ashish Dhayani
- Institute for Stem Cell Biology and Regenerative Medicine (inStem)
- Bangalore 560065
- India
- SASTRA University
- Thanjavur-613401
| | - Ankita Hiwale
- Institute for Stem Cell Biology and Regenerative Medicine (inStem)
- Bangalore 560065
- India
| | - Rajkumar Banerjee
- Biomaterials Group
- CSIR-Indian Institute of Chemical Technology
- Hyderabad 500 007
- India
| | - Arabinda Chaudhuri
- Biomaterials Group
- CSIR-Indian Institute of Chemical Technology
- Hyderabad 500 007
- India
| | - Praveen Kumar Vemula
- Institute for Stem Cell Biology and Regenerative Medicine (inStem)
- Bangalore 560065
- India
- Ramalingaswami Re-Entry Fellow
- Dept of Biotechnology
| |
Collapse
|
19
|
Gao YG, Alam U, Tang Q, Shi YD, Zhang Y, Wang R, Lu ZL. Functional lipids based on [12]aneN3 and naphthalimide as efficient non-viral gene vectors. Org Biomol Chem 2016; 14:6346-54. [DOI: 10.1039/c6ob00917d] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Small organic non-viral gene vectors with the structural combinations of (aliphatic chain)–naphthalimide–[12]aneN3 (11a, b) and naphthalimide–(aliphatic chain)–[12]aneN3 (12a–c) were synthesized and fully characterized.
Collapse
Affiliation(s)
- Yong-Guang Gao
- Key Laboratory of Theoretical and Computational Photochemistry
- Ministry of Education
- College of Chemistry
- Beijing Normal University
- Beijing 100875
| | - Uzair Alam
- Key Laboratory of Theoretical and Computational Photochemistry
- Ministry of Education
- College of Chemistry
- Beijing Normal University
- Beijing 100875
| | - Quan Tang
- Key Laboratory of Theoretical and Computational Photochemistry
- Ministry of Education
- College of Chemistry
- Beijing Normal University
- Beijing 100875
| | - You-Di Shi
- Key Laboratory of Theoretical and Computational Photochemistry
- Ministry of Education
- College of Chemistry
- Beijing Normal University
- Beijing 100875
| | - Ying Zhang
- Key Laboratory of Theoretical and Computational Photochemistry
- Ministry of Education
- College of Chemistry
- Beijing Normal University
- Beijing 100875
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Taipa
- China
| | - Zhong-Lin Lu
- Key Laboratory of Theoretical and Computational Photochemistry
- Ministry of Education
- College of Chemistry
- Beijing Normal University
- Beijing 100875
| |
Collapse
|
20
|
Crowley ST, Rice KG. "Evolving nanoparticle gene delivery vectors for the liver: What has been learned in 30 years". J Control Release 2015; 219:457-470. [PMID: 26439664 DOI: 10.1016/j.jconrel.2015.10.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 10/01/2015] [Accepted: 10/02/2015] [Indexed: 12/18/2022]
Abstract
Nonviral gene delivery to the liver has been under evolution for nearly 30years. Early demonstrations established relatively simple nonviral vectors could mediate gene expression in HepG2 cells which understandably led to speculation that these same vectors would be immediately successful at transfecting primary hepatocytes in vivo. However, it was soon recognized that the properties of a nonviral vector resulting in efficient transfection in vitro were uncorrelated with those needed to achieve efficient nonviral transfection in vivo. The discovery of major barriers to liver gene transfer has set the field on a course to design biocompatible vectors that demonstrate increased DNA stability in the circulation with correlating expression in liver. The improved understanding of what limits nonviral vector gene transfer efficiency in vivo has resulted in more sophisticated, low molecular weight vectors that allow systematic optimization of nanoparticle size, charge and ligand presentation. While the field has evolved DNA nanoparticles that are stable in the circulation, target hepatocytes, and deliver DNA to the cytosol, breaching the nucleus remains the last major barrier to a fully successful nonviral gene transfer system for the liver. The lessons learned along the way are fundamentally important to the design of all systemically delivered nanoparticle nonviral gene delivery systems.
Collapse
Affiliation(s)
- Samuel T Crowley
- Division of Medicinal and Natural Products Chemistry, College of Pharmacy, University of Iowa, Iowa City, IA 52242,USA
| | - Kevin G Rice
- Division of Medicinal and Natural Products Chemistry, College of Pharmacy, University of Iowa, Iowa City, IA 52242,USA.
| |
Collapse
|
21
|
Zeng H, Johnson ME, Oldenhuis N, Tiambeng TN, Guan Z. Structure-Based Design of Dendritic Peptide Bolaamphiphiles for siRNA Delivery. ACS CENTRAL SCIENCE 2015; 1:303-312. [PMID: 26436138 PMCID: PMC4582325 DOI: 10.1021/acscentsci.5b00233] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Indexed: 05/21/2023]
Abstract
Development of safe and effective delivery vectors is a critical challenge for the application of RNA interference (RNAi)-based biotechnologies. In this study we show the rational design of a series of novel dendritic peptide bolaamphiphile vectors that demonstrate high efficiency for the delivery of small interfering RNA (siRNA) while exhibiting low cytotoxicity and hemolytic activity. Systematic investigation into structure-property relationships revealed an important correlation between molecular design, self-assembled nanostructure, and biological activity. The unique bolaamphiphile architecture proved a key factor for improved complex stability and transfection efficiency. The optimal vector contains a fluorocarbon core and exhibited enhanced delivery efficiency to a variety of cell lines and improved serum resistance when compared to hydrocarbon analogues and lipofectamine RNAiMAX. In addition to introducing a promising new vector system for siRNA delivery, the structure-property relationships and "fluorocarbon effect" revealed herein offer critical insight for further development of novel materials for nucleic acid delivery and other biomaterial applications.
Collapse
|
22
|
Ren X, Feng Y, Guo J, Wang H, Li Q, Yang J, Hao X, Lv J, Ma N, Li W. Surface modification and endothelialization of biomaterials as potential scaffolds for vascular tissue engineering applications. Chem Soc Rev 2015; 44:5680-742. [DOI: 10.1039/c4cs00483c] [Citation(s) in RCA: 359] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review highlights the recent developments of surface modification and endothelialization of biomaterials in vascular tissue engineering applications.
Collapse
Affiliation(s)
- Xiangkui Ren
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Yakai Feng
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Jintang Guo
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Haixia Wang
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Qian Li
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Jing Yang
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Xuefang Hao
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Juan Lv
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Nan Ma
- Institute of Chemistry and Biochemistry
- Free University of Berlin
- D-14195 Berlin
- Germany
| | - Wenzhong Li
- Department of Cardiac Surgery
- University of Rostock
- D-18057 Rostock
- Germany
| |
Collapse
|
23
|
Rinkenauer AC, Schubert S, Traeger A, Schubert US. The influence of polymer architecture on in vitro pDNA transfection. J Mater Chem B 2015; 3:7477-7493. [DOI: 10.1039/c5tb00782h] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In the field of polymer-based gene delivery, the tuning potential of polymers by using different architectures like graft- and star-shaped polymers as well as self-assembled block copolymers is immense. In the last years numerous new polymer designs showed enhanced transfections properties in combination with a good biocompatibility.
Collapse
Affiliation(s)
- Alexandra C. Rinkenauer
- Laboratory of Organic and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| | - Stephanie Schubert
- Jena Center for Soft Matter (JCSM)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Institute of Pharmacy
| | - Anja Traeger
- Laboratory of Organic and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| | - Ulrich S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| |
Collapse
|
24
|
Gao YG, Shi YD, Zhang Y, Hu J, Lu ZL, He L. A naphthalimide-based [12]aneN3 compound as an effective and real-time fluorescence tracking non-viral gene vector. Chem Commun (Camb) 2015; 51:16695-8. [DOI: 10.1039/c5cc06753g] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A small organic molecule containing naphthalimide and macrocyclic polyamine 12[ane]N3 moieties showed effective and fluorescence tracking gene transfection properties.
Collapse
Affiliation(s)
- Yong-Guang Gao
- Key Laboratory of Theoretical and Computational Photochemistry
- Ministry of Education
- College of Chemistry
- Beijing Normal University
- Beijing 100875
| | - You-Di Shi
- Key Laboratory of Theoretical and Computational Photochemistry
- Ministry of Education
- College of Chemistry
- Beijing Normal University
- Beijing 100875
| | - Ying Zhang
- Key Laboratory of Theoretical and Computational Photochemistry
- Ministry of Education
- College of Chemistry
- Beijing Normal University
- Beijing 100875
| | - Jing Hu
- Key Laboratory of Theoretical and Computational Photochemistry
- Ministry of Education
- College of Chemistry
- Beijing Normal University
- Beijing 100875
| | - Zhong-Lin Lu
- Key Laboratory of Theoretical and Computational Photochemistry
- Ministry of Education
- College of Chemistry
- Beijing Normal University
- Beijing 100875
| | - Lan He
- National Institute for Food and Drug Control
- Institute of Chemical Drug Control
- Beijing
- China
| |
Collapse
|
25
|
Guzman-Sepulveda JR, Douglass KM, Amin S, Lewis NE, Dogariu A. Passive optical mapping of structural evolution in complex fluids. RSC Adv 2015. [DOI: 10.1039/c4ra11627e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Low-coherence optical scattering allows probing the complex structure of self-assembling systems over extended ranges of the temperature and concentrations.
Collapse
Affiliation(s)
| | - Kyle M. Douglass
- CREOL
- The College of Optics and Photonics
- University of Central Florida
- Orlando
- USA
| | | | | | - Aristide Dogariu
- CREOL
- The College of Optics and Photonics
- University of Central Florida
- Orlando
- USA
| |
Collapse
|
26
|
Duro-Castano A, Movellan J, Vicent MJ. Smart branched polymer drug conjugates as nano-sized drug delivery systems. Biomater Sci 2015; 3:1321-34. [DOI: 10.1039/c5bm00166h] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Branched polymers own special properties derived from their intrinsic characteristics. These properties make them ideal candidates to be used as carriers for an improved generation of polymer-drug conjugates.
Collapse
Affiliation(s)
- A. Duro-Castano
- Centro de Investigación Príncipe Felipe
- Polymer Therapeutics Lab
- E-46012 Valencia
- Spain
| | - J. Movellan
- Centro de Investigación Príncipe Felipe
- Polymer Therapeutics Lab
- E-46012 Valencia
- Spain
| | - M. J. Vicent
- Centro de Investigación Príncipe Felipe
- Polymer Therapeutics Lab
- E-46012 Valencia
- Spain
| |
Collapse
|