1
|
Almalki WH, Almujri SS. The impact of NF-κB on inflammatory and angiogenic processes in age-related macular degeneration. Exp Eye Res 2024; 248:110111. [PMID: 39326776 DOI: 10.1016/j.exer.2024.110111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/09/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Age-related macular degeneration (AMD) is a prominent cause of vision loss, characterized by two different types, dry (atrophic) and wet (neovascular). Dry AMD is distinguished by the progressive deterioration of retinal cells, which ultimately causes a decline in vision. In contrast, wet AMD is defined by the abnormal development of blood vessels underneath the retina, leading to a sudden and severe vision impairment. The course of AMD is primarily driven by chronic inflammation and pathological angiogenesis, in which the NF-κB signaling pathway plays a crucial role. The activation of NF-κB results in the generation of pro-inflammatory cytokines, chemokines, and angiogenic factors like VEGF, which contribute to inflammation and the formation of new blood vessels in AMD. This review analyzes the intricate relationship between NF-κB signaling, inflammation, and angiogenesis in AMD and assesses the possibility of using NF-κB as a target for therapy. The evaluation involves a comprehensive examination of preclinical and clinical evidence that substantiates the effectiveness of NF-κB inhibitors in treating AMD by diminishing inflammation and pathological angiogenesis.
Collapse
Affiliation(s)
- Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia.
| | - Salem Salman Almujri
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 61421, Aseer, Saudi Arabia
| |
Collapse
|
2
|
Stradiotto E, Allegrini D, Fossati G, Raimondi R, Sorrentino T, Tripepi D, Barone G, Inforzato A, Romano MR. Genetic Aspects of Age-Related Macular Degeneration and Their Therapeutic Potential. Int J Mol Sci 2022; 23:13280. [PMID: 36362067 PMCID: PMC9653831 DOI: 10.3390/ijms232113280] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/05/2022] [Accepted: 10/28/2022] [Indexed: 08/27/2023] Open
Abstract
Age-related macular degeneration (AMD) is a complex and multifactorial disease, resulting from the interaction of environmental and genetic factors. The continuous discovery of associations between genetic polymorphisms and AMD gives reason for the pivotal role attributed to the genetic component to its development. In that light, genetic tests and polygenic scores have been created to predict the risk of development and response to therapy. Still, none of them have yet been validated. Furthermore, there is no evidence from a clinical trial that the determination of the individual genetic structure can improve treatment outcomes. In this comprehensive review, we summarize the polymorphisms of the main pathogenetic ways involved in AMD development to identify which of them constitutes a potential therapeutic target. As complement overactivation plays a major role, the modulation of targeted complement proteins seems to be a promising therapeutic approach. Herein, we summarize the complement-modulating molecules now undergoing clinical trials, enlightening those in an advanced phase of trial. Gene therapy is a potential innovative one-time treatment, and its relevance is quickly evolving in the field of retinal diseases. We describe the state of the art of gene therapies now undergoing clinical trials both in the field of complement-suppressors and that of anti-VEGF.
Collapse
Affiliation(s)
- Elisa Stradiotto
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
- Department of Ophthalmology, Eye Unit Humanitas Gavazzeni-Castelli, Via Mazzini 11, 24128 Bergamo, Italy
| | - Davide Allegrini
- Department of Ophthalmology, Eye Unit Humanitas Gavazzeni-Castelli, Via Mazzini 11, 24128 Bergamo, Italy
| | - Giovanni Fossati
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
- Department of Ophthalmology, Eye Unit Humanitas Gavazzeni-Castelli, Via Mazzini 11, 24128 Bergamo, Italy
| | - Raffaele Raimondi
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
- Department of Ophthalmology, Eye Unit Humanitas Gavazzeni-Castelli, Via Mazzini 11, 24128 Bergamo, Italy
| | - Tania Sorrentino
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
- Department of Ophthalmology, Eye Unit Humanitas Gavazzeni-Castelli, Via Mazzini 11, 24128 Bergamo, Italy
| | - Domenico Tripepi
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
- Department of Ophthalmology, Eye Unit Humanitas Gavazzeni-Castelli, Via Mazzini 11, 24128 Bergamo, Italy
| | - Gianmaria Barone
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
- Department of Ophthalmology, Eye Unit Humanitas Gavazzeni-Castelli, Via Mazzini 11, 24128 Bergamo, Italy
| | - Antonio Inforzato
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano-Milan, Italy
| | - Mario R. Romano
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
- Department of Ophthalmology, Eye Unit Humanitas Gavazzeni-Castelli, Via Mazzini 11, 24128 Bergamo, Italy
| |
Collapse
|
3
|
Arslan J, Samarasinghe G, Benke KK, Sowmya A, Wu Z, Guymer RH, Baird PN. Artificial Intelligence Algorithms for Analysis of Geographic Atrophy: A Review and Evaluation. Transl Vis Sci Technol 2020; 9:57. [PMID: 33173613 PMCID: PMC7594588 DOI: 10.1167/tvst.9.2.57] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/28/2020] [Indexed: 12/28/2022] Open
Abstract
Purpose The purpose of this study was to summarize and evaluate artificial intelligence (AI) algorithms used in geographic atrophy (GA) diagnostic processes (e.g. isolating lesions or disease progression). Methods The search strategy and selection of publications were both conducted in accordance with the Preferred of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. PubMed and Web of Science were used to extract literary data. The algorithms were summarized by objective, performance, and scope of coverage of GA diagnosis (e.g. lesion automation and GA progression). Results Twenty-seven studies were identified for this review. A total of 18 publications focused on lesion segmentation only, 2 were designed to detect and classify GA, 2 were designed to predict future overall GA progression, 3 focused on prediction of future spatial GA progression, and 2 focused on prediction of visual function in GA. GA-related algorithms reported sensitivities from 0.47 to 0.98, specificities from 0.73 to 0.99, accuracies from 0.42 to 0.995, and Dice coefficients from 0.66 to 0.89. Conclusions Current GA-AI publications have a predominant focus on lesion segmentation and a minor focus on classification and progression analysis. AI could be applied to other facets of GA diagnoses, such as understanding the role of hyperfluorescent areas in GA. Using AI for GA has several advantages, including improved diagnostic accuracy and faster processing speeds. Translational Relevance AI can be used to quantify GA lesions and therefore allows one to impute visual function and quality-of-life. However, there is a need for the development of reliable and objective models and software to predict the rate of GA progression and to quantify improvements due to interventions.
Collapse
Affiliation(s)
- Janan Arslan
- Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
- Department of Surgery, Ophthalmology, University of Melbourne, Victoria, Australia
| | - Gihan Samarasinghe
- School of Computer Science and Engineering, University of New South Wales, Kensington, New South Wales, Australia
| | - Kurt K. Benke
- School of Engineering, University of Melbourne, Parkville, Victoria, Australia
- Centre for AgriBioscience, AgriBio, Bundoora, Victoria, Australia
| | - Arcot Sowmya
- School of Computer Science and Engineering, University of New South Wales, Kensington, New South Wales, Australia
| | - Zhichao Wu
- Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
| | - Robyn H. Guymer
- Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
- Department of Surgery, Ophthalmology, University of Melbourne, Victoria, Australia
| | - Paul N. Baird
- Department of Surgery, Ophthalmology, University of Melbourne, Victoria, Australia
| |
Collapse
|
4
|
Kaarniranta K, Pawlowska E, Szczepanska J, Blasiak J. DICER1 in the Pathogenesis of Age-related Macular Degeneration (AMD) - Alu RNA Accumulation versus miRNA Dysregulation. Aging Dis 2020; 11:851-862. [PMID: 32765950 PMCID: PMC7390522 DOI: 10.14336/ad.2019.0809] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 08/09/2019] [Indexed: 12/11/2022] Open
Abstract
DICER1 deficiency in the retinal pigment epithelium (RPE) was associated with the accumulation of Alu transcripts and implicated in geographic atrophy (GA), a form of age-related macular degeneration (AMD), an eye disease leading to blindness in millions of people. Although the exact mechanism of this association is not fully known, the activation of the NLRP3 inflammasome, maturation of caspase-1 and disruption in mitochondrial homeostasis in RPE cells were shown as critical for it. DICER1 deficiency results in dysregulation of miRNAs and changes in the expression of many genes important for RPE homeostasis, which may also contribute to AMD. DICER1 deficiency can change the functions of the miR-183/96/182 cluster that regulates photoreceptors and their synaptic transmission. Aging, the main AMD risk factor, is associated with decreased expression of DICER1 and changes in its diurnal pattern that are not synchronized with circadian regulation in the retina. The initial insult inducing DICER1 deficiency in AMD may be oxidative stress, another major risk factor of AMD, but further studies on the role of deficient DICER1 in AMD pathogenesis and its therapeutic potential are needed.
Collapse
Affiliation(s)
- Kai Kaarniranta
- 1Department of Ophthalmology, University of Eastern Finland, Kuopio 70211, Finland and Department of Ophthalmology, Kuopio University Hospital, Kuopio 70029, Finland
| | - Elzbieta Pawlowska
- 2Department of Orthodontics, Medical University of Lodz, 92-216 Lodz, Poland
| | - Joanna Szczepanska
- 3Department of Pediatric Dentistry, Medical University of Lodz, 92-216 Lodz, Poland
| | - Janusz Blasiak
- 4Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
| |
Collapse
|
5
|
Gil-Martínez M, Santos-Ramos P, Fernández-Rodríguez M, Abraldes MJ, Rodríguez-Cid MJ, Santiago-Varela M, Fernández-Ferreiro A, Gómez-Ulla F. Pharmacological Advances in the Treatment of Age-related Macular Degeneration. Curr Med Chem 2020; 27:583-598. [PMID: 31362645 DOI: 10.2174/0929867326666190726121711] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 07/05/2019] [Accepted: 07/19/2019] [Indexed: 12/16/2022]
Abstract
Age-related macular degeneration is an acquired degenerative disease that is responsible for severe loss of vision in elderly people. There are two types: dry age-related macular degeneration and wet age-related macular degeneration. Its treatment has been improved and tries to be tailored in the future. The aim of this review is to summarize the pharmacological advances in the treatment of age-related macular degeneration. Regarding dry AMD, there is no effective treatment to reduce its progression. However, some molecules such as lampalizumab and eculizumab were under investigation, although they have shown low efficacy. Herein, in an attempt to prevent dry AMD progression, the most important studies suggested increasing the antioxidants intake and quitting the smoke habit. On the other hand, wet AMD has more developed treatment. Nowadays, the gold standard treatment is anti-VEGF injections. However, more effective molecules are currently under investigation. There are different molecules under research for dry AMD and wet AMD. This fact could help us treat our patients with more effective and lasting drugs but more clinical trials and safety studies are required in order to achieve an optimal treatment.
Collapse
Affiliation(s)
- María Gil-Martínez
- Department of Ophthalmology, Hospital Universitario Santiago de Compostela, Santiago de Compostela, Spain.,Instituto Oftalmológico Gómez-Ulla, Santiago de Compostela, Spain
| | - Paz Santos-Ramos
- Department of Ophthalmology, Hospital Universitario Santiago de Compostela, Santiago de Compostela, Spain
| | - Maribel Fernández-Rodríguez
- Department of Ophthalmology, Hospital Universitario Santiago de Compostela, Santiago de Compostela, Spain.,Instituto Oftalmológico Gómez-Ulla, Santiago de Compostela, Spain.,Department of Surgery, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Maximino J Abraldes
- Department of Ophthalmology, Hospital Universitario Santiago de Compostela, Santiago de Compostela, Spain.,Instituto Oftalmológico Gómez-Ulla, Santiago de Compostela, Spain.,Department of Surgery, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Maria José Rodríguez-Cid
- Department of Ophthalmology, Hospital Universitario Santiago de Compostela, Santiago de Compostela, Spain.,Department of Surgery, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - María Santiago-Varela
- Department of Ophthalmology, Hospital Universitario Santiago de Compostela, Santiago de Compostela, Spain
| | - Anxo Fernández-Ferreiro
- Pharmacy Department and Pharmacology Group, Univ Hospital of Santiago de Compostela (SERGAS) and Health Research Intitute (IDIS), Santiago de Compostela, Spain
| | - Francisco Gómez-Ulla
- Instituto Oftalmológico Gómez-Ulla, Santiago de Compostela, Spain.,Department of Surgery, University of Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
6
|
Hu X, Liang Y, Zhao B, Wang Y. Thymoquinone protects human retinal pigment epithelial cells against hydrogen peroxide induced oxidative stress and apoptosis. J Cell Biochem 2018; 120:4514-4522. [PMID: 30269355 DOI: 10.1002/jcb.27739] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 09/30/2018] [Indexed: 01/22/2023]
Abstract
Oxidative stress in retinal pigment epithelium (RPE) cells may contribute to the progression of age-related macular degeneration. Thymoquinone (TQ), an active component derived from Nigella sativa, possesses antioxidative effect. However, the role of TQ in RPE cells under oxidative stress condition remains unclear. The present study aimed to examine the protective effect of TQ against hydrogen peroxide (H2 O2 )-induced oxidative stress in human RPE cells. Our results showed that TQ improved the cell viability and apoptosis in H2 O2 -induced ARPE cells. We also found that the levels of reactive oxygen species and malondialdehyde induced by H2 O2 were reduced after the pretreatment of TQ. In addition, the inhibitory effect of H2 O2 on the glutathione (GSH) level and superoxide dismutase activity was markedly attenuated by TQ pretreatment. Moreover, TQ enhanced the activation of Nrf2/heme oxygenase 1 (HO-1) signaling pathway in H2 O2 -induced ARPE cells. Knockdown of Nrf2 abolished the protective effect of TQ on H2 O2 -induced oxidative damage. These results suggested that TQ protected ARPE cells from H2 O2 -induced oxidative stress and apoptosis via the Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Xin Hu
- Department of Ophthalmology, Huaihe Hospital, Henan University, Kaifeng, China
| | - Yuanyuan Liang
- Department of Ophthalmology, Huaihe Hospital, Henan University, Kaifeng, China
| | - Bo Zhao
- Department of Ophthalmology, Huaihe Hospital, Henan University, Kaifeng, China
| | - Yongyi Wang
- Department of Ophthalmology, Huaihe Hospital, Henan University, Kaifeng, China
| |
Collapse
|