1
|
Carnero Canales CS, Marquez Cazorla JI, Marquez Cazorla RM, Roque-Borda CA, Polinário G, Figueroa Banda RA, Sábio RM, Chorilli M, Santos HA, Pavan FR. Breaking barriers: The potential of nanosystems in antituberculosis therapy. Bioact Mater 2024; 39:106-134. [PMID: 38783925 PMCID: PMC11112550 DOI: 10.1016/j.bioactmat.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/17/2024] [Accepted: 05/05/2024] [Indexed: 05/25/2024] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis, continues to pose a significant threat to global health. The resilience of TB is amplified by a myriad of physical, biological, and biopharmaceutical barriers that challenge conventional therapeutic approaches. This review navigates the intricate landscape of TB treatment, from the stealth of latent infections and the strength of granuloma formations to the daunting specters of drug resistance and altered gene expression. Amidst these challenges, traditional therapies often fail, contending with inconsistent bioavailability, prolonged treatment regimens, and socioeconomic burdens. Nanoscale Drug Delivery Systems (NDDSs) emerge as a promising beacon, ready to overcome these barriers, offering better drug targeting and improved patient adherence. Through a critical approach, we evaluate a spectrum of nanosystems and their efficacy against MTB both in vitro and in vivo. This review advocates for the intensification of research in NDDSs, heralding their potential to reshape the contours of global TB treatment strategies.
Collapse
Affiliation(s)
| | | | | | - Cesar Augusto Roque-Borda
- Tuberculosis Research Laboratory, School of Pharmaceutical Science, Sao Paulo State University (UNESP), Araraquara, 14800-903, Brazil
| | - Giulia Polinário
- Tuberculosis Research Laboratory, School of Pharmaceutical Science, Sao Paulo State University (UNESP), Araraquara, 14800-903, Brazil
| | | | - Rafael Miguel Sábio
- School of Pharmaceutical Science, Sao Paulo State University (UNESP), Araraquara, 14800-903, Brazil
- Department of Biomaterials and Biomedical Technology, University Medical Center Groningen (UMCG), University of Groningen, Groningen, 9713 AV, the Netherlands
| | - Marlus Chorilli
- School of Pharmaceutical Science, Sao Paulo State University (UNESP), Araraquara, 14800-903, Brazil
| | - Hélder A. Santos
- Department of Biomaterials and Biomedical Technology, University Medical Center Groningen (UMCG), University of Groningen, Groningen, 9713 AV, the Netherlands
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Fernando Rogério Pavan
- Tuberculosis Research Laboratory, School of Pharmaceutical Science, Sao Paulo State University (UNESP), Araraquara, 14800-903, Brazil
| |
Collapse
|
2
|
Alés-Palmer ML, Andújar-Vera F, Iglesias-Baena I, Muñoz-de-Rueda P, Ocete-Hita E. N-acetyltransferase Gene Variants Involved in Pediatric Idiosyncratic Drug-Induced Liver Injury. Biomedicines 2024; 12:1288. [PMID: 38927494 PMCID: PMC11201799 DOI: 10.3390/biomedicines12061288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Idiosyncratic drug-induced liver injury (DILI) is a complex multifactorial disease in which the toxic potential of the drug, together with genetic and acquired factors and deficiencies in adaptive processes, which limit the extent of damage, may determine susceptibility and make individuals unique in their development of hepatotoxicity. In our study, we sequenced the exomes of 43 pediatric patients diagnosed with DILI to identify important gene variations associated with this pathology. The result showed the presence of two variations in the NAT2 gene: c.590G>A (p.Arg197Gln) and c.341T>C (p.Ile114Thr). These variations could be found separately or together in 41 of the 43 patients studied. The presence of these variations as a risk factor for DILI could confirm the importance of the acetylation pathway in drug metabolism.
Collapse
Affiliation(s)
- María Luisa Alés-Palmer
- Department of Pediatrics, University of Granada, 18016 Granada, Spain;
- Department of Pediatrics, “Virgen de las Nieves” University Hospital, 18014 Granada, Spain
| | - Francisco Andújar-Vera
- Bioinformatic Unit, Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain;
| | | | - Paloma Muñoz-de-Rueda
- Research Support Unit, Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain;
| | - Esther Ocete-Hita
- Department of Pediatrics, University of Granada, 18016 Granada, Spain;
- Department of Pediatrics, “Virgen de las Nieves” University Hospital, 18014 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| |
Collapse
|
3
|
Thomas L, Raju AP, Chaithra S, Kulavalli S, Varma M, Sv CS, Baneerjee M, Saravu K, Mallayasamy S, Rao M. Influence of N-acetyltransferase 2 polymorphisms and clinical variables on liver function profile of tuberculosis patients. Expert Rev Clin Pharmacol 2024; 17:263-274. [PMID: 38287694 DOI: 10.1080/17512433.2024.2311314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 01/24/2024] [Indexed: 01/31/2024]
Abstract
BACKGROUND Single nucleotide polymorphisms (SNPs) in the N-acetyltransferase 2 (NAT2) gene as well as several other clinical factors can contribute to the elevation of liver function test values in tuberculosis (TB) patients receiving antitubercular therapy (ATT). RESEARCH DESIGN AND METHODS A prospective study involving dynamic monitoring of the liver function tests among 130 TB patients from baseline to 98 days post ATT initiation was undertaken to assess the influence of pharmacogenomic and clinical variables on the elevation of liver function test values. Genomic DNA was extracted from serum samples for the assessment of NAT2 SNPs. Further, within this study population, we conducted a case control study to identify the odds of developing ATT-induced drug-induced liver injury (DILI) based on NAT2 SNPs, genotype and phenotype, and clinical variables. RESULTS NAT2 slow acetylators had higher mean [90%CI] liver function test values for 8-28 days post ATT and higher odds of developing DILI (OR: 2.73, 90%CI: 1.05-7.09) than intermediate acetylators/rapid acetylators. CONCLUSION The current study findings provide evidence for closer monitoring among TB patients with specific NAT2 SNPs, genotype and phenotype, and clinical variables, particularly between the period of more than a week to one-month post ATT initiation for better treatment outcomes.
Collapse
Affiliation(s)
- Levin Thomas
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Arun Prasath Raju
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - S Chaithra
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Shrivathsa Kulavalli
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Muralidhar Varma
- Department of Infectious Diseases, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | | | - Mithu Baneerjee
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Kavitha Saravu
- Department of Infectious Diseases, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Surulivelrajan Mallayasamy
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Mahadev Rao
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
4
|
Cheng F, Jiang XG, Zheng SL, Wu T, Zhang Q, Ye XC, Liu S, Shi JC. N-acetyltransferase 2 genetic polymorphisms and anti-tuberculosis-drug-induced liver injury: a correlation study. Front Pharmacol 2023; 14:1171353. [PMID: 37719844 PMCID: PMC10501134 DOI: 10.3389/fphar.2023.1171353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 08/21/2023] [Indexed: 09/19/2023] Open
Abstract
Background: Considering the genetic characteristics of people with anti-tuberculosis (TB)-drug-induced liver injury (ATDILI), genetic factors and their consequences for treatment need to be studied. Objective: The correlation between N-acetyltransferase 2 (NAT2) genetic polymorphisms and ATDILI was analysed. Methods: In this study, the liver and coagulation functions of 120 patients with TB were monitored dynamically for at least 3 months. The genetic polymorphisms of patients were detected by pyrosequencing, and the acetylation types of liver damage and the distribution of NAT2 genetic polymorphisms were compared and analysed. Results: The results showed that there were significant differences in the distribution of alleles and acetylation types among different groups (p < 0.05). In patients with grade 4 liver injury (liver failure), any two alleles were included, i.e., *6 and *7. Specifically, patients with fast acetylation genotypes accounted for 42.4% (14/33), those with intermediate acetylated genotypes accounted for 55.2% (32/58), and patients with slow acetylation genotypes accounted for 65.5% (19/29). Conclusion: Patients with slow acetylation genotypes had higher rates of liver failure and liver injury than those with intermediate and fast acetylation genotypes, and patients with slow acetylation genotypes containing any two alleles (*6 and *7) had a higher rate of liver failure than those with other alleles. In summary, the time of liver injury in patients with slow acetylation genotypes was earlier than the total average time, and the time of liver function recovery in patients with fast acetylation genotypes was shorter than the total average time.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ji-Chan Shi
- Department of Infectious Disease of Wenzhou Central Hospital, Wenzhou Central Hospital, The Dingli Clinical College of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
5
|
Mohamed Noor NF, Salleh MZ, Mohd Zim MA, Bakar ZA, Fakhruzzaman Noorizhab MN, Zakaria NI, Lailanor MI, Teh LK. NAT2 polymorphism and clinical factors that increased antituberculosis drug-induced hepatotoxicity. Pharmacogenomics 2022; 23:531-541. [PMID: 35615896 DOI: 10.2217/pgs-2022-0022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: Hepatotoxicity is a known adverse effect of antituberculosis drugs. The NAT2 gene polymorphism has been associated with an increased risk of antituberculosis drug-induced hepatotoxicity (ATDIH). Materials and methods: This study investigates the association of NAT2 polymorphism and clinical risk factors that may contribute to the development of ATDIH. The authors sequenced the NAT2 region of 33 tuberculosis patients who developed ATDIH and 100 tuberculosis patients who did not develop ATDIH during tuberculosis treatment. NAT2 haplotypes were inferred and NAT2 acetylator status was predicted from the combination of the inferred haplotypes. Multiple logistic regression was performed to identify possible factors that are associated with ATDIH. Results: The TT genotype of NAT2*13A and the AA genotype of NAT2*6B were found to be substantially linked with the risk of ATDIH, with odds ratios of 3.09 (95% CI: 1.37-6.95) and 3.07 (95% CI: 1.23-7.69), respectively. NAT2 slow acetylators are 3.39-times more likely to develop ATDIH. Factors that were associated with ATDIH include underlying diabetes mellitus (adjusted odds ratio [AOR] 2.96; 95% CI: 1.05-8.37), pre-treatment serum bilirubin (AOR 1.09; 95% CI: 1.02-1.16) and NAT2 slow acetylator (AOR 3.77; 95% CI: 1.51-9.44). Conclusion: Underlying diabetes mellitus, having a higher baseline bilirubin and being a slow acetylator are identified as the risk factors associated with ATDIH among patients in Malaysia.
Collapse
Affiliation(s)
- Nur Farhana Mohamed Noor
- Integrative Pharmacogenomics Institute, Universiti Teknologi MARA, Puncak Alam, Selangor, 42300, Malaysia
| | - Mohd Zaki Salleh
- Integrative Pharmacogenomics Institute, Universiti Teknologi MARA, Puncak Alam, Selangor, 42300, Malaysia.,Faculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam, Selangor, 42300, Malaysia
| | - Mohd Arif Mohd Zim
- Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Selangor, 47000, Malaysia
| | - Zamzurina Abu Bakar
- Respiratory Medicine Institute, Ministry of Health Malaysia, Kuala Lumpur, 53000, Malaysia
| | - Mohd Nur Fakhruzzaman Noorizhab
- Integrative Pharmacogenomics Institute, Universiti Teknologi MARA, Puncak Alam, Selangor, 42300, Malaysia.,Faculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam, Selangor, 42300, Malaysia
| | - Noor Izyani Zakaria
- Medical Department, Selayang Hospital, Ministry of Health Malaysia, Batu Caves, Selangor, 68100, Malaysia
| | | | - Lay Kek Teh
- Integrative Pharmacogenomics Institute, Universiti Teknologi MARA, Puncak Alam, Selangor, 42300, Malaysia.,Faculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam, Selangor, 42300, Malaysia
| |
Collapse
|
6
|
Jayanti RP, Long NP, Phat NK, Cho YS, Shin JG. Semi-Automated Therapeutic Drug Monitoring as a Pillar toward Personalized Medicine for Tuberculosis Management. Pharmaceutics 2022; 14:pharmaceutics14050990. [PMID: 35631576 PMCID: PMC9147223 DOI: 10.3390/pharmaceutics14050990] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/26/2022] [Accepted: 05/02/2022] [Indexed: 12/10/2022] Open
Abstract
Standard tuberculosis (TB) management has failed to control the growing number of drug-resistant TB cases worldwide. Therefore, innovative approaches are required to eradicate TB. Model-informed precision dosing and therapeutic drug monitoring (TDM) have become promising tools for adjusting anti-TB drug doses corresponding with individual pharmacokinetic profiles. These are crucial to improving the treatment outcome of the patients, particularly for those with complex comorbidity and a high risk of treatment failure. Despite the actual benefits of TDM at the bedside, conventional TDM encounters several hurdles related to laborious, time-consuming, and costly processes. Herein, we review the current practice of TDM and discuss the main obstacles that impede it from successful clinical implementation. Moreover, we propose a semi-automated TDM approach to further enhance precision medicine for TB management.
Collapse
Affiliation(s)
- Rannissa Puspita Jayanti
- Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan 47392, Korea; (R.P.J.); (N.P.L.); (N.K.P.); (Y.-S.C.)
- Department of Pharmacology and Pharmacogenomics Research Center, Inje University College of Medicine, Busan 47392, Korea
| | - Nguyen Phuoc Long
- Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan 47392, Korea; (R.P.J.); (N.P.L.); (N.K.P.); (Y.-S.C.)
- Department of Pharmacology and Pharmacogenomics Research Center, Inje University College of Medicine, Busan 47392, Korea
| | - Nguyen Ky Phat
- Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan 47392, Korea; (R.P.J.); (N.P.L.); (N.K.P.); (Y.-S.C.)
- Department of Pharmacology and Pharmacogenomics Research Center, Inje University College of Medicine, Busan 47392, Korea
| | - Yong-Soon Cho
- Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan 47392, Korea; (R.P.J.); (N.P.L.); (N.K.P.); (Y.-S.C.)
- Department of Pharmacology and Pharmacogenomics Research Center, Inje University College of Medicine, Busan 47392, Korea
| | - Jae-Gook Shin
- Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan 47392, Korea; (R.P.J.); (N.P.L.); (N.K.P.); (Y.-S.C.)
- Department of Pharmacology and Pharmacogenomics Research Center, Inje University College of Medicine, Busan 47392, Korea
- Department of Clinical Pharmacology, Inje University Busan Paik Hospital, Busan 47392, Korea
- Correspondence: ; Tel.: +82-51-890-6709; Fax: +82-51-893-1232
| |
Collapse
|
7
|
Soedarsono S, Jayanti RP, Mertaniasih NM, Kusmiati T, Permatasari A, Indrawanto DW, Charisma AN, Yuliwulandari R, Long NP, Choi YK, Hoa PQ, Hoa PV, Cho YS, Shin JG. Development of population pharmacokinetics model of isoniazid in Indonesian patients with tuberculosis. Int J Infect Dis 2022; 117:8-14. [PMID: 35017103 DOI: 10.1016/j.ijid.2022.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/03/2022] [Accepted: 01/05/2022] [Indexed: 01/29/2023] Open
Abstract
OBJECTIVES No population pharmacokinetics (PK) model of isoniazid (INH) has been reported for the Indonesian population with tuberculosis (TB). Therefore, we aimed to develop a population PK model to optimize pharmacotherapy of INH on the basis of therapeutic drug monitoring (TDM) implementation in Indonesian patients with TB. MATERIALS AND METHODS INH concentrations, N-acetyltransferase 2 (NAT2) genotypes, and clinical data were collected from Dr. Soetomo General Academic Hospital, Indonesia. A nonlinear mixed-effect model was used to develop and validate the population PK model. RESULTS A total of 107 patients with TB (with 153 samples) were involved in this study. A one-compartment model with allometric scaling for bodyweight effect described well the PK of INH. The NAT2 acetylator phenotype significantly affected INH clearance. The mean clearance rates for the rapid, intermediate, and slow NAT2 acetylator phenotypes were 55.9, 37.8, and 17.7 L/h, respectively. Our model was well-validated through visual predictive checks and bootstrapping. CONCLUSIONS We established the population PK model for INH in Indonesian patients with TB using the NAT2 acetylator phenotype as a significant covariate. Our Bayesian forecasting model should enable optimization of TB treatment for INH in Indonesian patients with TB.
Collapse
Affiliation(s)
- Soedarsono Soedarsono
- Department of Pulmonology & Respiratory Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya 60131, Indonesia; Tuberculosis Study Group, Universitas Airlangga, Surabaya 60131, Indonesia; Dr. Soetomo General Hospital, Surabaya 60131, Indonesia.
| | - Rannissa Puspita Jayanti
- Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan 47392, Republic of Korea; Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan 47392, Republic of Korea
| | - Ni Made Mertaniasih
- Tuberculosis Study Group, Universitas Airlangga, Surabaya 60131, Indonesia; Dr. Soetomo General Hospital, Surabaya 60131, Indonesia; Department of Clinical Microbiology, Faculty of Medicine, Universitas Airlangga, Surabaya 60131, Indonesia
| | - Tutik Kusmiati
- Department of Pulmonology & Respiratory Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya 60131, Indonesia; Tuberculosis Study Group, Universitas Airlangga, Surabaya 60131, Indonesia; Dr. Soetomo General Hospital, Surabaya 60131, Indonesia
| | - Ariani Permatasari
- Department of Pulmonology & Respiratory Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya 60131, Indonesia; Tuberculosis Study Group, Universitas Airlangga, Surabaya 60131, Indonesia; Dr. Soetomo General Hospital, Surabaya 60131, Indonesia
| | - Dwi Wahyu Indrawanto
- Department of Pulmonology & Respiratory Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya 60131, Indonesia; Dr. Soetomo General Hospital, Surabaya 60131, Indonesia
| | - Anita Nur Charisma
- Department of Pulmonology & Respiratory Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya 60131, Indonesia; Dr. Soetomo General Hospital, Surabaya 60131, Indonesia
| | - Rika Yuliwulandari
- Department of Pharmacology, Faculty of Medicine, YARSI University, Jakarta 10510, Indonesia; Genetic Research Center, YARSI Research Institute, YARSI University, Jakarta 10510, Indonesia
| | - Nguyen Phuoc Long
- Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan 47392, Republic of Korea; Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan 47392, Republic of Korea
| | - Young-Kyung Choi
- Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan 47392, Republic of Korea
| | - Pham Quang Hoa
- Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan 47392, Republic of Korea; Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan 47392, Republic of Korea
| | - Pham Vinh Hoa
- Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan 47392, Republic of Korea; Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan 47392, Republic of Korea
| | - Yong-Soon Cho
- Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan 47392, Republic of Korea; Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan 47392, Republic of Korea
| | - Jae-Gook Shin
- Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan 47392, Republic of Korea; Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan 47392, Republic of Korea; Department of Clinical Pharmacology, Inje University Busan Paik Hospital, Busan 47392, Republic of Korea.
| |
Collapse
|
8
|
Li X, Zhang H, Xu L, Jin Y, Luo J, Li C, Zhao K, Zheng Y, Yu D, Zhao Y. miR-15a-3p Protects Against Isoniazid-Induced Liver Injury via Suppressing N-Acetyltransferase 2 Expression. Front Mol Biosci 2021; 8:752072. [PMID: 34888351 PMCID: PMC8651391 DOI: 10.3389/fmolb.2021.752072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/08/2021] [Indexed: 01/20/2023] Open
Abstract
Isoniazid (INH), an effective first-line drug for tuberculosis treatment, has been reported to be associated with hepatotoxicity for decades, but the underlying mechanisms are poorly understood. N-acetyltransferase 2 (NAT2) is a Phase II enzyme that specifically catalyzes the acetylation of INH, and NAT2 expression/activity play pivotal roles in INH metabolism, drug efficacy, and toxicity. In this study, we systematically investigated the regulatory roles of microRNA (miRNA) in NAT2 expression and INH-induced liver injury via a series of in silico, in vitro, and in vivo analyses. Four mature miRNAs, including hsa-miR-15a-3p, hsa-miR-628-5p, hsa-miR-1262, and hsa-miR-3132, were predicted to target the NAT2 transcript, and a negative correlation was observed between hsa-miR-15a-3p and NAT2 transcripts in liver samples. Further experiments serially revealed that hsa-miR-15a-3p was able to interact with the 3′-untranslated region (UTR) of NAT2 directly, suppressed the endogenous NAT2 expression, and then inhibited INH-induced NAT2 overexpression as well as INH-induced liver injury, both in liver cells and mouse model. In summary, our results identified hsa-miR-15a-3p as a novel epigenetic factor modulating NAT2 expression and as a protective module against INH-induced liver injury, and provided new clues to elucidate the epigenetic regulatory mechanisms concerning drug-induced liver injury (DILI).
Collapse
Affiliation(s)
- Xinmei Li
- School of Public Health, Qingdao University, Qingdao, China
| | - Heng Zhang
- School of Public Health, Qingdao University, Qingdao, China
| | - Lin Xu
- School of Public Health, Qingdao University, Qingdao, China
| | - Yuan Jin
- School of Public Health, Qingdao University, Qingdao, China
| | - Jiao Luo
- School of Public Health, Qingdao University, Qingdao, China
| | - Chuanhai Li
- School of Public Health, Qingdao University, Qingdao, China
| | - Kunming Zhao
- School of Public Health, Qingdao University, Qingdao, China
| | - Yuxin Zheng
- School of Public Health, Qingdao University, Qingdao, China
| | - Dianke Yu
- School of Public Health, Qingdao University, Qingdao, China
| | - Yanjie Zhao
- School of Public Health, Qingdao University, Qingdao, China
| |
Collapse
|
9
|
Shao Q, Mao X, Zhou Z, Huai C, Li Z. Research Progress of Pharmacogenomics in Drug-Induced Liver Injury. Front Pharmacol 2021; 12:735260. [PMID: 34552491 PMCID: PMC8450320 DOI: 10.3389/fphar.2021.735260] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/25/2021] [Indexed: 12/02/2022] Open
Abstract
Background: Drug-induced liver injury (DILI) is a common and serious adverse drug reaction with insufficient clinical diagnostic strategies and treatment methods. The only clinically well-received method is the Roussel UCLAF Causality Assessment Method scale, which can be applied to both individuals and prospective or retrospective studies. However, in severe cases, patients with DILI still would develop acute liver failure or even death. Pharmacogenomics, a powerful tool to achieve precision medicine, has been used to study the polymorphism of DILI related genes. Summary: We summarized the pathogenesis of DILI and findings on associated genes and variations with DILI, including but not limited to HLA genes, drug metabolizing enzymes, and transporters genes, and pointed out further fields for DILI related pharmacogenomics study to provide references for DILI clinical diagnosis and treatment. Key Messages: At present, most of the studies are mainly limited to CGS and GWAS, and there is still a long way to achieve clinical transformation. DNA methylation could be a new consideration, and ethnic differences and special populations also deserve attention.
Collapse
Affiliation(s)
- Qihui Shao
- Department of Pharmacy, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinyu Mao
- Department of Pharmacy, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhixuan Zhou
- Department of Pharmacy, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cong Huai
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Zhiling Li
- Department of Pharmacy, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
10
|
Nguyen PTT, Hoang DV, Pham KM, Nguyen HT. A Multiple Logistic Regression Model Based on Gamma-Glutamyl Transferase as a Biomarker for Early Prediction of Drug-Induced Liver Injury in Vietnamese Patients. J Clin Pharmacol 2021; 62:110-117. [PMID: 34415063 DOI: 10.1002/jcph.1955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/17/2021] [Indexed: 11/08/2022]
Abstract
The discovery of new biomarkers and the causality of drug-induced liver injury (DILI) is a major focus in modern medicine. Alcoholism is considered a risk factor for DILI. However, the extraction and assessment of alcohol history are difficult due to noncooperation by patients and intermittent management. Therefore, we conducted a case-control study of 1277 patients diagnosed with DILI according to the Roussel Uclaf Causality Assessment Method scale to evaluate gamma-glutamyl transferase (GGT) as a biomarker for predicting DILI in Vietnamese patients, where the proportion of alcoholism is quite high. Further, we built and validated a logistic regression model to predict the risk of DILI in hospitalized patients. The risk of DILI increased by 10% for 1 UI/L higher levels of GGT before prescription (odds ratio [OR], 1.01; 95% confidence interval [CI], 1.00-1.01). A history of alcoholism was not a risk factor for DILI occurrence (OR, 1.83; 95%CI, 0.99-3.04; P = .057). A logistic regression model was successfully built and validated based on age; sex; initial levels of alanine aminotransferase, alkaline phosphatate, GGT, likelihood score of the suspected drug, and history of liver disease; the area under the receiver operating characteristic curve of the model was 0.883 (95%CI, 0.868-0.897). Our results thus suggest the necessity of exercising caution when prescribing to patients without a history of alcoholism but having high GGT levels. This model can be applied clinically to assess the risk of DILI before prescribing to reduce the risk of DILI in the patient.
Collapse
Affiliation(s)
- Phuong Thi Thu Nguyen
- Hai Phong University of Medicine and Pharmacy, Hai Phong, Vietnam.,Hai Phong International Hospital, Haiphong, Vietnam
| | - Dung Van Hoang
- Hai Phong University of Medicine and Pharmacy, Hai Phong, Vietnam
| | - Khue Minh Pham
- Hai Phong University of Medicine and Pharmacy, Hai Phong, Vietnam
| | - Hoi Thanh Nguyen
- Hai Phong University of Medicine and Pharmacy, Hai Phong, Vietnam.,Hai Phong International Hospital, Haiphong, Vietnam
| |
Collapse
|
11
|
Sahiratmadja E, Rini IA, Penggoam S, Charles A, Maskoen AM, Parwati I. Acetylator Status Among Newly Diagnosed and Recurrent Tuberculosis Patients from Kupang, Eastern Part of Indonesia. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2021; 14:737-744. [PMID: 34188520 PMCID: PMC8235940 DOI: 10.2147/pgpm.s311952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/31/2021] [Indexed: 11/23/2022]
Abstract
Purpose N-acetyltransferase-2 enzyme in the liver, encoded by NAT2 gene, plays a central role in metabolizing tuberculosis (TB) drug isoniazid (INH). Low compliance of patients toward six-month TB therapy and internal host factors, ie comorbid diseases, immune status, and genetic profiles, are factors leading to treatment failure and recurrence of pulmonary TB infection. This study aimed to explore the NAT2 acetylator status among newly diagnosed and recurrent pulmonary TB patients in eastern part of Indonesia. Patients and Methods Archived DNA of TB patients (n=124) and healthy controls (n=124) were sequenced, and NAT2 acetylator status was determined, then categorized as fast, intermediate, or slow acetylators. Pulmonary TB patients who had no previous TB treatment history were designated as newly diagnosed pulmonary TB, whereas patients with a history of TB treatment were designated as recurrent pulmonary TB. The demographic, clinical, and microbiological data between pulmonary TB groups were compared, and acetylator status was described among groups. Results Male was more significantly prevalent in the recurrent pulmonary TB group (p=0.025), and anemia was more prevalent in new pulmonary TB (p=0.003). The acetylator status in pulmonary TB patients compared to healthy controls were rapid (33.9% vs 48.1%), intermediate (57.8% vs 33.0%), and slow acetylators (8.3% vs 18.9%), respectively. Interestingly, the rapid and intermediate acetylator were significantly more prevalent in pulmonary TB patients than in healthy controls (p=0.023, OR=2.58 (1.12–5.97). Furthermore, no differences were found in acetylator status between new and recurrent pulmonary (p=0.776). Conclusion Rapid and intermediate acetylators status predominated the pulmonary TB patients in Kupang, eastern part of Indonesia, postulating different genetic makeup in this area. As the pulmonary TB patients in Kupang exhibit more rapid acetylator phenotype, the acetylator status might be relevant to be checked before TB therapy for adjusting treatment dose to prevent drug resistances.
Collapse
Affiliation(s)
- Edhyana Sahiratmadja
- Division of Biochemistry and Molecular Biology, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Ika Agus Rini
- Health Research Unit, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Simeon Penggoam
- Laboratorium Mikrobiologi, RSUD Prof. Dr. WZ Johannes, Kupang, Indonesia
| | - Afandi Charles
- Health Research Unit, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Ani Melani Maskoen
- Division of Biochemistry and Molecular Biology, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia.,Health Research Unit, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Ida Parwati
- Department of Clinical Pathology, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
12
|
Yuliwulandari R, Prayuni K, Razari I, Susilowati RW, Zulhamidah Y, Soedarsono S, Sofro ASM, Tokunaga K. Genetic characterization of N-acetyltransferase 2 variants in acquired multidrug-resistant tuberculosis in Indonesia. Pharmacogenomics 2021; 22:157-163. [PMID: 33399479 DOI: 10.2217/pgs-2020-0163] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background: Owing to the high resistance rate of tuberculosis (TB) to isoniazid, which is metabolized by N-acetyltransferase 2 (NAT2), we investigated the associations between NAT2 variants and multidrug-resistant (MDR)-TB. Materials & methods: The acetylator status based on NAT2 haplotypes of 128 patients with MDR-TB in Indonesia were compared with our published data from patients with anti-TB drug-induced liver injury (AT-DILI), TB and the general population. Results: NAT2*4 was more frequent in the MDR-TB group than in the AT-DILI group, TB controls and general controls. NAT2*4/*4 was significantly more frequent in patients with MDR-TB than in those with AT-DILI. NAT2*5B/7B, *6A/6A and *7B/*7B were detected at lower frequencies in patients with AT-DILI. Rapid acetylators were significantly more frequent in patients with MDR-TB than in those with AT-DILI. Conclusion: These results provide an initial data for optimizing TB treatment in the Indonesian population, and suggest that NAT2 genotyping may help to select appropriate treatment by predicting TB-treatment effect.
Collapse
Affiliation(s)
- Rika Yuliwulandari
- Department of Pharmacology, Faculty of Medicine, YARSI University, Jakarta, Indonesia.,Genetic Research Center, YARSI Research Institute, YARSI University, Jakarta, Indonesia
| | - Kinasih Prayuni
- Genetic Research Center, YARSI Research Institute, YARSI University, Jakarta, Indonesia
| | - Intan Razari
- YARSI Research Institute, YARSI University, Jakarta, Indonesia
| | - Retno W Susilowati
- Genetic Research Center, YARSI Research Institute, YARSI University, Jakarta, Indonesia.,Department of Histology, Faculty of Medicine, YARSI University, Jakarta, Indonesia
| | - Yenni Zulhamidah
- Department of Anatomy, Faculty of Medicine, YARSI University, Jakarta, Indonesia
| | - Soedarsono Soedarsono
- Department of Pulmonology & Respiratory Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia.,Dr. Soetomo General Hospital, Surabaya, Indonesia
| | - Abdul Salam M Sofro
- Graduate School, YARSI University, Jakarta, Indonesia.,Department of Biochemistry, Faculty of Medicine, YARSI University, Jakarta, Indonesia
| | - Katsushi Tokunaga
- Genome Medical Science Project (Toyama), National Center for Global Health & Medicine, Tokyo, Japan
| |
Collapse
|