1
|
Ferreira do Couto ML, Fonseca S, Pozza DH. Pharmacogenetic Approaches in Personalized Medicine for Postoperative Pain Management. Biomedicines 2024; 12:729. [PMID: 38672085 PMCID: PMC11048650 DOI: 10.3390/biomedicines12040729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/08/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Despite technical and pharmacological advancements in recent years, including optimized therapies and personalized medicine, postoperative pain management remains challenging and sometimes undertreated. This review aims to summarize and update how genotype-guided therapeutics within personalized medicine can enhance postoperative pain management. Several studies in the area have demonstrated that genotype-guided therapy has the ability to lower opioid consumption and improve postoperative pain. Gene mutations, primarily OPRM1, CYP2D6, CYP2C9, COMT and ABCB1, have been shown to exert nuanced influences on analgesic response and related pharmacological outcomes. This review underscores the integration of pharmacogenetic-guided personalized medicine into perioperative care, particularly when there is uncertainty regarding opioid prescriptions. This approach leads to superior outcomes in terms of postoperative pain relief and reduced morbidity for numerous patients.
Collapse
Affiliation(s)
- Maria Leonor Ferreira do Couto
- Experimental Biology Unit, Department of Biomedicine, Faculty of Medicine of Porto, University of Porto, 4200-319 Porto, Portugal;
| | - Sara Fonseca
- Anesthesiology Department, São João University Hospital Centre, 4200-135 Porto, Portugal;
| | - Daniel Humberto Pozza
- Experimental Biology Unit, Department of Biomedicine, Faculty of Medicine of Porto, University of Porto, 4200-319 Porto, Portugal;
- Institute for Research and Innovation in Health and IBMC (i3S), University of Porto, 4200-135 Porto, Portugal
| |
Collapse
|
2
|
Farinella R, Falchi F, Tavanti A, Tuoni C, Di Nino MG, Filippi L, Ciantelli M, Rizzato C, Campa D. The genetic variant SLC2A1 -rs1105297 is associated with the differential analgesic response to a glucose-based treatment in newborns. Pain 2024; 165:657-665. [PMID: 37703430 PMCID: PMC10859852 DOI: 10.1097/j.pain.0000000000003051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/21/2023] [Accepted: 07/27/2023] [Indexed: 09/15/2023]
Abstract
ABSTRACT Neonatal pain is a critical issue in clinical practice. The oral administration of glucose-based solutions is currently one of the most common and effective nonpharmacologic strategies for neonatal pain relief in daily minor procedures. However, a varying degree of analgesic efficacy has been reported for this treatment. Environmental, maternal, and genetic factors may explain this variability and potentially allow for a personalized analgesic approach, maximizing therapeutic efficacy and preventing side effects. We investigated the exposome (ie, the set of clinical and anthropometric variables potentially affecting the response to the therapy) and the genetic variability of the noradrenaline transporter gene (solute carrier family 6 member 2 [ SLC6A2 ]) and 2 glucose transporter genes (solute carrier family 2 member 1 [ SLC2A1 ] and 2 [ SLC2A2 ]) in relation to the neonatal analgesic efficacy of a 33% glucose solution. The study population consisted in a homogeneous sample of more than 1400 healthy term newborns. No association for the exposome was observed, whereas a statistically significant association between the G allele of SLC2A1 -rs1105297 and a fourfold decreased probability of responding to the therapy was identified after multiple-testing correction (odds ratio of 3.98, 95% confidence interval 1.95-9.17; P = 4.05 × 10 -4 ). This allele decreases the expression of SLC2A1-AS1 , causing the upregulation of SLC2A1 in the dorsal striatum, which has been suggested to be involved in reward-related processes through the binding of opioids to the striatal mu-opioid receptors. Altogether, these results suggest the involvement of SLC2A1 in the analgesic process and highlight the importance of host genetics for defining personalized analgesic treatments.
Collapse
Affiliation(s)
| | - Fabio Falchi
- Department of Biology, University of Pisa, Pisa, Italy
| | | | - Cristina Tuoni
- Division of Neonatology, Santa Chiara Hospital, Pisa, Italy
| | | | - Luca Filippi
- Neonatology and Neonatal Intensive Care Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Massimiliano Ciantelli
- Neonatology and Neonatal Intensive Care Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- Centro Di Formazione e Simulazione Neonatale “NINA”, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Cosmeri Rizzato
- Department of Translational Research and of New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Daniele Campa
- Department of Biology, University of Pisa, Pisa, Italy
| |
Collapse
|
3
|
Dzierba AL, Stollings JL, Devlin JW. A pharmacogenetic precision medicine approach to analgesia and sedation optimization in critically ill adults. Pharmacotherapy 2023; 43:1154-1165. [PMID: 36680385 DOI: 10.1002/phar.2768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/17/2022] [Accepted: 12/21/2022] [Indexed: 01/22/2023]
Abstract
Precision medicine is a growing field in critical care. Research increasingly demonstrated pharmacogenomic variability to be an important determinant of analgesic and sedative drug response in the intensive care unit (ICU). Genome-wide association and candidate gene finding studies suggest analgesic and sedatives tailored to an individual's genetic makeup, environmental adaptations, in addition to several other patient- and drug-related factors, will maximize effectiveness and help mitigate harm. However, the number of pharmacogenetic studies in ICU patients remains small and no prospective studies have been published using pharmacogenomic data to optimize analgesic or sedative therapy in critically ill patients. Current recommendations for treating ICU pain and agitation are based on controlled studies having low external validity, including the failure to consider pharmacogenomic factors affecting response. Use of a precision medicine approach to individualize pharmacotherapy focused on optimizing ICU patient comfort and safety may improve the outcomes of critically ill adults. Additionally, benefits and risks of analgesic and/or sedative therapy in an individual may be informed with large, standardized datasets. The purpose of this review was to describe a precision medicine approach focused on optimizing analgesic and sedative therapy in individual ICU patients to optimize clinical outcomes and reduce safety concerns.
Collapse
Affiliation(s)
- Amy L Dzierba
- Department of Pharmacy, New York-Presbyterian Hospital, New York, New York, USA
- Center for Acute Respiratory Failure, Columbia University College of Physicians and Surgeons and New York-Presbyterian Hospital, New York, New York, USA
| | - Joanna L Stollings
- Department of Pharmaceutical Services, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Critical Illness, Brain Dysfunction, and Survivorship (CIBS) Center, Nashville, Tennessee, USA
| | - John W Devlin
- School of Pharmacy, Northeastern University, Boston, Massachusetts, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Pizzolato K, Thacker D, Del Toro-Pagán NM, Amin NS, Hanna A, Turgeon J, Michaud V. Utilizing Pharmacogenomics Results to Determine Opioid Appropriateness and Improve Pain Management in a Patient with Osteoarthritis. Pharmgenomics Pers Med 2022; 15:943-950. [PMID: 36393978 PMCID: PMC9651068 DOI: 10.2147/pgpm.s385272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/21/2022] [Indexed: 11/09/2022] Open
Abstract
The opioid epidemic in the United States has exposed the need for providers to limit opioid dispensing and identify at-risk patients prior to prescribing opioids. With pharmacogenomic testing, clinicians can analyze hundreds of medications—including commonly prescribed opioids—against genetic results to understand and predict risk and response. Moreover, knowledge of genotypic variants and altered function can help decrease trial and error prescribing, identify patients at-risk for adverse drug events, and improve pain control. This patient case demonstrates how pharmacogenomic test results identified drug–gene interactions and provided insight about a patient’s inadequate opioid therapy response. With pharmacogenomic information, the patient’s healthcare team discontinued opioid therapy and selected a more appropriate regimen for osteoarthritis (ie, celecoxib), resulting in improved pain control and quality of life.
Collapse
Affiliation(s)
- Katie Pizzolato
- Tabula Rasa Healthcare, Office of Translational Research and Residency Programs, Moorestown, NJ, 08057, USA
| | - David Thacker
- Tabula Rasa HealthCare, Precision Pharmacotherapy Research and Development Institute, Orlando, FL, 32827, USA
| | | | - Nishita S Amin
- Tabula Rasa Healthcare, Office of Translational Research and Residency Programs, Moorestown, NJ, 08057, USA
| | - Abeer Hanna
- VieCare Butler, Program of All-Inclusive Care for the Elderly (PACE), Butler, PA, 16001, USA
| | - Jacques Turgeon
- Tabula Rasa HealthCare, Precision Pharmacotherapy Research and Development Institute, Orlando, FL, 32827, USA
- Faculty of Pharmacy, Université de Montréal, Montréal, QC, H2L, Canada
| | - Veronique Michaud
- Tabula Rasa HealthCare, Precision Pharmacotherapy Research and Development Institute, Orlando, FL, 32827, USA
- Faculty of Pharmacy, Université de Montréal, Montréal, QC, H2L, Canada
- University of Montreal Hospital Research Center (CRCHUM), Montréal, QC, H2X 0A9, Canada
- Correspondence: Veronique Michaud, Precision Pharmacotherapy Research and Development Institute, 13485 Veterans Way, Orlando, FL, 32827, USA, Tel +856-938-8697, Email
| |
Collapse
|
5
|
Zoghi S, Masoudi MS, Taheri R. The Evolving Role of Next Generation Sequencing in Pediatric Neurosurgery: a Call for Action for Research, Clinical Practice, and Optimization of Care. World Neurosurg 2022; 168:232-242. [PMID: 36122859 DOI: 10.1016/j.wneu.2022.09.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022]
Abstract
NGS (Next-Generation Sequencing) is one of the most promising technologies that have truly revolutionized many aspects of clinical practice in recent years. It has been and is increasingly applied in many disciplines of medicine; however, it appears that pediatric neurosurgery despite its great potential has not truly embraced this new technology and is hesitant to employ it in its routine practice and guidelines. In this review, we briefly summarized the developments that lead to the establishment of NGS technology, reviewed the current applications and potentials of NGS in the disorders treated by pediatric neurosurgeons, and lastly discuss the steps we need to take to better harness NGS in pediatric neurosurgery.
Collapse
Affiliation(s)
- Sina Zoghi
- Department of Neurosurgery, Shiraz University of Medical Sciences, Shiraz, Iran; Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Reza Taheri
- Department of Neurosurgery, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|