1
|
Koomdee N, Kloypan C, Jinda P, Rachanakul J, Jantararoungtong T, Sukprasong R, Prommas S, Nuntharadthanaphong N, Puangpetch A, Ershadian M, John S, Biswas M, Sukasem C. Evolution of HLA-B Pharmacogenomics and the Importance of PGx Data Integration in Health Care System: A 10 Years Retrospective Study in Thailand. Front Pharmacol 2022; 13:866903. [PMID: 35450046 PMCID: PMC9016335 DOI: 10.3389/fphar.2022.866903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/17/2022] [Indexed: 11/13/2022] Open
Abstract
Background: The HLA-B is the most polymorphic gene, play a crucial role in drug-induced hypersensitivity reactions. There is a lot of evidence associating several risk alleles to life-threatening adverse drug reactions, and a few of them have been approved as valid biomarkers for predicting life-threatening hypersensitivity reactions. Objectives: The objective of this present study is to present the progression of HLA-B pharmacogenomics (PGx) testing in the Thai population during a 10‐year period, from 2011 to 2020. Methods: This was a retrospective observational cohort study conducted at the Faculty of Medicine Ramathibodi Hospital. Overall, 13,985 eligible patients who were tested for HLA-B risk alleles between periods of 2011–2020 at the study site were included in this study. Results: The HLA PGx testing has been increasing year by year tremendously, 94 HLA-B testing was done in 2011; this has been raised to 2,880 in 2020. Carbamazepine (n = 4,069, 33%), allopurinol (n = 4,675, 38%), and abacavir (n = 3,246, 26%) were the most common drugs for which the HLA-B genotyping was performed. HLA-B*13:01, HLA-B*15:02 and HLA-B*58:01 are highly frequent, HLA-B*51:01 and HLA-B*57:01 are moderately frequent alleles that are being associated with drug induced hypersensitivity. HLA-B*59:01 and HLA-B*38:01 theses alleles are rare but has been reported with drug induced toxicity. Most of the samples were from state hospital (50%), 36% from private clinical laboratories and 14% from private hospitals. Conclusion: According to this study, HLA-B PGx testing is increasing substantially in Thailand year after year. The advancement of research in this field, increased physician awareness of PGx, and government and insurance scheme reimbursement assistance could all be factors. Incorporating PGx data, along with other clinical and non-clinical data, into clinical decision support systems (CDS) and national formularies, on the other hand, would assist prescribers in prioritizing therapy for their patients. This will also aid in the prediction and prevention of serious adverse drug reactions.
Collapse
Affiliation(s)
- Napatrupron Koomdee
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Chiraphat Kloypan
- Unit of Excellence in Integrative Molecular Biomedicine, School of Allied Health Sciences, University of Phayao, Phayao, Thailand.,Division of Clinical Immunology and Transfusion Science, Department of Medical Technology, School of Allied Health Sciences, University of Phayao, Phayao, Thailand
| | - Pimonpan Jinda
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Jiratha Rachanakul
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Thawinee Jantararoungtong
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Rattanaporn Sukprasong
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Santirhat Prommas
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Nutthan Nuntharadthanaphong
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Apichaya Puangpetch
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Maliheh Ershadian
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Shobana John
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Mohitosh Biswas
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand.,Department of Pharmacy, University of Rajshahi, Rajshahi, Bangladesh
| | - Chonlaphat Sukasem
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand.,Pharmacogenomics and Precision Medicine, The Preventive Genomics and Family Check-up Services Center, Bumrungrad International Hospital, Bangkok, Thailand.,MRC Centre for Drug Safety Science, Department of Pharmacology and Therapeutics, Molecular and Integrative Biology, Institute of Systems, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
2
|
Barker CIS, Groeneweg G, Maitland-van der Zee AH, Rieder MJ, Hawcutt DB, Hubbard TJ, Swen JJ, Carleton BC. Pharmacogenomic testing in paediatrics: clinical implementation strategies. Br J Clin Pharmacol 2021; 88:4297-4310. [PMID: 34907575 PMCID: PMC9544158 DOI: 10.1111/bcp.15181] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/22/2021] [Accepted: 11/09/2021] [Indexed: 11/27/2022] Open
Abstract
Pharmacogenomics (PGx) relates to the study of genetic factors determining variability in drug response. Implementing PGx testing in paediatric patients can enhance drug safety, helping to improve drug efficacy or reduce the risk of toxicity. Despite its clinical relevance, the implementation of PGx testing in paediatric practice to date has been variable and limited. As with most paediatric pharmacological studies, there are well‐recognised barriers to obtaining high‐quality PGx evidence, particularly when patient numbers may be small, and off‐label or unlicensed prescribing remains widespread. Furthermore, trials enrolling small numbers of children can rarely, in isolation, provide sufficient PGx evidence to change clinical practice, so extrapolation from larger PGx studies in adult patients, where scientifically sound, is essential. This review paper discusses the relevance of PGx to paediatrics and considers implementation strategies from a child health perspective. Examples are provided from Canada, the Netherlands and the UK, with consideration of the different healthcare systems and their distinct approaches to implementation, followed by future recommendations based on these cumulative experiences. Improving the evidence base demonstrating the clinical utility and cost‐effectiveness of paediatric PGx testing will be critical to drive implementation forwards. International, interdisciplinary collaborations will enhance paediatric data collation, interpretation and evidence curation, while also supporting dedicated paediatric PGx educational initiatives. PGx consortia and paediatric clinical research networks will continue to play a central role in the streamlined development of effective PGx implementation strategies to help optimise paediatric pharmacotherapy.
Collapse
Affiliation(s)
- Charlotte I S Barker
- Department of Medical & Molecular Genetics, King's College London, London, UK.,Department of Clinical Genetics, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Gabriella Groeneweg
- Division of Translational Therapeutics, Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada.,Pharmaceutical Outcomes Programme, BC Children's Hospital, Vancouver, British Columbia, Canada
| | - Anke H Maitland-van der Zee
- Respiratory Medicine/Pediatric Respiratory Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Michael J Rieder
- Departments of Paediatrics, Physiology and Pharmacology and Medicine, Western University, London, Ontario, Canada.,Molecular Medicine Group, Robarts Research Institute, London, Ontario, Canada
| | - Daniel B Hawcutt
- Department of Women's and Children's Health, University of Liverpool, Liverpool, UK.,NIHR Clinical Research Facility, Alder Hey Children's Hospital, Liverpool, UK
| | - Tim J Hubbard
- Department of Medical & Molecular Genetics, King's College London, London, UK.,Genomics England, London, UK
| | - Jesse J Swen
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands.,Leiden Network for Personalized Therapeutics, Leiden, The Netherlands
| | - Bruce C Carleton
- Division of Translational Therapeutics, Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada.,Pharmaceutical Outcomes Programme, BC Children's Hospital, Vancouver, British Columbia, Canada.,BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| |
Collapse
|
3
|
Stewart AGA, Zimmerman PA, McCarthy JS. Genetic Variation of G6PD and CYP2D6: Clinical Implications on the Use of Primaquine for Elimination of Plasmodium vivax. Front Pharmacol 2021; 12:784909. [PMID: 34899347 PMCID: PMC8661410 DOI: 10.3389/fphar.2021.784909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/05/2021] [Indexed: 12/03/2022] Open
Abstract
Primaquine, an 8-aminoquinoline, is the only medication approved by the World Health Organization to treat the hypnozoite stage of Plasmodium vivax and P. ovale malaria. Relapse, triggered by activation of dormant hypnozoites in the liver, can occur weeks to years after primary infection, and provides the predominant source of transmission in endemic settings. Hence, primaquine is essential for individual treatment and P. vivax elimination efforts. However, primaquine use is limited by the risk of life-threatening acute hemolytic anemia in glucose-6-phosphate dehydrogenase (G6PD) deficient individuals. More recently, studies have demonstrated decreased efficacy of primaquine due to cytochrome P450 2D6 (CYP2D6) polymorphisms conferring an impaired metabolizer phenotype. Failure of standard primaquine therapy has occurred in individuals with decreased or absent CYP2D6 activity. Both G6PD and CYP2D6 are highly polymorphic genes, with considerable geographic and interethnic variability, adding complexity to primaquine use. Innovative strategies are required to overcome the dual challenge of G6PD deficiency and impaired primaquine metabolism. Further understanding of the pharmacogenetics of primaquine is key to utilizing its full potential. Accurate CYP2D6 genotype-phenotype translation may optimize primaquine dosing strategies for impaired metabolizers and expand its use in a safe, efficacious manner. At an individual level the current challenges with G6PD diagnostics and CYP2D6 testing limit clinical implementation of pharmacogenetics. However, further characterisation of the overlap and spectrum of G6PD and CYP2D6 activity may optimize primaquine use at a population level and facilitate region-specific dosing strategies for mass drug administration. This precision public health approach merits further investigation for P. vivax elimination.
Collapse
Affiliation(s)
| | - Peter A Zimmerman
- The Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH, United States
| | - James S McCarthy
- Victorian Infectious Diseases Service, Royal Melbourne Hospital, Melbourne, VIC, Australia.,Peter Doherty Institute of Infection and Immunity, Melbourne, VIC, Australia
| |
Collapse
|
4
|
Lu YS, Yeo W, Yap YS, Park YH, Tamura K, Li H, Cheng R. An Overview of the Treatment Efficacy and Side Effect Profile of Pharmacological Therapies in Asian Patients with Breast Cancer. Target Oncol 2021; 16:701-741. [PMID: 34582007 PMCID: PMC8613101 DOI: 10.1007/s11523-021-00838-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2021] [Indexed: 11/05/2022]
Abstract
Breast cancer (BC) among Asians accounts for ~ 40% of the global BC burden. Differences in BC risk, presentation, tumor biology, and response to treatment exist between Asian and non-Asian patients; however, Asian patients are often under-represented in clinical trials. This narrative review summarizes the efficacy and safety of pharmacological therapies for BC in Asian populations, with a focus on outcomes in Asian versus non-Asian patients treated with chemotherapy, hormone therapy, anti-human epidermal growth factor receptor-2 targeted therapies, cyclin-dependent kinase 4/6 (CDK4/6) inhibitors, mammalian target of rapamycin inhibitors, bone-targeted therapies, poly-ADP ribose polymerase, phosphoinositide 3-kinase, and checkpoint inhibitors. While most therapies have demonstrated comparable efficacy and safety in Asian and non-Asian patients with BC, differences that are largely attributed to pharmacogenetic variations between populations exist. Pharmacogenetic differences may contribute to a reduced clinical benefit of tamoxifen, whereas improved clinical outcomes have been reported with tyrosine kinase inhibitors and CDK4/6 inhibitors in Asian versus non-Asian patients with BC. In particular, Asian patients have an increased incidence of hematological toxicities, including neutropenia, although adverse events can be effectively managed using dose adjustments. Recent trials with CDK4/6 inhibitors have increased efforts to include Asians within study subsets. Future clinical trials enrolling higher numbers of Asian patients, and an increased understanding of differences in patient and tumor genetics between Asians and non-Asians, have the potential to incrementally improve the management of BC in Asian patients.
Collapse
Affiliation(s)
- Yen-Shen Lu
- Department of Oncology, National Taiwan University Hospital, No. 7, Chung Shan South Road, Taipei, 100, Taiwan.
| | - Winnie Yeo
- Department of Clinical Oncology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Yoon-Sim Yap
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Yeon Hee Park
- Sungkyunkwan University, SKKU-Samsung Medical Centre, Seoul, South Korea
| | - Kenji Tamura
- Department of Breast and Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Huiping Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Breast Oncology, Peking University Cancer Hospital and Institute, Beijing, China
| | | |
Collapse
|
5
|
Lauschke VM, Milani L, Ingelman-Sundberg M. Pharmacogenomic Biomarkers for Improved Drug Therapy—Recent Progress and Future Developments. AAPS JOURNAL 2017; 20:4. [DOI: 10.1208/s12248-017-0161-x] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/06/2017] [Indexed: 12/13/2022]
|
6
|
Marsh S, King CR, Van Booven DJ, Revollo JY, Gilman RH, McLeod HL. Pharmacogenomic assessment of Mexican and Peruvian populations. Pharmacogenomics 2016; 16:441-8. [PMID: 25916516 DOI: 10.2217/pgs.15.10] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Clinically relevant polymorphisms often demonstrate population-specific allele frequencies. Central and South America remain largely uncategorized in the context of pharmacogenomics. MATERIALS & METHODS We assessed 15 polymorphisms from 12 genes (ABCB1 3435C>T, ABCG2 Q141K, CYP1B1*3, CYP2C19*2, CYP3A4*1B, CYP3A5*3C, ERCC1 N118N, ERCC2 K751Q, GSTP1 I105V, TPMT 238G>C, TPMT 460G>A, TPMT 719A>G, TYMS TSER, UGT1A1*28 and UGT1A1 -3156G>A) in 81 Peruvian and 95 Mexican individuals. RESULTS Six polymorphism frequencies differed significantly between the two populations: ABCB1 3435C>T, CYP1B1*3, GSTP1 I105V, TPMT 460G>A, UGT1A1*28 and UGT1A1 -3156G>A. The pattern of observed allele frequencies for all polymorphisms could not be accurately estimated from any single previously studied population. CONCLUSION This highlights the need to expand the scope of geographic data for use in pharmacogenomics studies.
Collapse
Affiliation(s)
- Sharon Marsh
- Faculty of Pharmacy & Pharmaceutical Sciences, 3142F Katz Centre for Pharmacy & Health Research, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | | | | | | | | | | |
Collapse
|
7
|
Rooij TV, Roederer M, Wareham T, Rooij IV, McLeod HL, Marsh S. Fast and frugal trees: translating population-based pharmacogenomics to medication prioritization. Per Med 2015; 12:117-128. [DOI: 10.2217/pme.14.66] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Aim: Fast and frugal decision trees (FFTs) can simplify clinical decision making by providing a heuristic approach to contextual guidance. We wanted to use FFTs for pharmacogenomic knowledge translation at point-of-care. Materials & Methods: The Pharmacogenomics for Every Nation Initiative (PGENI), an international nonprofit organization, collects data on regional polymorphisms as a predictor of metabolism for individual drugs and dosages. We advanced FFTs to work with PGENI pharmacogenomic data to produce medication recommendations that are accurate, transparent and straightforward to automate. Results: By streamlining medication selection processes in the PGENI workflow, information technology applications can now be deployed. Conclusion: We developed a decision tree approach that can translate pharmacogenomic data to provide up-to-date recommended care for populations based on their medication-specific markers.
Collapse
Affiliation(s)
- Tibor van Rooij
- Faculty of Pharmacy & Pharmaceutical Sciences, Katz Group Centre for Pharmacy & Health Research, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Mary Roederer
- Eshelman School of Pharmacy, Department of Pharmacy Practice, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Todd Wareham
- Department of Computer Science, Memorial University of Newfoundland, St. John's, Newfoundland & Labrador, Canada
| | - Iris van Rooij
- Donders Institute for Brain, Cognition & Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | | | - Sharon Marsh
- Faculty of Pharmacy & Pharmaceutical Sciences, Katz Group Centre for Pharmacy & Health Research, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| |
Collapse
|
8
|
|
9
|
Mette L, Mitropoulos K, Vozikis A, Patrinos GP. Pharmacogenomics and public health: implementing 'populationalized' medicine. Pharmacogenomics 2012; 13:803-13. [PMID: 22594512 DOI: 10.2217/pgs.12.52] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Pharmacogenomics are frequently considered in personalized medicine to maximize therapeutic benefits and minimize adverse drug reactions. However, there is a movement towards applying this technology to populations, which may produce the same benefits, while saving already scarce health resources. We conducted a narrative literature review to examine how pharmacogenomics and public health can constructively intersect, particularly in resource-poor settings. We identified 27 articles addressing the research question. Real and theoretical connections between public health and pharmacogenomics were presented in the areas of disease, drugs and public policy. Suggested points for consideration, such as educational efforts and cultural acceptability, were also provided. Including pharmacogenomics in public health can result in both health-related and economic benefits. Including pharmacogenomics in public health holds promise but deserves extensive consideration. To fully realize the benefits of this technology, support is needed from private, public and governmental sectors in order to ensure the appropriateness within a society.
Collapse
Affiliation(s)
- Lindsey Mette
- Charité - Universitätsmedizin, Berlin School of Public Health, Berlin, Germany
| | | | | | | |
Collapse
|
10
|
Dandara C, Lombard Z, Du Plooy I, McLellan T, Norris SA, Ramsay M. Genetic variants in CYP (-1A2, -2C9, -2C19, -3A4 and -3A5), VKORC1 and ABCB1 genes in a black South African population: a window into diversity. Pharmacogenomics 2012; 12:1663-70. [PMID: 22118051 DOI: 10.2217/pgs.11.106] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
AIM The frequencies of variants of pharmacogenetic importance differ across populations. African populations exhibit the greatest genetic heterogeneity, cautioning against extrapolating results among African groups. The aim of this study was to genotype pharmacogenetically relevant variants in black South Africans, to expand the limited data set available for indigenous African populations. SUBJECTS & METHODS A total of 14 SNPs associated with seven genes known to influence drug metabolism or transport (CYP1A2, CYP2C19, CYP2C9, CYP3A4, CYP3A5, VKORC1 and ABCB1) were investigated in a South African black (SAB) population (n = 993) and allele frequencies were compared with populations of African, Asian and European origin. RESULTS The majority of SNPs in the SAB demonstrated significant allele frequency differences when compared with both Europeans and Asians. There was greater similarity between the SAB and the Luhya (Kenya) and the Yoruba (Nigeria), than with Maasai (Kenya) individuals. The CYP2C9 SNP (rs1799853) was not polymorphic in the SAB and two VKORC1 SNPs (rs17708472 and rs9934438) had low variant allele frequencies, limiting their relevance to warfarin dose in this population. Population differences are emphasized by the significant differences in ABCB1 and the CYP3A gene family allele frequencies, with implications for drug metabolism and transport. CONCLUSION This study highlights the importance of investigating and documenting genetic variation at loci of pharmacogenetic relevance among different populations since this information could be used to inform drug efficacy, safety and recommended dosage.
Collapse
Affiliation(s)
- Collet Dandara
- School of Molecular & Cell Biology, University of the Witwatersrand, Johannesburg, South Africa
| | | | | | | | | | | |
Collapse
|
11
|
Roederer MW, Sanchez-Giron F, Kalideen K, Kudzi W, McLeod HL, Zhang W. Pharmacogenetics and rational drug use around the world. Pharmacogenomics 2011; 12:897-905. [PMID: 21692619 DOI: 10.2217/pgs.11.17] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The WHO embraces evidence-based medicine to formulate an essential medicines list (EML) considering disease prevalence, drug efficacy, drug safety and cost-effectiveness. The EML is used by developing countries to build a national formulary. As pharmacogenetics in developed countries evolves, the Pharmacogenetics for Every Nation Initiative (PGENI) convened with representatives from China, Mexico, Ghana and South Africa in August 2009 to evaluate the use of human pharmacogenetics to enhance global drug use policy. The diseases causing mortality, the lack of integration of pharmacovigilance at the national formulary level, the pharmacogenetics research agenda and pharmacogenetics clinician education did not differ greatly among the countries. While there are many unanswered questions, systematically incorporating pharmacogenetics at the national formulary level promises to improve global drug use.
Collapse
Affiliation(s)
- Mary W Roederer
- Institute of Pharmacogenomics & Individualized Therapy, UNC Eshelman School of Pharmacy, CB #7361, 120 Mason Farm Road, 1092 Genetic Medicine Building, Chapel Hill, NC 27599-7361, USA.
| | | | | | | | | | | | | |
Collapse
|
12
|
Copy number variants in pharmacogenetic genes. Trends Mol Med 2011; 17:244-51. [PMID: 21388883 DOI: 10.1016/j.molmed.2011.01.007] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 01/14/2011] [Accepted: 01/14/2011] [Indexed: 01/07/2023]
Abstract
Variation in drug efficacy and toxicity remains an important clinical concern. Presently, single nucleotide polymorphisms (SNPs) only explain a portion of this problem, even in situations where the pharmacological trait is clearly heritable. The Human CNV Project identified copy number variations (CNVs) across approximately 12% of the human genome, and these CNVs were considered causes of diseases. Although the contribution of CNVs to the pathogenesis of many common diseases is questionable, CNVs play a clear role in drug-related genes by altering drug metabolizing and drug response. In this review, we provide a comprehensive evaluation of the clinical relevance of CNVs to drug efficacy, toxicity, and disease prevalence in world populations, and discuss the implication of using CNVs as a diagnostic tool in clinical intervention.
Collapse
|
13
|
Mitropoulos K, Johnson L, Vozikis A, Patrinos GP. Relevance of pharmacogenomics for developing countries in Europe. ACTA ACUST UNITED AC 2011; 26:143-6. [DOI: 10.1515/dmdi.2011.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|