1
|
Li W, Chen Y, Zhang Y, Zhao N, Zhang W, Shi M, Zhao Y, Cai C, Lu C, Gao P, Guo X, Li B, Kim SW, Yang Y, Cao G. Transcriptome Analysis Revealed Potential Genes of Skeletal Muscle Thermogenesis in Mashen Pigs and Large White Pigs under Cold Stress. Int J Mol Sci 2023; 24:15534. [PMID: 37958518 PMCID: PMC10650474 DOI: 10.3390/ijms242115534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
Pigs are susceptible to cold stress due to the absence of brown fat caused by the partial deletion of uncoupling protein 1 during their evolution. Some local pig breeds in China exhibit potential cold adaptability, but research has primarily focused on fat and intestinal tissues. Skeletal muscle plays a key role in adaptive thermogenesis in mammals, yet the molecular mechanism of cold adaptation in porcine skeletal muscle remains poorly understood. This study investigated the cold adaptability of two pig breeds, Mashen pigs (MS) and Large White pigs (LW), in a four-day cold (4 °C) or normal temperature (25 °C) environment. We recorded phenotypic changes and collected blood and longissimus dorsi muscle for transcriptome sequencing. Finally, the PRSS8 gene was randomly selected for functional exploration in porcine skeletal muscle satellite cells. A decrease in body temperature and body weight in both LW and MS pigs under cold stress, accompanied by increased shivering frequency and respiratory frequency, were observed. However, the MS pigs demonstrated stable physiological homeostasis, indicating a certain level of cold adaptability. The LW pigs primarily responded to cold stress by regulating their heat production and glycolipid energy metabolism. The MS pigs exhibited a distinct response to cold stress, involving the regulation of heat production, energy metabolism pathways, and robust mitochondrial activity, as well as a stronger immune response. Furthermore, the functional exploration of PRSS8 in porcine skeletal muscle satellite cells revealed that it affected cellular energy metabolism and thermogenesis by regulating ERK phosphorylation. These findings shed light on the diverse transcriptional responses of skeletal muscle in LW and MS pigs under cold stress, offering valuable insights into the molecular mechanisms underlying cold adaptation in pigs.
Collapse
Affiliation(s)
- Wenxia Li
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (W.L.)
| | - Yufen Chen
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (W.L.)
| | - Yunting Zhang
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (W.L.)
| | - Ning Zhao
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (W.L.)
| | - Wanfeng Zhang
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (W.L.)
| | - Mingyue Shi
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (W.L.)
| | - Yan Zhao
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (W.L.)
| | - Chunbo Cai
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (W.L.)
| | - Chang Lu
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (W.L.)
| | - Pengfei Gao
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (W.L.)
| | - Xiaohong Guo
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (W.L.)
| | - Bugao Li
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (W.L.)
| | - Sung-Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Yang Yang
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (W.L.)
| | - Guoqing Cao
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (W.L.)
| |
Collapse
|
2
|
Liu Y, Gu R, Gao M, Wei Y, Shi Y, Wang X, Gu Y, Gu X, Zhang H. Emerging role of substance and energy metabolism associated with neuroendocrine regulation in tumor cells. Front Endocrinol (Lausanne) 2023; 14:1126271. [PMID: 37051193 PMCID: PMC10084767 DOI: 10.3389/fendo.2023.1126271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 02/07/2023] [Indexed: 03/29/2023] Open
Abstract
Cancer is the second most common cause of mortality in the world. One of the unresolved difficult pathological mechanism issues in malignant tumors is the imbalance of substance and energy metabolism of tumor cells. Cells maintain life through energy metabolism, and normal cells provide energy through mitochondrial oxidative phosphorylation to generate ATP, while tumor cells demonstrate different energy metabolism. Neuroendocrine control is crucial for tumor cells' consumption of nutrients and energy. As a result, better combinatorial therapeutic approaches will be made possible by knowing the neuroendocrine regulating mechanism of how the neuroendocrine system can fuel cellular metabolism. Here, the basics of metabolic remodeling in tumor cells for nutrients and metabolites are presented, showing how the neuroendocrine system regulates substance and energy metabolic pathways to satisfy tumor cell proliferation and survival requirements. In this context, targeting neuroendocrine regulatory pathways in tumor cell metabolism can beneficially enhance or temper tumor cell metabolism and serve as promising alternatives to available treatments.
Collapse
Affiliation(s)
- Yingying Liu
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
- School of Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Renjun Gu
- School of Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Murong Gao
- Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Beijing, China
| | - Yangwa Wei
- Department of Hepatobiliary Surgery, Hainan Provincial People’s Hospital, Haikou, China
| | - Yu Shi
- Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xu Wang
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Yihuang Gu
- School of Acupuncture and Tuina, School of Regimen and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
- The Second Hospital of Nanjing, Nanjing, China
- *Correspondence: Hongru Zhang, ; Xin Gu, ; Yihuang Gu,
| | - Xin Gu
- School of Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Hongru Zhang, ; Xin Gu, ; Yihuang Gu,
| | - Hongru Zhang
- School of Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Hongru Zhang, ; Xin Gu, ; Yihuang Gu,
| |
Collapse
|
3
|
Li W, Wan J, Chen C, Zhou C, Liao P, Hu Q, Hu J, Wang Y, Zhang Y, Peng C, Huang Y, Huang W, Zhang W, Mcleod HL, He Y. Dissecting the role of cell signaling versus CD8 + T cell modulation in propranolol antitumor activity. J Mol Med (Berl) 2022; 100:1299-1306. [PMID: 35895125 DOI: 10.1007/s00109-022-02238-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/24/2022] [Accepted: 07/13/2022] [Indexed: 11/26/2022]
Abstract
Preclinical and early clinical mechanistic studies of antitumor activity from the beta-adrenergic receptor (β-AR) blocker propranolol have revealed both cell signaling and immune function pathway effects. Intertumoral studies were performed using propranolol, a β1-AR selective agent (atenolol), and a β2-AR selective agent (ICI 118,551) in a preclinical in vivo model, as a step to dissect the contribution of cell signaling and CD8+ immunological effects on anticancer activity. We found that repression of β2-AR but not β1-AR signaling selectively suppressed cell viability and inhibited xenograft growth in vivo. Moreover, western blot analysis indicated that the phosphorylation levels of AKT/MEK/ERK were significantly decreased following the inhibition of β2-AR. Furthermore, propranolol was found to activate the tumor microenvironment by inducing an increased intratumoral frequency of CD8+ T cells, whereas neither selective β1 nor β2-AR blockers had a significant effect on the tumor immune microenvironment. Thus, the results of this mechanistic dissection support a predominant role of tumor cell signaling, rather than the accumulation of CD8+ T cells, as the basis for propranolol antitumor activity. KEY MESSAGES : Molecular signaling of AKT/MAPK pathway contributes to propranolol caused cancer control. CD8+ T cells in tumor microenvironment were activated upon propranolol exposure. The basis for propranolol antitumor activity was predominantly dependent on cell signaling, rather than the activation of CD8+ T cells.
Collapse
Affiliation(s)
- Wei Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, People's Republic of China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, People's Republic of China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, People's Republic of China
| | - Jielin Wan
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, People's Republic of China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, People's Republic of China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, People's Republic of China
| | - Cuiyu Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, People's Republic of China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, People's Republic of China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, People's Republic of China
| | - Chengfang Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, People's Republic of China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, People's Republic of China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, People's Republic of China
| | - Ping Liao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, People's Republic of China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, People's Republic of China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, People's Republic of China
| | - Qian Hu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, People's Republic of China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, People's Republic of China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, People's Republic of China
| | - Jiali Hu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, People's Republic of China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, People's Republic of China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, People's Republic of China
| | - Yang Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, People's Republic of China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, People's Republic of China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, People's Republic of China
| | - Yu Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, People's Republic of China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, People's Republic of China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, People's Republic of China
| | - Cong Peng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, 410000, China
| | - Yuanfei Huang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, People's Republic of China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, People's Republic of China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, Hunan, 410008, People's Republic of China
| | - Weihua Huang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, People's Republic of China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, People's Republic of China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, Hunan, 410008, People's Republic of China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, People's Republic of China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, People's Republic of China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, Hunan, 410008, People's Republic of China
| | - Howard L Mcleod
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, People's Republic of China.
- Intermountain Precision Genomics, Intermountain Healthcare, St. George, UT, 84770, USA.
| | - Yijing He
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, People's Republic of China.
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, People's Republic of China.
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, Hunan, 410008, People's Republic of China.
| |
Collapse
|
4
|
Hu J, Lu R, Zhang Y, Li W, Hu Q, Chen C, Liu Z, Zhang W, Chen L, Xu R, Luo J, McLeod HL, He Y. β-adrenergic receptor inhibition enhances oncolytic herpes virus propagation through STAT3 activation in gastric cancer. Cell Biosci 2021; 11:174. [PMID: 34544479 PMCID: PMC8454049 DOI: 10.1186/s13578-021-00687-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/07/2021] [Indexed: 01/12/2023] Open
Abstract
Background Oncolytic viruses (OVs) are considered a promising therapeutic alternative for cancer. However, OVs could activate the host innate immunity, then impair the viral propagation in tumor cells. In this study, we explored the effect of propranolol, a non-selective β-blocker, on the antitumor efficacy of T1012G virus in gastric cancer models. Methods The proliferation of gastric cancer cells treated with monotherapy or combination treatment was detected by CCK8 cell proliferation assay. The effect of propranolol was further evaluated by in vitro viral replication assays. In vivo tumor xenograft experiments were used to observe the effect of combination therapy on gastric cancer growth in mice. The expression levels of viral proteins and interferon responsive genes were detected in the gastric cancer cell lines treated with combined treatment by western blot. The impact of propranolol on IFN-α/β-mediated inhibition of viral propagation and the expression of antiviral gene PKR was detected by viral replication assays and western blot. Results Cell viability assay detected a 97.9% decrease of T1012G IC50 in HGC-27 when it was pretreated with propranolol along with a sevenfold increase of virus titers compared with T1012G only group (P < 0.001). Moreover, propranolol pretreatment caused sustained tumor regression (335.3 ± 36.92 mm3 vs. 1118 ± 210.0 mm3, P < 0.01) and enhanced the viral propagation (fourfold increase, P < 0.01) compared with T1012G only group. Propranolol pretreatment significantly enhanced the p-STAT3 (2.9-fold, P < 0.05) and suppressed p-PKR (65.94% ± 10.11%, P < 0.05) compared with T1012G only group. In addition, propranolol could counteract IFN-α/β-mediated inhibition of viral propagation (compared with IFNα: 5.1-fold, P < 0.001; IFNβ: 4.6-fold, P < 0.01) or enhancement of PKR activation (IFNα: 92.57% ± 1.77%, P < 0.001, IFNβ: 99.34% ± 0.13% decrease, P < 0.001). Conclusions In summary, β-blocker pretreatment could improve the propagation and therapeutic efficacy of T1012G in human gastric cancer by regulating STAT3-PKR signaling cascade, even in the presence of type I IFNs. These data support new strategies of improving the efficacy of OVs in gastric cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-021-00687-1.
Collapse
Affiliation(s)
- Jiali Hu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410000, Hunan, China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Zhuhai People's Hospital (Zhuhai Hospital Affiliated With Jinan University), Zhuhai, Guangdong, China
| | - Ruitao Lu
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yu Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410000, Hunan, China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410000, Hunan, China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qian Hu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410000, Hunan, China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Cuiyu Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410000, Hunan, China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaoqian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410000, Hunan, China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410000, Hunan, China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ling Chen
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ran Xu
- Department of Urology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jia Luo
- Department of Hepatobiliary and Intestinal Surgery, Hunan Cancer Hospital, Changsha, Hunan, China
| | - Howard L McLeod
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410000, Hunan, China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, Hunan, China.,Geriatric Oncology Consortium, Tampa, FL, USA
| | - Yijing He
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410000, Hunan, China. .,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, Hunan, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
5
|
Liao P, Song K, Zhu Z, Liu Z, Zhang W, Li W, Hu J, Hu Q, Chen C, Chen B, McLeod HL, Pei H, Chen L, He Y. Propranolol Suppresses the Growth of Colorectal Cancer Through Simultaneously Activating Autologous CD8 + T Cells and Inhibiting Tumor AKT/MAPK Pathway. Clin Pharmacol Ther 2020; 108:606-615. [PMID: 32418204 DOI: 10.1002/cpt.1894] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/06/2020] [Indexed: 12/15/2022]
Abstract
Propranolol suppresses tumor growth in a variety of preclinical solid tumor models, with a number of proposed cell signaling and immunological mechanisms. We want to confirm the potential mechanisms, including reduced phosphorylation of AKT/MAPK pathways, as well as enhanced CD8+ T-cell-mediated antitumor immune response. To clarify the mechanism of propranolol activity in colorectal cancer, the therapeutic activity of propranolol was then assessed in CT26WT tumors engrafted in BALB/C mice. Then the effect of propranolol treatment was also examined by randomizing patients undergoing surgical resection of a previously untreated colorectal cancer to propranolol or placebo group and treated for 1 week prior to surgery. CT26WT tumor size was smaller after propranolol than vehicle control. Propranolol downregulated the expression of p-AKT/p-ERK/p-MEK in tumor tissue. The frequency of tumor CD8+ T cells was significantly elevated in propranolol-treated mice. The expression of GzmB/IFN-γ/T-bet in the CD8+ T-cell population was significantly increased in propranolol treated mice tumor tissue. In propranolol-treated surgical specimens, the expression of p-ERK was decreased and the frequency of CD8+ was significantly elevated. The expression of GzmB in the CD8+ T-cell population was significantly increased in propranolol-treated subjects. Together, these data show propranolol simultaneously activating autologous CD8+ T cells and decreasing the expression of p-AKT/p-ERK/p-MEK in mouse tumor models, while inhibiting the expression of p-ERK in clinical colorectal cancer. Effort is now needed to further dissect whether both pathways are required for antitumor effect, as the activity of this old drug is moved forward.
Collapse
Affiliation(s)
- Ping Liao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Kun Song
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhanwei Zhu
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaoqian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiali Hu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qian Hu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Cuiyu Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bohua Chen
- Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Howard L McLeod
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.,USF Taneja College of Pharmacy, Tampa, Florida, USA
| | - Haiping Pei
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ling Chen
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yijing He
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
6
|
Zhang B, Wu C, Chen W, Qiu L, Li S, Wang T, Xie H, Li Y, Li C, Li L. The stress hormone norepinephrine promotes tumor progression through β2-adrenoreceptors in oral cancer. Arch Oral Biol 2020; 113:104712. [PMID: 32234582 DOI: 10.1016/j.archoralbio.2020.104712] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 03/06/2020] [Accepted: 03/15/2020] [Indexed: 02/08/2023]
Abstract
OBJECTIVE Chronic stress hormone norepinephrine (NE) has been previously reported to play a role in the development of cancer, but the correlation between NE and oral squamous cell carcinoma (OSCC) progression is not well understood. METHOD To address this, the expression of adrenergic receptors (ARs) in human OSCC cell lines and clinic OSCC samples was detected, and the role of NEin vivo and in vitro was further investigated. RESULTS It was found that β2-AR was the main AR of NE in OSCC. Stimulation of OSCC cells with NE significantly increased the OSCC proliferation and invasion, which was, however, blocked by β2-AR inhibitor. NE could induce the phosphorylation of extracellular regulated protein kinases (ERK) and cAMP-response element binding protein (CREB). Inhibition of ERK and CREB pathway abrogated NE-induced OSCC invasion and proliferation. NE could enhance cancer stem cells (CSCs)-like phenotype and up-regulate the expression of stemness marker. In tumor-bearing nude mice, it was found that consecutive administration of NE significantly promoted the tumor growth, while daily injection of β2-AR inhibitor blocked this phenomenon. CONCLUSIONS Those findings indicated a critical role of the chronic stress hormone NE in OSCC progression. Inhibition of β2-AR may serve as a potential therapeutic strategy for protecting OSCC patients from chronic stress related deleterious effect.
Collapse
Affiliation(s)
- Bowen Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chenzhou Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wen Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ling Qiu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shensui Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tao Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Huixu Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yi Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chunjie Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Longjiang Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
7
|
Beyond the boundaries of cardiology: Still untapped anticancer properties of the cardiovascular system-related drugs. Pharmacol Res 2019; 147:104326. [DOI: 10.1016/j.phrs.2019.104326] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 06/18/2019] [Accepted: 06/21/2019] [Indexed: 02/07/2023]
|
8
|
Häfner SJ. Puzzling mRNA: Alternative splicing fine-tunes specificity and function. Biomed J 2019; 42:137-140. [PMID: 31466707 PMCID: PMC6717781 DOI: 10.1016/j.bj.2019.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 06/20/2019] [Indexed: 11/03/2022] Open
Abstract
In this issue of the Biomedical Journal we discover how alternative splicing might modulate the cell-type specificity and exact function of a ubiquitous purinergic receptor and how the beta blocker propanolol can contribute to breast cancer therapy. Moreover, we learn which culture conditions generate the best vascularisation of tissue engineered bone and which are the clinical features of acute necrotising encephalopathy in adults. Other studies reveal, how laser irradiation can fix fractured all-ceramic dental restorations in situ, and finally that nuclear magnetic resonance holds great potential for the rapid detection of pathogens.
Collapse
Affiliation(s)
- Sophia Julia Häfner
- University of Copenhagen, BRIC Biotech Research & Innovation Centre, Anders Lund Group, Ole Maaløes Vej 5, 2200, Copenhagen, Denmark.
| |
Collapse
|
9
|
Kuang X, Qi M, Peng C, Zhou C, Su J, Zeng W, Liu H, Zhang J, Chen M, Shen M, Xie X, Li F, Zhao S, Li Q, Luo Z, Chen J, Tao J, He Y, Chen X. Propranolol enhanced the anti-tumor effect of sunitinib by inhibiting proliferation and inducing G0/G1/S phase arrest in malignant melanoma. Oncotarget 2017; 9:802-811. [PMID: 29416656 PMCID: PMC5787512 DOI: 10.18632/oncotarget.22696] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 09/21/2017] [Indexed: 12/16/2022] Open
Abstract
Both sunitinib, a multi-target tyrosine kinase inhibitor (TKI) and propranolol, a non-selective β-blocker, have proven therapeutic effects on malignant melanoma (MM). This study reports a synergistic effect of propranolol and sunitinib upon A375, P8 MM cell lines and mice xenografts. Cell viability assays detected a significant decrease of sunitinib IC50 in combination with propranolol, which was confirmed by a colony formation assay. Western blot showed that propranolol and sunitinib combination significantly down-regulated phospho-Rb, phospho-ERK, Cyclin D1, and Cyclin E, but had no effect on Bax, Bcl-2, or cleaved PARP expression. The average tumor size of propranolol and low-dose sunitinib (Sun L) combination treated mice was reduced and similar to high-dose sunitinib treated A375 xenografts. The Ki67 index was significantly reduced in propranolol and Sun L combination treated group compared with single Sun L treated group. This synergistic effect between propranolol and sunitinib to inhibit MM proliferation was through suppressing ERK/Cyclin D1/Rb/Cyclin E pathways and inducing G0/G1/S phase arrest, rather than by inducing tumor cell apoptosis.
Collapse
Affiliation(s)
- Xinwei Kuang
- Department of Dermatology, XiangYa Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, China
| | - Min Qi
- Department of Plastic and Cosmetic Surgery, XiangYa Hospital, Central South University, Changsha, China
| | - Cong Peng
- Department of Dermatology, XiangYa Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, China
| | - Chengfang Zhou
- Department of Clinical Pharmacology, XiangYa Hospital, Central South University, Changsha, China
| | - Juan Su
- Department of Dermatology, XiangYa Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, China
| | - Weiqi Zeng
- Department of Dermatology, XiangYa Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, China
| | - Hong Liu
- Department of Dermatology, XiangYa Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, China
| | - Jianglin Zhang
- Department of Dermatology, XiangYa Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, China
| | - Mingliang Chen
- Department of Dermatology, XiangYa Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, China
| | - Minxue Shen
- Department of Dermatology, XiangYa Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, China
| | - Xiaoyun Xie
- Department of Rheumatology, XiangYa Hospital, Central South University, Changsha, China
| | - Fangfang Li
- Department of Dermatology, XiangYa Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, China
| | - Shuang Zhao
- Department of Dermatology, XiangYa Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, China
| | - Qingling Li
- Department of Pathology, XiangYa Hospital, Central South University, Changsha, China
| | - Zhongling Luo
- Department of Dermatology, XiangYa Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, China
| | - Junchen Chen
- Department of Dermatology, XiangYa Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, China
| | - Juan Tao
- Department of Dermatology, Affiliated Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yijing He
- Department of Dermatology, XiangYa Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, China
| | - Xiang Chen
- Department of Dermatology, XiangYa Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, China
| |
Collapse
|
10
|
Yaacoby-Bianu K, Hakim F. Sleep Disturbance and Cancer—Animal Models. CURRENT SLEEP MEDICINE REPORTS 2017. [DOI: 10.1007/s40675-017-0073-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Salamon S, Podbregar E, Kubatka P, Büsselberg D, Caprnda M, Opatrilova R, Valentova V, Adamek M, Kruzliak P, Podbregar M. Glucose Metabolism in Cancer and Ischemia: Possible Therapeutic Consequences of the Warburg Effect. Nutr Cancer 2017; 69:177-183. [DOI: 10.1080/01635581.2017.1263751] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Spela Salamon
- Medical Faculty, University of Maribor, Maribor, Slovenia
| | - Eva Podbregar
- Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
- Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Dietrich Büsselberg
- Weill Cornell Medicine in Qatar, Qatar Foundation-Education City, Doha, Qatar
| | - Martin Caprnda
- 2nd Department of Internal Medicine, Faculty of Medicine, Comenius University and University Hospital, Bratislava, Slovakia
| | - Radka Opatrilova
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - Vanda Valentova
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Mariusz Adamek
- Department of Thoracic Surgery, Faculty of Medicine and Dentistry, Medical University of Silesia, Katowice, Poland
| | - Peter Kruzliak
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
- Department of Medical Physics and Biophysics, Faculty of Medicine, Pavol Jozef Safarik University, Kosice, Slovakia
- 2nd Department of Surgery, Faculty of Medicine, St. Anne's University Hospital and Masaryk University, Brno, Czech Republic
| | - Matej Podbregar
- Clinical Department for Anesthesiology and Intensive Care, University Medical Center Ljubljana, Slovenia
| |
Collapse
|