1
|
Nthontho KC, Ndlovu AK, Sharma K, Kasvosve I, Hertz DL, Paganotti GM. Pharmacogenetics of Breast Cancer Treatments: A Sub-Saharan Africa Perspective. Pharmgenomics Pers Med 2022; 15:613-652. [PMID: 35761855 PMCID: PMC9233488 DOI: 10.2147/pgpm.s308531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/31/2022] [Indexed: 11/30/2022] Open
Abstract
Breast cancer is the most frequent cause of cancer death in low- and middle-income countries, in particular among sub-Saharan African women, where response to available anticancer treatment therapy is often limited by the recurrent breast tumours and metastasis, ultimately resulting in decreased overall survival rate. This can also be attributed to African genomes that contain more variation than those from other parts of the world. The purpose of this review is to summarize published evidence on pharmacogenetic and pharmacokinetic aspects related to specific available treatments and the known genetic variabilities associated with metabolism and/or transport of breast cancer drugs, and treatment outcomes when possible. The emphasis is on the African genetic variation and focuses on the genes with the highest strength of evidence, with a close look on CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP3A4/5, CYP19A1, UGT1A4, UGT2B7, UGT2B15, SLC22A16, SLC38A7, FcγR, DPYD, ABCB1, and SULT1A1, which are the genes known to play major roles in the metabolism and/or elimination of the respective anti-breast cancer drugs given to the patients. The genetic variability of their metabolism could be associated with different metabolic phenotypes that may cause reduced patients' adherence because of toxicity or sub-therapeutic doses. Finally, this knowledge enhances possible personalized treatment approaches, with the possibility of improving survival outcomes in patients with breast cancer.
Collapse
Affiliation(s)
- Keneuoe Cecilia Nthontho
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana
- Botswana-University of Pennsylvania Partnership, Gaborone, Botswana
| | - Andrew Khulekani Ndlovu
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana
| | | | - Ishmael Kasvosve
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana
| | - Daniel Louis Hertz
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI, USA
| | - Giacomo Maria Paganotti
- Botswana-University of Pennsylvania Partnership, Gaborone, Botswana
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biomedical Sciences, Faculty of Medicine, University of Botswana, Gaborone, Botswana
| |
Collapse
|
2
|
Maseng MJ, Tawe L, Thami PK, Seatla KK, Moyo S, Martinelli A, Kasvosve I, Novitsky V, Essex M, Russo G, Gaseitsiwe S, Paganotti GM. Association of CYP2B6 Genetic Variation with Efavirenz and Nevirapine Drug Resistance in HIV-1 Patients from Botswana. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2021; 14:335-347. [PMID: 33758532 PMCID: PMC7981136 DOI: 10.2147/pgpm.s289471] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/22/2021] [Indexed: 12/11/2022]
Abstract
Purpose CYP2B6 liver enzyme metabolizes the two non-nucleoside reverse transcriptase inhibitors Efavirenz (EFV) and Nevirapine (NVP) used in the antiretroviral therapy (ART) regimens for HIV-infected individuals. Polymorphisms of the CYP2B6 gene influence drug levels in plasma and possibly virological outcomes. The aim of this study was to explore the potential impact of CYP2B6 genotype and haplotype variation on the risk of developing EFV/NVP drug resistance mutations (DRMs) in HIV-1 patients receiving EFV-/NVP-containing regimens in Botswana. Patients and Methods Participants were a sub-sample of a larger study (Tshepo study) conducted in Gaborone, Botswana, among HIV-infected individuals taking EFV/NVP containing ART. Study samples were retrieved and assigned to cases (with DRMs) and controls (without DRMs). Four single-nucleotide polymorphisms (SNPs) in the CYP2B6 gene (−82T>C; 516G>T; 785A>G; 983T>C) were genotyped, the haplotypes reconstructed, and the metabolic score assigned. The possible association between drug resistance and several independent factors (baseline characteristics and CYP2B6 genotypes) was assessed by Binary Logistic Regression (BLR) analysis. EFV/NVP resistance status and CYP2B6 haplotypes were also analyzed using Z-test, chi-square and Fisher’s exact test statistics. Results Two hundred and twenty-seven samples were analysed (40 with DRMs, 187 without DRMs). BLR analysis showed an association between EFV/NVP resistance and CYP2B6 516G allele (OR: 2.26; 95% CI: 1.27–4.01; P=0.005). Moreover, haplotype analysis revealed that the proportion of EFV/NVP-resistant infections was higher among CYP2B6 fast than extensive/slow metabolizers (30.8% vs 16.8%; P=0.035), with the 516G allele more represented in the haplotypes of fast than extensive/slow metabolizers (100.0% vs 53.8%; P<0.001). Conclusion We demonstrated that the CYP2B6 516G allele, and even more when combined in fast metabolic haplotypes, is associated with the presence of EFV/NVP resistance, strengthening the need to assess the CYP2B6 genetic profiles in HIV-infected patients in order to improve the virologic outcomes of NNRTI containing ART.
Collapse
Affiliation(s)
- Monkgomotsi J Maseng
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana.,Botswana-Harvard AIDS Institute Partnership, Gaborone, Botswana
| | - Leabaneng Tawe
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana.,Botswana-Harvard AIDS Institute Partnership, Gaborone, Botswana.,Botswana-University of Pennsylvania Partnership, Gaborone, Botswana
| | - Prisca K Thami
- Botswana-Harvard AIDS Institute Partnership, Gaborone, Botswana.,Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Kaelo K Seatla
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana.,Botswana-Harvard AIDS Institute Partnership, Gaborone, Botswana
| | - Sikhulile Moyo
- Botswana-Harvard AIDS Institute Partnership, Gaborone, Botswana.,Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA, USA
| | | | - Ishmael Kasvosve
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana
| | - Vladimir Novitsky
- Botswana-Harvard AIDS Institute Partnership, Gaborone, Botswana.,Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA, USA
| | - Max Essex
- Botswana-Harvard AIDS Institute Partnership, Gaborone, Botswana.,Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA, USA
| | - Gianluca Russo
- Department of Public Health and Infectious Disease, Faculty of Medicine, Sapienza University of Rome, Rome, Italy
| | - Simani Gaseitsiwe
- Botswana-Harvard AIDS Institute Partnership, Gaborone, Botswana.,Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA, USA
| | - Giacomo M Paganotti
- Botswana-University of Pennsylvania Partnership, Gaborone, Botswana.,Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Biomedical Sciences, Faculty of Medicine, University of Botswana, Gaborone, Botswana
| |
Collapse
|
3
|
Tawe L, Motshoge T, Ramatlho P, Mutukwa N, Muthoga CW, Dongho GBD, Martinelli A, Peloewetse E, Russo G, Quaye IK, Paganotti GM. Human cytochrome P450 2B6 genetic variability in Botswana: a case of haplotype diversity and convergent phenotypes. Sci Rep 2018; 8:4912. [PMID: 29559695 PMCID: PMC5861095 DOI: 10.1038/s41598-018-23350-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 03/09/2018] [Indexed: 01/11/2023] Open
Abstract
Identification of inter-individual variability for drug metabolism through cytochrome P450 2B6 (CYP2B6) enzyme is important for understanding the differences in clinical responses to malaria and HIV. This study evaluates the distribution of CYP2B6 alleles, haplotypes and inferred metabolic phenotypes among subjects with different ethnicity in Botswana. A total of 570 subjects were analyzed for CYP2B6 polymorphisms at position 516 G > T (rs3745274), 785 A > G (rs2279343) and 983 T > C (rs28399499). Samples were collected in three districts of Botswana where the population belongs to Bantu (Serowe/Palapye and Chobe) and San-related (Ghanzi) ethnicity. The three districts showed different haplotype composition according to the ethnic background but similar metabolic inferred phenotypes, with 59.12%, 34.56%, 2.10% and 4.21% of the subjects having, respectively, an extensive, intermediate, slow and rapid metabolic profile. The results hint at the possibility of a convergent adaptation of detoxifying metabolic phenotypes despite a different haplotype structure due to the different genetic background. The main implication is that, while there is substantial homogeneity of metabolic inferred phenotypes among the country, the response to drugs metabolized via CYP2B6 could be individually associated to an increased risk of treatment failure and toxicity. These are important facts since Botswana is facing malaria elimination and a very high HIV prevalence.
Collapse
Affiliation(s)
- Leabaneng Tawe
- University of Botswana, Department of Medical Laboratory Sciences, Gaborone, Botswana.,Botswana-University of Pennsylvania Partnership, Gaborone, Botswana.,Sub-Saharan African Network for TB/HIV Research Excellence at Botswana-Harvard Partnership, Gaborone, Botswana
| | - Thato Motshoge
- University of Botswana, Department of Biological Sciences, Gaborone, Botswana
| | - Pleasure Ramatlho
- University of Botswana, Department of Biological Sciences, Gaborone, Botswana
| | - Naledi Mutukwa
- University of Botswana, Department of Pathology, Gaborone, Botswana
| | | | - Ghyslaine Bruna Djeunang Dongho
- Sapienza University of Rome, Department of Infectious Diseases and Public Health, Rome, Italy.,Evangelical University of Cameroon, Department of Biomedical Sciences, Bandjoun, Cameroon
| | - Axel Martinelli
- Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Japan.,King Abdullah University of Science and Technology, Biological and Environmental Sciences and Engineering Division, Thuwal, Saudi Arabia
| | - Elias Peloewetse
- University of Botswana, Department of Biological Sciences, Gaborone, Botswana
| | - Gianluca Russo
- Sapienza University of Rome, Department of Infectious Diseases and Public Health, Rome, Italy
| | - Isaac Kweku Quaye
- University of Namibia, Department of Biochemistry, Windhoek, Namibia
| | - Giacomo Maria Paganotti
- Botswana-University of Pennsylvania Partnership, Gaborone, Botswana. .,University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA. .,University of Botswana, Department of Biomedical Sciences, Gaborone, Botswana.
| |
Collapse
|
4
|
Practical considerations when designing and conducting clinical pharmacokinetic herb–drug interaction studies. ACTA ACUST UNITED AC 2017. [DOI: 10.4155/ipk-2016-0009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Pharmacokinetic herb–drug interaction (HDI) research has been ongoing for almost two decades and a significant body of information has been published on the subject, yet much of it is contradictory. Some of this disparity stems from the botanical dosage form itself, as product quality and dosage form performance can vary significantly among brands. Unless products are adequately characterized, HDI study results can be misleading. The purpose of this report is to identify several common weaknesses inherent in many prospective clinical HDI studies and to provide guidance in addressing these shortcomings. Topics such as study design, pharmacokinetic end points, product quality, dosage form performance, gauging clinical relevance, and efforts to minimize dietary influences while improving compliance are discussed.
Collapse
|