Abstract
BACKGROUND
Improvements in diagnostics and treatment for paediatric malignancies resulted in a major increase in survival. However, childhood cancer survivors (CCS) are at risk of developing adverse effects caused by multimodal treatment for their malignancy. Nephrotoxicity is a known side effect of several treatments, including cisplatin, carboplatin, ifosfamide, radiotherapy and nephrectomy, and can cause glomerular filtration rate (GFR) impairment, proteinuria, tubulopathy, and hypertension. Evidence about the long-term effects of these treatments on renal function remains inconclusive. It is important to know the risk of, and risk factors for, early and late adverse renal effects, so that ultimately treatment and screening protocols can be adjusted. This review is an update of a previously published Cochrane Review.
OBJECTIVES
To evaluate existing evidence on the effects of potentially nephrotoxic treatment modalities on the prevalence of renal dysfunction in survivors treated for childhood cancer with a median or mean survival of at least one year after cessation of treatment, where possible in comparison with the general population or CCS treated without potentially nephrotoxic treatment. In addition, to evaluate evidence on associated risk factors, such as follow-up duration, age at time of diagnosis and treatment combinations, as well as the effect of doses.
SEARCH METHODS
On 31 March 2017 we searched the following electronic databases: CENTRAL, MEDLINE and Embase. In addition, we screened reference lists of relevant studies and we searched the congress proceedings of the International Society of Pediatric Oncology (SIOP) and The American Society of Pediatric Hematology/Oncology (ASPHO) from 2010 to 2016/2017.
SELECTION CRITERIA
Except for case reports, case series and studies including fewer than 20 participants, we included studies with all study designs that reported on renal function (one year or longer after cessation of treatment), in CCS treated before the age of 21 years with cisplatin, carboplatin, ifosfamide, radiation involving the kidney region, a nephrectomy, or a combination of two or more of these treatments. When not all treatment modalities were described or the study group of interest was unclear, a study was not eligible for the evaluation of prevalence. We still included it for the assessment of risk factors if it had performed a multivariable analysis.
DATA COLLECTION AND ANALYSIS
Two review authors independently performed study selection, 'Risk of bias' assessment and data extraction using standardised data collection forms. We performed analyses according to the guidelines of the Cochrane Handbook for Systematic Reviews of Interventions.
MAIN RESULTS
Apart from the remaining 37 studies included from the original review, the search resulted in the inclusion of 24 new studies. In total, we included 61 studies; 46 for prevalence, six for both prevalence and risk factors, and nine not meeting the inclusion criteria, but assessing risk factors. The 52 studies evaluating the prevalence of renal dysfunction included 13,327 participants of interest, of whom at least 4499 underwent renal function testing. The prevalence of adverse renal effects ranged from 0% to 84%. This variation may be due to diversity of included malignancies, received treatments, reported outcome measures, follow-up duration and the methodological quality of available evidence.Seven out of 52 studies, including 244 participants, reported the prevalence of chronic kidney disease, which ranged from 2.4% to 32%.Of these 52 studies, 36 studied a decreased (estimated) GFR, including at least 432 CCS, and found it was present in 0% to 73.7% of participants. One eligible study reported an increased risk of glomerular dysfunction after concomitant treatment with aminoglycosides and vancomycin in CCS receiving total body irradiation (TBI). Four non-eligible studies assessing a total cohort of CCS, found nephrectomy and (high-dose (HD)) ifosfamide as risk factors for decreased GFR. The majority also reported cisplatin as a risk factor. In addition, two non-eligible studies showed an association of a longer follow-up period with glomerular dysfunction.Twenty-two out of 52 studies, including 851 participants, studied proteinuria, which was present in 3.5% to 84% of participants. Risk factors, analysed by three non-eligible studies, included HD cisplatin, (HD) ifosfamide, TBI, and a combination of nephrectomy and abdominal radiotherapy. However, studies were contradictory and incomparable.Eleven out of 52 studies assessed hypophosphataemia or tubular phosphate reabsorption (TPR), or both. Prevalence ranged between 0% and 36.8% for hypophosphataemia in 287 participants, and from 0% to 62.5% for impaired TPR in 246 participants. One non-eligible study investigated risk factors for hypophosphataemia, but could not find any association.Four out of 52 studies, including 128 CCS, assessed the prevalence of hypomagnesaemia, which ranged between 13.2% and 28.6%. Both non-eligible studies investigating risk factors identified cisplatin as a risk factor. Carboplatin, nephrectomy and follow-up time were other reported risk factors.The prevalence of hypertension ranged from 0% to 50% in 2464 participants (30/52 studies). Risk factors reported by one eligible study were older age at screening and abdominal radiotherapy. A non-eligible study also found long follow-up time as risk factor. Three non-eligible studies showed that a higher body mass index increased the risk of hypertension. Treatment-related risk factors were abdominal radiotherapy and TBI, but studies were inconsistent.Because of the profound heterogeneity of the studies, it was not possible to perform meta-analyses. Risk of bias was present in all studies.
AUTHORS' CONCLUSIONS
The prevalence of adverse renal effects after treatment with cisplatin, carboplatin, ifosfamide, radiation therapy involving the kidney region, nephrectomy, or any combination of these, ranged from 0% to 84% depending on the study population, received treatment combination, reported outcome measure, follow-up duration and methodological quality. With currently available evidence, it was not possible to draw solid conclusions regarding the prevalence of, and treatment-related risk factors for, specific adverse renal effects. Future studies should focus on adequate study designs and reporting, including large prospective cohort studies with adequate control groups when possible. In addition, these studies should deploy multivariable risk factor analyses to correct for possible confounding. Next to research concerning known nephrotoxic therapies, exploring nephrotoxicity after new therapeutic agents is advised for future studies. Until more evidence becomes available, CCS should preferably be enrolled into long-term follow-up programmes to monitor their renal function and blood pressure.
Collapse