1
|
Quílez C, Bebiano LB, Jones E, Maver U, Meesters L, Parzymies P, Petiot E, Rikken G, Risueño I, Zaidi H, Zidarič T, Bekeschus S, H van den Bogaard E, Caley M, Colley H, López NG, Letsiou S, Marquette C, Maver T, Pereira RF, Tobin DJ, Velasco D. Targeting the Complexity of In Vitro Skin Models: A Review of Cutting-Edge Developments. J Invest Dermatol 2024; 144:2650-2670. [PMID: 39127929 DOI: 10.1016/j.jid.2024.04.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/29/2024] [Accepted: 04/10/2024] [Indexed: 08/12/2024]
Abstract
Skin in vitro models offer much promise for research, testing drugs, cosmetics, and medical devices, reducing animal testing and extensive clinical trials. There are several in vitro approaches to mimicking human skin behavior, ranging from simple cell monolayer to complex organotypic and bioengineered 3-dimensional models. Some have been approved for preclinical studies in cosmetics, pharmaceuticals, and chemicals. However, development of physiologically reliable in vitro human skin models remains in its infancy. This review reports on advances in in vitro complex skin models to study skin homeostasis, aging, and skin disease.
Collapse
Affiliation(s)
- Cristina Quílez
- Bioengineering Department, Universidad Carlos III de Madrid, Leganés, Spain; Fundación Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Madrid, Spain
| | - Luís B Bebiano
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
| | - Eleri Jones
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Uroš Maver
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Maribor, Slovenia; Department of Pharmacology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Luca Meesters
- Department of Dermatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Piotr Parzymies
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Emma Petiot
- 3d.FAB, CNRS, INSA, Univ Lyon, CPE-Lyon, UMR5246, ICBMS, Université Lyon 1, Villeurbanne Cedex, France
| | - Gijs Rikken
- Department of Dermatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ignacio Risueño
- Bioengineering Department, Universidad Carlos III de Madrid, Leganés, Spain; Fundación Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Madrid, Spain
| | - Hamza Zaidi
- 3d.FAB, CNRS, INSA, Univ Lyon, CPE-Lyon, UMR5246, ICBMS, Université Lyon 1, Villeurbanne Cedex, France
| | - Tanja Zidarič
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Sander Bekeschus
- Clinic and Policlinic for Dermatology and Venerology, Rostock University Medical Center, Rostock, Germany; ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP Greifswald), Greifswald, Germany
| | | | - Matthew Caley
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Helen Colley
- School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom
| | - Nuria Gago López
- Melanoma group, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Sophia Letsiou
- Department of Biomedical Sciences, University of West Attica, Athens, Greece; Department of Food Science and Technology, University of West Attica, Athens, Greece
| | - Christophe Marquette
- 3d.FAB, CNRS, INSA, Univ Lyon, CPE-Lyon, UMR5246, ICBMS, Université Lyon 1, Villeurbanne Cedex, France
| | - Tina Maver
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Maribor, Slovenia; Department of Pharmacology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Rúben F Pereira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Desmond J Tobin
- Charles Institute of Dermatology, University College Dublin, Dublin, Ireland; Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Diego Velasco
- Bioengineering Department, Universidad Carlos III de Madrid, Leganés, Spain; Fundación Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Madrid, Spain.
| |
Collapse
|
2
|
Pepin R, Ringuet J, Beaudet MJ, Bellenfant S, Galbraith T, Veillette H, Pouliot R, Berthod F. Sensory neurons increase keratinocyte proliferation through CGRP release in a tissue engineered in vitro model of innervation in psoriasis. Acta Biomater 2024; 182:1-13. [PMID: 38750917 DOI: 10.1016/j.actbio.2024.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/22/2024] [Accepted: 05/08/2024] [Indexed: 05/24/2024]
Abstract
Skin denervation has been shown to cause remission of psoriatic lesions in patients, which can reappear if reinnervation occurs. This effect can be induced by the activation of dendritic cells through sensory innervation. However, a direct effect of nerves on the proliferation of keratinocytes involved in the formation of psoriatic plaques has not been investigated. We developed, by tissue engineering, a model of psoriatic skin made of patient skin cells that showed increased keratinocyte proliferation and epidermal thickness compared to healthy controls. When this model was treated with CGRP, a neuropeptide released by sensory neurons, an increased keratinocyte proliferation was observed in the psoriatic skin model, but not in the control. When a sensory nerve network was incorporated in the psoriatic model and treated with capsaicin to induce neuropeptide release, an increase of keratinocyte proliferation was confirmed, which was blocked by a CGRP antagonist while no difference was noticed in the innervated healthy control. We showed that sensory neurons can participate directly to keratinocyte hyperproliferation in the formation of psoriatic lesions through the release of CGRP, independently of the immune system. Our unique tissue-engineered innervated psoriatic skin model could be a valuable tool to better understand the mechanism by which nerves may modulate psoriatic lesion formation in humans. STATEMENT OF SIGNIFICANCE: This study shows that keratinocytes extracted from patients' psoriatic skin retain, at least in part, the disease phenotype. Indeed, when combined in a 3D model of tissue-engineered psoriatic skin, keratinocytes exhibited a higher proliferation rate, and produced a thicker epidermis than a healthy skin control. In addition, their hyperproliferation was aggravated by a treatment with CGRP, a neuropeptide released by sensory nerves. In a innervated model of tissue-engineered psoriatic skin, an increase in keratinocyte hyperproliferation was also observed after inducing neurons to release neuropeptides. This effect was prevented by concomitant treatment with an antagonist to CGRP. Thus, this study shows that sensory nerves can directly participate to affect keratinocyte hyperproliferation in psoriasis through CGRP release.
Collapse
Affiliation(s)
- Rémy Pepin
- LOEX, CHU de Québec-Université Laval research center, Quebec City, Canada
| | - Julien Ringuet
- Division of Dermatology, CHU de Québec-Université Laval research center, Quebec City, Canada
| | | | - Sabrina Bellenfant
- LOEX, CHU de Québec-Université Laval research center, Quebec City, Canada
| | - Todd Galbraith
- LOEX, CHU de Québec-Université Laval research center, Quebec City, Canada
| | - Hélène Veillette
- Division of Dermatology, CHU de Québec-Université Laval research center, Quebec City, Canada
| | - Roxane Pouliot
- LOEX, CHU de Québec-Université Laval research center, Quebec City, Canada; Faculty of Pharmacy, Université Laval, Quebec City, Canada
| | - François Berthod
- LOEX, CHU de Québec-Université Laval research center, Quebec City, Canada; Department of Surgery, Faculty of Medicine, Université Laval, Quebec City, Canada.
| |
Collapse
|
3
|
Ubago-Rodríguez A, Quiñones-Vico MI, Sánchez-Díaz M, Sanabria-de la Torre R, Sierra-Sánchez Á, Montero-Vílchez T, Fernández-González A, Arias-Santiago S. Challenges in Psoriasis Research: A Systematic Review of Preclinical Models. Dermatology 2024; 240:620-652. [PMID: 38857576 DOI: 10.1159/000538993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 04/15/2024] [Indexed: 06/12/2024] Open
Abstract
INTRODUCTION Psoriasis is a chronic inflammatory skin disease with variable clinical presentation, multifactorial etiology and an immunogenetic basis. Several studies demonstrate that it results from a dysregulated interaction between skin keratinocytes, immune cells, and the environment that leads to a persistent inflammatory process modulated by cytokines and T cells. The development of new treatment options requires increased understanding of pathogenesis. However, the successful implementation of effective drugs requires well-characterized and highly available preclinical models that allow researchers to quickly and reproducibly determine their safety and efficacy. METHODS A systematic search on PubMed and Scopus databases was performed and assessed to find appropriate articles about psoriasis models applying the key words previously defined. The PRISMA guidelines were employed. RESULTS A total of 45 original articles were selected that met the selection criteria. Among these, there are articles on in vivo, in vitro, and ex vivo models, with the in vitro model being the majority due to its ease of use. Within animal models, the most widely used in recent years are chemically induced models using a compound known as imiquimod. However, the rest of the animal models used throughout the disease's research were also discussed. On the other hand, in vitro models were divided into two and three dimensions. The latter were the most used due to their similarity to human skin. Lastly, the ex vivo models were discussed, although they were the least used due to their difficulty in obtaining them. CONCLUSIONS Therefore, this review summarizes the current preclinical models (in vivo, in vitro, and ex vivo), discussing how to develop them, their advantages, limitations, and applications. There are many challenges to improve the development of the different models. However, research in these in vitro model studies could reduce the use of animals. This is favored with the use of future technologies such as 3D bioprinting or organ-on-a-chip technologies.
Collapse
Affiliation(s)
- Ana Ubago-Rodríguez
- Cell Production and Tissue Engineering Unit, Virgen de Las Nieves University Hospital, Granada, Spain,
- Biosanitary Institute of Granada (ibs.GRANADA), Granada, Spain,
- Andalusian Network of Design and Translation of Advanced Therapies, Seville, Spain,
- Department of Dermatology, Faculty of Medicine, University of Granada, Granada, Spain,
| | - María I Quiñones-Vico
- Cell Production and Tissue Engineering Unit, Virgen de Las Nieves University Hospital, Granada, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), Granada, Spain
- Andalusian Network of Design and Translation of Advanced Therapies, Seville, Spain
- Department of Dermatology, Faculty of Medicine, University of Granada, Granada, Spain
| | - Manuel Sánchez-Díaz
- Biosanitary Institute of Granada (ibs.GRANADA), Granada, Spain
- Department of Dermatology, Virgen de Las Nieves University Hospital, Granada, Spain
| | - Raquel Sanabria-de la Torre
- Cell Production and Tissue Engineering Unit, Virgen de Las Nieves University Hospital, Granada, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), Granada, Spain
- Andalusian Network of Design and Translation of Advanced Therapies, Seville, Spain
| | - Álvaro Sierra-Sánchez
- Cell Production and Tissue Engineering Unit, Virgen de Las Nieves University Hospital, Granada, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), Granada, Spain
- Andalusian Network of Design and Translation of Advanced Therapies, Seville, Spain
| | - Trinidad Montero-Vílchez
- Biosanitary Institute of Granada (ibs.GRANADA), Granada, Spain
- Department of Dermatology, Virgen de Las Nieves University Hospital, Granada, Spain
| | - Ana Fernández-González
- Cell Production and Tissue Engineering Unit, Virgen de Las Nieves University Hospital, Granada, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), Granada, Spain
- Andalusian Network of Design and Translation of Advanced Therapies, Seville, Spain
| | - Salvador Arias-Santiago
- Cell Production and Tissue Engineering Unit, Virgen de Las Nieves University Hospital, Granada, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), Granada, Spain
- Andalusian Network of Design and Translation of Advanced Therapies, Seville, Spain
- Department of Dermatology, Faculty of Medicine, University of Granada, Granada, Spain
- Department of Dermatology, Virgen de Las Nieves University Hospital, Granada, Spain
| |
Collapse
|
4
|
Yadav K, Singh D, Singh MR, Minz S, Princely Ebenezer Gnanakani S, Sucheta, Yadav R, Vora L, Sahu KK, Bagchi A, Singh Chauhan N, Pradhan M. Preclinical study models of psoriasis: State-of-the-art techniques for testing pharmaceutical products in animal and nonanimal models. Int Immunopharmacol 2023; 117:109945. [PMID: 36871534 DOI: 10.1016/j.intimp.2023.109945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/18/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023]
Abstract
Local and systemic treatments exist for psoriasis, but none can do more than control its symptoms because of its numerous unknown mechanisms. The lack of validated testing models or a defined psoriatic phenotypic profile hinders antipsoriatic drug development. Despite their intricacy, immune-mediated diseases have no improved and precise treatment. The treatment actions may now be predicted for psoriasis and other chronic hyperproliferative skin illnesses using animal models. Their findings confirmed that a psoriasis animal model could mimic a few disease conditions. However, their ethical approval concerns and inability to resemble human psoriasis rightly offer to look for more alternatives. Hence, in this article, we have reported various cutting-edge techniques for the preclinical testing of pharmaceutical products for the treatment of psoriasis.
Collapse
Affiliation(s)
- Krishna Yadav
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh 492010, India; Raipur Institute of Pharmaceutical Education and Research, Sarona, Raipur, Chhattisgarh 492010, India
| | - Deependra Singh
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh 492010, India
| | - Manju Rawat Singh
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh 492010, India
| | - Sunita Minz
- Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, India
| | | | - Sucheta
- School of Medical and Allied Sciences, K. R. Mangalam University, Gurugram, Haryana 122103, India
| | - Renu Yadav
- School of Medical and Allied Sciences, K. R. Mangalam University, Gurugram, Haryana 122103, India
| | - Lalitkumar Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, BT9 7BL, UK
| | - Kantrol Kumar Sahu
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh 281406, India
| | - Anindya Bagchi
- Tumor Initiation & Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road La Jolla, CA 92037, USA
| | - Nagendra Singh Chauhan
- Drugs Testing Laboratory Avam Anusandhan Kendra (AYUSH), Government Ayurvedic College, Raipur, India
| | | |
Collapse
|
5
|
Gene Profiling of a 3D Psoriatic Skin Model Enriched in T Cells: Downregulation of PTPRM Promotes Keratinocyte Proliferation through Excessive ERK1/2 Signaling. Cells 2022; 11:cells11182904. [PMID: 36139479 PMCID: PMC9497242 DOI: 10.3390/cells11182904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 12/03/2022] Open
Abstract
Psoriasis is a complex, immune-mediated skin disease involving a wide range of epithelial and immune cells. The underlying mechanisms that govern the epidermal defects and immunological dysfunction observed in this condition remain largely unknown. In recent years, the emergence of new, more sophisticated models has allowed the evolution of our knowledge of the pathogenesis of psoriasis. The development of psoriatic skin biomaterials that more closely mimic native psoriatic skin provides advanced preclinical models that will prove relevant in predicting clinical outcomes. In this study, we used a tissue-engineered, two-layered (dermis and epidermis) human skin substitute enriched in T cells as a biomaterial to study both the cellular and molecular mechanisms involved in psoriasis’ pathogenesis. Gene profiling on microarrays revealed significant changes in the profile of genes expressed by the psoriatic skin substitutes compared with the healthy ones. Two genes, namely, PTPRM and NELL2, whose products influence the ERK1/2 signaling pathway have been identified as being deregulated in psoriatic substitutes. Deregulation of these genes supports excessive activation of the ERK1/2 pathway in psoriatic skin substitutes. Most importantly, electrophoresis mobility shift assays provided evidence that the DNA-binding properties of two downstream nuclear targets of ERK1/2, both the NF-κB and Sp1 transcription factors, are increased under psoriatic conditions. Moreover, the results obtained with the inhibition of RSK, a downstream effector of ERK1/2, supported the therapeutic potential of inhibiting this signaling pathway for psoriasis treatment. In conclusion, this two-layered human psoriatic skin substitute enriched in T cells may prove particularly useful in deciphering the mechanistic details of psoriatic pathogenesis and provide a relevant biomaterial for the study of potential therapeutic targets.
Collapse
|
6
|
Lee HR, Sung JH. Multi-Organ-on-a-Chip for Realization of Gut-Skin Axis. Biotechnol Bioeng 2022; 119:2590-2601. [PMID: 35750599 DOI: 10.1002/bit.28164] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/24/2022] [Accepted: 06/21/2022] [Indexed: 11/06/2022]
Abstract
The concept of physiological link between the gut and the skin, known as the gut-skin axis, has been gaining more evidence recently. Although experimental data from animal and human studies support the existence of the gut-skin axis, in vitro model platforms that can test the hypothesis are lacking. Organ-on-a-chip offers the possibility of connecting different tissues and recapitulating interactions between them. In this study, we report a multi-organ chip that can capture the basic inter-organ communication between the gut and the skin. Its modular design enables separate culture and differentiation of the gut and skin tissues, and after assembly the two organs are connected via microfluidic channels than enables perfusion and mass transfer. We showed that the impairment of the gut barrier function exacerbated the adverse effect of fatty acids on skin cells, with decreased viability, increased level of cytokine secretion and human β-defensin-2 (hBD-2), an inflammatory dermal disease marker. Based on these results, we believe that our multi-organ chip can be a novel in vitro platform for recapitulating complex mechanisms underlying the gut-skin axis. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hye Ri Lee
- Department of Chemical Engineering, Hongik University, Seoul, Korea
| | - Jong Hwan Sung
- Department of Chemical Engineering, Hongik University, Seoul, Korea
| |
Collapse
|
7
|
Mok BR, Shon SJ, Kim AR, Simard-Bisson C, Martel I, Germain L, Kim DH, Shin JU. Structural and Functional Validation of a Full-Thickness Self-Assembled Skin Equivalent for Disease Modeling. Pharmaceutics 2022; 14:1211. [PMID: 35745784 PMCID: PMC9231172 DOI: 10.3390/pharmaceutics14061211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 11/24/2022] Open
Abstract
Recently, various types of in vitro-reconstructed 3D skin models have been developed for drug testing and disease modeling. Herein, we structurally and functionally validated a self-assembled reconstructed skin equivalent (RSE) and developed an IL-17a-induced in vitro psoriasis-like model using a self-assembled RSE. The tissue engineering approach was used to construct the self-assembled RSE. The dermal layer was generated using fibroblasts secreting their own ECM, and the epidermal layer was reconstructed by seeding keratinocytes on the dermal layer. To generate the psoriatic model, IL-17A was added to the culture medium during the air-liquid interface culture period. Self-assembled RSE resulted in a fully differentiated epidermal layer, a well-established basement membrane, and dermal collagen deposition. In addition, self-assembled RSE was tested for 20 reference chemicals according to the Performance Standard of OECD TG439 and showed overall sensitivity, specificity, and accuracy of 100%, 90%, and 95%, respectively. The IL-17a-treated psoriatic RSE model exhibited psoriatic epidermal characteristics, such as epidermal hyperproliferation, parakeratosis, and increased expression of KRT6, KRT17, hBD2, and S100A9. Thus, our results suggest that a self-assembled RSE that structurally and functionally mimics the human skin has a great potential for testing various drugs or cosmetic ingredients and modeling inflammatory skin diseases.
Collapse
Affiliation(s)
- Bo Ram Mok
- Department of Biomedical Science, CHA University, Seongnam 13488, Korea; (B.R.M.); (S.-J.S.); (A.R.K.)
| | - Su-Ji Shon
- Department of Biomedical Science, CHA University, Seongnam 13488, Korea; (B.R.M.); (S.-J.S.); (A.R.K.)
| | - A Ram Kim
- Department of Biomedical Science, CHA University, Seongnam 13488, Korea; (B.R.M.); (S.-J.S.); (A.R.K.)
| | - Carolyne Simard-Bisson
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, and Department of Surgery, Faculty of Medicine, Université Laval, CHU de Québec-Université Laval Research Centre, Québec, QC G1J1Z4, Canada; (C.S.-B.); (I.M.); (L.G.)
| | - Israël Martel
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, and Department of Surgery, Faculty of Medicine, Université Laval, CHU de Québec-Université Laval Research Centre, Québec, QC G1J1Z4, Canada; (C.S.-B.); (I.M.); (L.G.)
| | - Lucie Germain
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, and Department of Surgery, Faculty of Medicine, Université Laval, CHU de Québec-Université Laval Research Centre, Québec, QC G1J1Z4, Canada; (C.S.-B.); (I.M.); (L.G.)
| | - Dong Hyun Kim
- Department of Dermatology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam 13497, Korea;
| | - Jung U Shin
- Department of Dermatology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam 13497, Korea;
| |
Collapse
|
8
|
Sarama R, Matharu PK, Abduldaiem Y, Corrêa MP, Gil CD, Greco KV. In Vitro Disease Models for Understanding Psoriasis and Atopic Dermatitis. Front Bioeng Biotechnol 2022; 10:803218. [PMID: 35265594 PMCID: PMC8899215 DOI: 10.3389/fbioe.2022.803218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/04/2022] [Indexed: 02/05/2023] Open
Abstract
Psoriasis (PS) and Atopic Dermatitis (AD) are two of the most prevalent inflammatory skin diseases. Dysregulations in the immune response are believed to play a crucial role in the pathogenesis of these conditions. Various parallels can be drawn between the two disorders, as they are both genetically mediated, and characterised by dry, scaly skin caused by abnormal proliferation of epidermal keratinocytes. The use of in vitro disease models has become an increasingly popular method to study PS and AD due to the high reproducibility and accuracy in recapitulating the pathogenesis of these conditions. However, due to the extensive range of in vitro models available and the majority of these being at early stages of production, areas of development are needed. This review summarises the key features of PS and AD, the different types of in vitro models available to study their pathophysiology and evaluating their efficacy in addition to discussing future research opportunities.
Collapse
Affiliation(s)
- Roudin Sarama
- Research and Development Department, The Griffin Institute, Harrow, United Kingdom
| | - Priya K. Matharu
- Research and Development Department, The Griffin Institute, Harrow, United Kingdom
| | - Yousef Abduldaiem
- Research and Development Department, The Griffin Institute, Harrow, United Kingdom
- Division of Surgery and Interventional Science, University College London (UCL), London, United Kingdom
| | - Mab P. Corrêa
- Programa de Pós-Graduação Em Biociências, Instituto de Biociências Letras e Ciências Exatas, Universidade Estadual Paulista (UNESP), São José, Brazil
| | - Cristiane D. Gil
- Departamento de Morfologia e Genética, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São José, Brazil
| | - Karin V. Greco
- Research and Development Department, The Griffin Institute, Harrow, United Kingdom
- Division of Surgery and Interventional Science, University College London (UCL), London, United Kingdom
- *Correspondence: Karin V. Greco,
| |
Collapse
|
9
|
Rioux G, Simard M, Morin S, Lorthois I, Guérin SL, Pouliot R. Development of a 3D psoriatic skin model optimized for infiltration of IL-17A producing T cells: Focus on the crosstalk between T cells and psoriatic keratinocytes. Acta Biomater 2021; 136:210-222. [PMID: 34547515 DOI: 10.1016/j.actbio.2021.09.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 08/20/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022]
Abstract
Psoriasis is a chronic inflammatory skin disease involving several cell types, including T cells, via the IL-23/IL-17 axis. IL-17A acts on the surrounding epithelial cells thus resulting in an inflammatory feedback loop. The development of immunocompetent models that correctly recapitulate the complex phenotype of psoriasis remains challenging, which also includes both the T cell isolation and activation methods. The purpose of this work was to develop an advanced in vitro 3D psoriatic skin model that enables the study of the impact of T cells on psoriatic epithelial cells. To reach that aim, healthy and psoriatic fibroblasts and keratinocytes were used to reproduce this tissue-engineered skin model in which activated T cells, isolated beforehand from human whole blood, have been incorporated. Our study showed that isolation of T cells with the EasySep procedure, followed by activation with PMA/ionomycin, mimicked the psoriatic characteristics in an optimal manner with the production of inflammatory cytokines important in the pathogenesis of psoriasis, as well as increased expression of Ki67, S100A7, elafin and involucrin. This psoriatic model enriched in activated T cells displayed enhanced production of IL-17A, IFN-ƴ, CCL2, CXCL10, IL-1ra, IL-6 and CXCL8 compared with the healthy model and whose increased secretion was maintained over time. In addition, anti-IL17A treatment restored some psoriatic features, including epidermal thickness and basal keratinocytes proliferation, as well as a downregulation of S100A7, elafin and involucrin expression. Altogether, our study demonstrated that this model reflects a proper psoriatic inflammatory environment and is effective for the investigation of epidermal and T cell interaction over time. STATEMENT OF SIGNIFICANCE: The aim of this study was to provide an innovative 3D immunocompetent human psoriatic skin model. To our knowledge, this is the first immunocompetent model that uses skin cells from psoriatic patients to study the impact of IL-17A on pathological cells. Through the use of this model, we demonstrated that the T-cell enriched psoriatic model differs from T-cell enriched healthy model, highlighting efficient crosstalk between pathologic epithelial cells and T cells. This advanced preclinical model further mimics the original psoriatic skin and will prove relevant in predicting clinical outcomes, thereby decreasing inaccurate predictions of compound effects.
Collapse
|
10
|
Moon S, Kim DH, Shin JU. In Vitro Models Mimicking Immune Response in the Skin. Yonsei Med J 2021; 62:969-980. [PMID: 34672130 PMCID: PMC8542468 DOI: 10.3349/ymj.2021.62.11.969] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/16/2021] [Accepted: 09/24/2021] [Indexed: 12/31/2022] Open
Abstract
The skin is the first line of defense of our body, and it is composed of the epidermis and dermis with diverse immune cells. Various in vitro models have been investigated to recapitulate the immunological functions of the skin and to model inflammatory skin diseases. The simplest model is a two-dimensional (2D) co-culture system, which helps understand the direct and indirect cell-to-cell interactions between immune and structural cells; however, it has limitations when observing three-dimensional (3D) interactions or reproducing skin barriers. Conversely, 3D skin constructs can mimic the human skin characteristics in terms of epidermal and dermal structures, barrier functions, cell migration, and cell-to-cell interaction in the 3D space. Recently, as the importance of neuro-immune-cutaneous interactions in the inflammatory response is emerging, 3D skin constructs containing both immune cells and neurons are being developed. A microfluidic culture device called "skin-on-a-chip," which simulates the structures and functions of the human skin with perfusion, was also developed to mimic immune cell migration through the vascular system. This review summarizes the in vitro skin models with immune components, focusing on two highly prevalent chronic inflammatory skin diseases: atopic dermatitis and psoriasis. The development of these models will be valuable in studying the pathophysiology of skin diseases and evaluating the efficacy and toxicity of new drugs.
Collapse
Affiliation(s)
- Sujin Moon
- CHA University College of Medicine, Seongnam, Korea
| | - Dong Hyun Kim
- CHA University College of Medicine, Seongnam, Korea
- Department of Dermatology, CHA Bundang Medical Center, Seongnam, Korea
| | - Jung U Shin
- CHA University College of Medicine, Seongnam, Korea
- Department of Dermatology, CHA Bundang Medical Center, Seongnam, Korea.
| |
Collapse
|
11
|
Fibroblast-derived matrices-based human skin equivalent as an in vitro psoriatic model for drug testing. J Biosci 2021. [DOI: 10.1007/s12038-021-00205-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Cardinali G, Flori E, Mastrofrancesco A, Mosca S, Ottaviani M, Dell'Anna ML, Truglio M, Vento A, Zaccarini M, Zouboulis CC, Picardo M. Anti-Inflammatory and Pro-Differentiating Properties of the Aryl Hydrocarbon Receptor Ligands NPD-0614-13 and NPD-0614-24: Potential Therapeutic Benefits in Psoriasis. Int J Mol Sci 2021; 22:ijms22147501. [PMID: 34299118 PMCID: PMC8304622 DOI: 10.3390/ijms22147501] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/06/2021] [Accepted: 07/10/2021] [Indexed: 12/13/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor expressed in all skin cell types, plays a key role in physiological and pathological processes. Several studies have shown that this receptor is involved in the prevention of inflammatory skin diseases, e.g., psoriasis, atopic dermatitis, representing a potential therapeutic target. We tested the safety profile and the biological activity of NPD-0614-13 and NPD-0614-24, two new synthetic AhR ligands structurally related to the natural agonist FICZ, known to be effective in psoriasis. NPD-0614-13 and NPD-0614-24 did not alter per se the physiological functions of the different skin cell populations involved in the pathogenesis of inflammatory skin diseases. In human primary keratinocytes stimulated with tumor necrosis factor-α or lipopolysaccharide the compounds were able to counteract the altered proliferation and to dampen inflammatory signaling by reducing the activation of p38MAPK, c-Jun, NF-kBp65, and the release of cytokines. Furthermore, the molecules were tested for their beneficial effects in human epidermal and full-thickness reconstituted skin models of psoriasis. NPD-0614-13 and NPD-0614-24 recovered the psoriasis skin phenotype exerting pro-differentiating activity and reducing the expression of pro-inflammatory cytokines and antimicrobial peptides. These data provide a rationale for considering NPD-0614-13 and NPD-0614-24 in the management of psoriasis.
Collapse
Affiliation(s)
- Giorgia Cardinali
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Enrica Flori
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Arianna Mastrofrancesco
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Sarah Mosca
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Monica Ottaviani
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Maria Lucia Dell'Anna
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Mauro Truglio
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Antonella Vento
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Marco Zaccarini
- Genetic Research, Molecular Biology and Dermatopathology Unit, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Christos C Zouboulis
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Brandenburg Medical School Theodore Fontane and Faculty of Health Sciences Brandenburg, 06847 Dessau, Germany
| | - Mauro Picardo
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| |
Collapse
|
13
|
Transcriptome Profiling Analyses in Psoriasis: A Dynamic Contribution of Keratinocytes to the Pathogenesis. Genes (Basel) 2020; 11:genes11101155. [PMID: 33007857 PMCID: PMC7600703 DOI: 10.3390/genes11101155] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 02/08/2023] Open
Abstract
Psoriasis is an immune-mediated inflammatory skin disease with a complex etiology involving environmental and genetic factors. A better insight into related genomic alteration helps design precise therapies leading to better treatment outcome. Gene expression in psoriasis can provide relevant information about the altered expression of mRNA transcripts, thus giving new insights into the disease onset. Techniques for transcriptome analyses, such as microarray and RNA sequencing (RNA-seq), are relevant tools for the discovery of new biomarkers as well as new therapeutic targets. This review summarizes the findings related to the contribution of keratinocytes in the pathogenesis of psoriasis by an in-depth review of studies that have examined psoriatic transcriptomes in the past years. It also provides valuable information on reconstructed 3D psoriatic skin models using cells isolated from psoriatic patients for transcriptomic studies.
Collapse
|
14
|
Lorthois I, Simard M, Morin S, Pouliot R. Infiltration of T Cells into a Three-Dimensional Psoriatic Skin Model Mimics Pathological Key Features. Int J Mol Sci 2019; 20:ijms20071670. [PMID: 30987186 PMCID: PMC6479293 DOI: 10.3390/ijms20071670] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 03/29/2019] [Accepted: 04/01/2019] [Indexed: 11/16/2022] Open
Abstract
Psoriasis is an autoimmune chronic dermatosis that is T cell-mediated, characterized by epidermal thickening, aberrant epidermal differentiation and inflammatory infiltrates, with a dominant Th1 and Th17 profile. Additional in vitro models are required to study the complex interactions between activated T cells and skin cells, and to develop new, more effective treatments. We have therefore sought to model this psoriatic inflammation by the generation of tissue-engineered immunocompetent tissues, and we have investigated the response of activated T-cell infiltration in models produced with lesional psoriatic skin cells on major hallmarks of psoriasis. The immunocompetent lesional skin model displayed a delayed onset of epidermal differentiation, an hyperproliferation of the basal keratinocytes, a drastic increase in the secretion of proinflammatory cytokines, and a disturbed expression of key transcription factors, as observed in lesional plaques, suggesting a crucial importance of combining the pathological phenotype of cutaneous cells to T cells in order to generate a relevant model for psoriasis. Finally, we found this skin model to be responsive to methotrexate treatment, making it a valuable tool for drug development.
Collapse
Affiliation(s)
- Isabelle Lorthois
- Centre de recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Axe Médecine Régénératrice, Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1J 1Z4, Canada.
- Faculté de Pharmacie, Université Laval, Québec, QC G1V 0A6, Canada.
| | - Mélissa Simard
- Centre de recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Axe Médecine Régénératrice, Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1J 1Z4, Canada.
- Faculté de Pharmacie, Université Laval, Québec, QC G1V 0A6, Canada.
| | - Sophie Morin
- Centre de recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Axe Médecine Régénératrice, Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1J 1Z4, Canada.
- Faculté de Pharmacie, Université Laval, Québec, QC G1V 0A6, Canada.
| | - Roxane Pouliot
- Centre de recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Axe Médecine Régénératrice, Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1J 1Z4, Canada.
- Faculté de Pharmacie, Université Laval, Québec, QC G1V 0A6, Canada.
| |
Collapse
|
15
|
Contribution of In Vivo and Organotypic 3D Models to Understanding the Role of Macrophages and Neutrophils in the Pathogenesis of Psoriasis. Mediators Inflamm 2017; 2017:7215072. [PMID: 29249871 PMCID: PMC5698795 DOI: 10.1155/2017/7215072] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 09/15/2017] [Accepted: 10/02/2017] [Indexed: 02/08/2023] Open
Abstract
Psoriasis, a common chronic immune-mediated skin disease, is histologically characterized by a rapid keratinocyte turnover and differentiation defects. Key insights favor the idea that T cells are not the only key actors involved in the inflammatory process. Innate immune cells, more precisely neutrophils and macrophages, provide specific signals involved in the initiation and the maintenance of the pathogenesis. Current data from animal models and, to a lesser extent, three-dimensional in vitro models have confirmed the interest in leaning towards other immune cell types as a potential new cellular target for the treatment of the disease. Although these models do not mimic the complex phenotype nor all human features of psoriasis, their development is necessary and essential to better understand reciprocal interactions between skin cells and innate immune cells and to emphasize the crucial importance of the local lesional microenvironment. In this review, through the use of in vivo and 3D organotypic models, we aim to shed light on the crosstalk between epithelial and immune components and to discuss the role of secreted inflammatory molecules in the development of this chronic skin disease.
Collapse
|
16
|
Smits JPH, Niehues H, Rikken G, van Vlijmen-Willems IMJJ, van de Zande GWHJF, Zeeuwen PLJM, Schalkwijk J, van den Bogaard EH. Immortalized N/TERT keratinocytes as an alternative cell source in 3D human epidermal models. Sci Rep 2017; 7:11838. [PMID: 28928444 PMCID: PMC5605545 DOI: 10.1038/s41598-017-12041-y] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 09/01/2017] [Indexed: 12/24/2022] Open
Abstract
The strong societal urge to reduce the use of experimental animals, and the biological differences between rodent and human skin, have led to the development of alternative models for healthy and diseased human skin. However, the limited availability of primary keratinocytes to generate such models hampers large-scale implementation of skin models in biomedical, toxicological, and pharmaceutical research. Immortalized cell lines may overcome these issues, however, few immortalized human keratinocyte cell lines are available and most do not form a fully stratified epithelium. In this study we compared two immortalized keratinocyte cell lines (N/TERT1, N/TERT2G) to human primary keratinocytes based on epidermal differentiation, response to inflammatory mediators, and the development of normal and inflammatory human epidermal equivalents (HEEs). Stratum corneum permeability, epidermal morphology, and expression of epidermal differentiation and host defence genes and proteins in N/TERT-HEE cultures was similar to that of primary human keratinocytes. We successfully generated N/TERT-HEEs with psoriasis or atopic dermatitis features and validated these models for drug-screening purposes. We conclude that the N/TERT keratinocyte cell lines are useful substitutes for primary human keratinocytes thereby providing a biologically relevant, unlimited cell source for in vitro studies on epidermal biology, inflammatory skin disease pathogenesis and therapeutics.
Collapse
Affiliation(s)
- Jos P H Smits
- Department of Dermatology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center (Radboudumc), PO BOX 9101, 6500 HB, Nijmegen, The Netherlands
| | - Hanna Niehues
- Department of Dermatology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center (Radboudumc), PO BOX 9101, 6500 HB, Nijmegen, The Netherlands
| | - Gijs Rikken
- Department of Dermatology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center (Radboudumc), PO BOX 9101, 6500 HB, Nijmegen, The Netherlands
| | - Ivonne M J J van Vlijmen-Willems
- Department of Dermatology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center (Radboudumc), PO BOX 9101, 6500 HB, Nijmegen, The Netherlands
| | - Guillaume W H J F van de Zande
- Department of Human Genetics, Radboud University Medical Center (Radboudumc), PO BOX 9101, 6500 HB, Nijmegen, The Netherlands
| | - Patrick L J M Zeeuwen
- Department of Dermatology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center (Radboudumc), PO BOX 9101, 6500 HB, Nijmegen, The Netherlands
| | - Joost Schalkwijk
- Department of Dermatology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center (Radboudumc), PO BOX 9101, 6500 HB, Nijmegen, The Netherlands
| | - Ellen H van den Bogaard
- Department of Dermatology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center (Radboudumc), PO BOX 9101, 6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|
17
|
Desmet E, Ramadhas A, Lambert J, Van Gele M. In vitro psoriasis models with focus on reconstructed skin models as promising tools in psoriasis research. Exp Biol Med (Maywood) 2017; 242:1158-1169. [PMID: 28585891 DOI: 10.1177/1535370217710637] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Psoriasis is a complex chronic immune-mediated inflammatory cutaneous disease associated with the development of inflammatory plaques on the skin. Studies proved that the disease results from a deregulated interplay between skin keratinocytes, immune cells and the environment leading to a persisting inflammatory process modulated by pro-inflammatory cytokines and activation of T cells. However, a major hindrance to study the pathogenesis of psoriasis more in depth and subsequent development of novel therapies is the lack of suitable pre-clinical models mimicking the complex phenotype of this skin disorder. Recent advances in and optimization of three-dimensional skin equivalent models have made them attractive and promising alternatives to the simplistic monolayer cultures, immunological different in vivo models and scarce ex vivo skin explants. Moreover, human skin equivalents are increasing in complexity level to match human biology as closely as possible. Here, we critically review the different types of three-dimensional skin models of psoriasis with relevance to their application potential and advantages over other models. This will guide researchers in choosing the most suitable psoriasis skin model for therapeutic drug testing (including gene therapy via siRNA molecules), or to examine biological features contributing to the pathology of psoriasis. However, the addition of T cells (as recently applied to a de-epidermized dermis-based psoriatic skin model) or other immune cells would make them even more attractive models and broaden their application potential. Eventually, the ultimate goal would be to substitute animal models by three-dimensional psoriatic skin models in the pre-clinical phases of anti-psoriasis candidate drugs. Impact statement The continuous development of novel in vitro models mimicking the psoriasis phenotype is important in the field of psoriasis research, as currently no model exists that completely matches the in vivo psoriasis skin or the disease pathology. This work provides a complete overview of the different available in vitro psoriasis models and suggests improvements for future models. Moreover, a focus was given to psoriatic skin equivalent models, as they offer several advantages over the other models, including commercial availability and validity. The potential and reported applicability of these models in psoriasis pre-clinical research is extensively discussed. As such, this work offers a guide to researchers in their choice of pre-clinical psoriasis model depending on their type of research question.
Collapse
Affiliation(s)
- Eline Desmet
- Department of Dermatology, Ghent University Hospital, Ghent 9000, Belgium
| | - Anesh Ramadhas
- Department of Dermatology, Ghent University Hospital, Ghent 9000, Belgium
| | - Jo Lambert
- Department of Dermatology, Ghent University Hospital, Ghent 9000, Belgium
| | - Mireille Van Gele
- Department of Dermatology, Ghent University Hospital, Ghent 9000, Belgium
| |
Collapse
|