1
|
Bai Y, Wang Z, He X, Zhu Y, Xu X, Yang H, Mei G, Chen S, Ma B, Zhu R. Application of Bioactive Materials for Osteogenic Function in Bone Tissue Engineering. SMALL METHODS 2024; 8:e2301283. [PMID: 38509851 DOI: 10.1002/smtd.202301283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/04/2023] [Indexed: 03/22/2024]
Abstract
Bone tissue defects present a major challenge in orthopedic surgery. Bone tissue engineering using multiple versatile bioactive materials is a potential strategy for bone-defect repair and regeneration. Due to their unique physicochemical and mechanical properties, biofunctional materials can enhance cellular adhesion, proliferation, and osteogenic differentiation, thereby supporting and stimulating the formation of new bone tissue. 3D bioprinting and physical stimuli-responsive strategies have been employed in various studies on bone regeneration for the fabrication of desired multifunctional biomaterials with integrated bone tissue repair and regeneration properties. In this review, biomaterials applied to bone tissue engineering, emerging 3D bioprinting techniques, and physical stimuli-responsive strategies for the rational manufacturing of novel biomaterials with bone therapeutic and regenerative functions are summarized. Furthermore, the impact of biomaterials on the osteogenic differentiation of stem cells and the potential pathways associated with biomaterial-induced osteogenesis are discussed.
Collapse
Affiliation(s)
- Yuxin Bai
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Science and Technology, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Zhaojie Wang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Science and Technology, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Xiaolie He
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Science and Technology, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Yanjing Zhu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Science and Technology, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Xu Xu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Science and Technology, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Huiyi Yang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Science and Technology, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Guangyu Mei
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Science and Technology, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Shengguang Chen
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Science and Technology, School of Medicine, Tongji University, Shanghai, 200065, China
- Department of Endocrinology and Metabolism, Gongli Hospital of Shanghai Pudong New Area, Shanghai, 200135, China
| | - Bei Ma
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Science and Technology, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Rongrong Zhu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Science and Technology, School of Medicine, Tongji University, Shanghai, 200065, China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, 200065, China
| |
Collapse
|
2
|
Çiftci Dede E, Korkusuz P, Bilgiç E, Çetinkaya MA, Korkusuz F. Boron Nano-hydroxyapatite Composite Increases the Bone Regeneration of Ovariectomized Rabbit Femurs. Biol Trace Elem Res 2022; 200:183-196. [PMID: 33715074 DOI: 10.1007/s12011-021-02626-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 02/03/2021] [Indexed: 10/21/2022]
Abstract
Osteoporosis is a systemic metabolic disease defined by a decreased bone mineral density, microarchitectural deterioration, and an increased incidence of fragility fractures that may lead to morbidity and mortality. Boron may stimulate new bone formation and regeneration, when combined with nano-hydroxyapatite. We questioned whether injecting boron-containing nano-hydroxyapatite composites with hyaluronan increased the bone mineral density and new bone formation in osteoporotic rabbit femurs. The regenerative effects of injectable boron-containing nano-hydroxyapatite composites from 6 to 12 weeks, which may prevent osteoporotic femoral fractures, were assessed. Boron-containing (10 μg/ml) nano-hydroxyapatite composites were injected into the intramedullary femoral cavity with hyaluronan. These significantly increased the histomorphometric new bone surface to the total bone surface ratio at 6 and 9 weeks. The micro-tomographic bone volume to the total volume ratio and bone mineral density in osteoporotic rabbit femurs increased when compared to the hyaluronan (p = 0.004, p = 0.004, p = 0.004, p = 0.01, respectively) and the sham-control (p = 0.01, p = 0.004, p = 0.01, p = 0.037, respectively) groups. The boron-containing group had a higher bone mineralization and new bone formation compared to the nano-hydroxyapatite group, although the difference was not statistically significant. These findings reveal that intramedullary injection of boron-containing nano-hydroxyapatite with hyaluronan increases new bone formation and mineralization in ovariectomized rabbit femurs. Boron-containing nano-hydroxyapatite composites are promising tissue engineering biomaterials that may have regenerative potential in preventing primary and/or secondary femoral fractures in osteoporosis patients.
Collapse
Affiliation(s)
- Eda Çiftci Dede
- Department of Bioengineering, Graduate School of Science and Engineering, Hacettepe University, Beytepe, Ankara, 06810, Turkey
| | - Petek Korkusuz
- Department of Histology and Embryology, Faculty of Medicine, Hacettepe University, Sıhhiye, Ankara, 06100, Türkiye
| | - Elif Bilgiç
- Department of Histology and Embryology, Faculty of Medicine, Hacettepe University, Sıhhiye, Ankara, 06100, Türkiye
| | - Mehmet Alper Çetinkaya
- Animal Research Center, Faculty of Medicine, Hacettepe University, Sıhhiye, Ankara, 06100, Turkey
| | - Feza Korkusuz
- Department of Sport Medicine, Faculty of Medicine, Hacettepe University, Sıhhiye, Ankara, 06100, Türkiye.
| |
Collapse
|
3
|
Rial-Hermida MI, Rey-Rico A, Blanco-Fernandez B, Carballo-Pedrares N, Byrne EM, Mano JF. Recent Progress on Polysaccharide-Based Hydrogels for Controlled Delivery of Therapeutic Biomolecules. ACS Biomater Sci Eng 2021; 7:4102-4127. [PMID: 34137581 PMCID: PMC8919265 DOI: 10.1021/acsbiomaterials.0c01784] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 06/02/2021] [Indexed: 12/24/2022]
Abstract
A plethora of applications using polysaccharides have been developed in recent years due to their availability as well as their frequent nontoxicity and biodegradability. These polymers are usually obtained from renewable sources or are byproducts of industrial processes, thus, their use is collaborative in waste management and shows promise for an enhanced sustainable circular economy. Regarding the development of novel delivery systems for biotherapeutics, the potential of polysaccharides is attractive for the previously mentioned properties and also for the possibility of chemical modification of their structures, their ability to form matrixes of diverse architectures and mechanical properties, as well as for their ability to maintain bioactivity following incorporation of the biomolecules into the matrix. Biotherapeutics, such as proteins, growth factors, gene vectors, enzymes, hormones, DNA/RNA, and antibodies are currently in use as major therapeutics in a wide range of pathologies. In the present review, we summarize recent progress in the development of polysaccharide-based hydrogels of diverse nature, alone or in combination with other polymers or drug delivery systems, which have been implemented in the delivery of biotherapeutics in the pharmaceutical and biomedical fields.
Collapse
Affiliation(s)
- M. Isabel Rial-Hermida
- Department
of Chemistry, CICECO−Aveiro Institute of Materials, University of Aveiro 3810-193 Aveiro, Portugal
| | - Ana Rey-Rico
- Cell
Therapy and Regenerative Medicine
Unit, Centro de Investigacións Científicas Avanzadas
(CICA), Universidade da Coruña, 15071 A Coruña, Spain
| | - Barbara Blanco-Fernandez
- Institute
for Bioengineering of Catalonia (IBEC), The Barcelona Institute of
Science and Technology, 08028 Barcelona, Spain
- CIBER
en Bioingeniería, Biomateriales y
Nanomedicina, CIBER-BBN, 28029 Madrid, Spain
| | - Natalia Carballo-Pedrares
- Cell
Therapy and Regenerative Medicine
Unit, Centro de Investigacións Científicas Avanzadas
(CICA), Universidade da Coruña, 15071 A Coruña, Spain
| | - Eimear M. Byrne
- Wellcome-Wolfson
Institute For Experimental Medicine, Queen’s
University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - João F. Mano
- Department
of Chemistry, CICECO−Aveiro Institute of Materials, University of Aveiro 3810-193 Aveiro, Portugal
| |
Collapse
|
4
|
Wu X, Zhang T, Hoff B, Suvarnapathaki S, Lantigua D, McCarthy C, Wu B, Camci‐Unal G. Mineralized Hydrogels Induce Bone Regeneration in Critical Size Cranial Defects. Adv Healthc Mater 2021; 10:e2001101. [PMID: 32940013 DOI: 10.1002/adhm.202001101] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/07/2020] [Indexed: 01/28/2023]
Abstract
Sequential mineralization enables the integration of minerals within the 3D structure of hydrogels. Hydrolyzed collagen-based hydrogels are sequentially mineralized over 10 cycles. One cycle is defined as an incubation period in calcium chloride dihydrate followed by incubation in sodium phosphate dibasic dihydrate. Separate cycles are completed at 30-minute and 24-hour intervals. For the gels mineralized for 30 min and 24 h, the compressive moduli increases from 4.25 to 87.57 kPa and from 4.25 to 125.47 kPa, respectively, as the cycle number increases from 0 to 10. As indicated by X-ray diffraction (XRD) and Fourier transform infrared analysis (FTIR) analyses, the minerals in the scaffolds are mainly hydroxyapatite. In vitro experiments, which measure mechanical properties, porous structure, mineral content, and gene expression are performed to evaluate the physical properties and osteoinductivity of the scaffolds. Real time-quantitative polymerase chain reaction (RT-qPCR) demonstrates 4-10 fold increase in the expression of BMP-7 and osteocalcin. The in vivo subcutaneous implantation demonstrates that the scaffolds are biocompatible and 90% biodegradable. The critical size cranial defects in vivo exhibit nearly complete bone regeneration. Cycle 10 hydrogels mineralized for 24 h have a volume of 59.86 mm3 and a density of 1946.45 HU. These results demonstrate the suitability of sequentially mineralized hydrogel scaffolds for bone repair and regeneration.
Collapse
Affiliation(s)
- Xinchen Wu
- Department of Chemical Engineering University of Massachusetts Lowell Lowell MA 01854 USA
- Biomedical Engineering and Biotechnology Program University of Massachusetts Lowell Lowell MA 01854 USA
| | - Tengfei Zhang
- Department of Neurosurgery Sanbo Brain Hospital Capital Medicine University Beijing 100069 China
| | - Brianna Hoff
- Department of Chemical Engineering University of Massachusetts Lowell Lowell MA 01854 USA
| | - Sanika Suvarnapathaki
- Department of Chemical Engineering University of Massachusetts Lowell Lowell MA 01854 USA
- Biomedical Engineering and Biotechnology Program University of Massachusetts Lowell Lowell MA 01854 USA
| | - Darlin Lantigua
- Department of Chemical Engineering University of Massachusetts Lowell Lowell MA 01854 USA
- Biomedical Engineering and Biotechnology Program University of Massachusetts Lowell Lowell MA 01854 USA
| | - Colleen McCarthy
- Department of Chemical Engineering University of Massachusetts Lowell Lowell MA 01854 USA
| | - Bin Wu
- Department of Neurosurgery Sanbo Brain Hospital Capital Medicine University Beijing 100069 China
| | - Gulden Camci‐Unal
- Department of Chemical Engineering University of Massachusetts Lowell Lowell MA 01854 USA
- Department of Surgery University of Massachusetts Medical School Worcester MA 01605 USA
| |
Collapse
|
5
|
Shoji S, Uchida K, Satio W, Sekiguchi H, Inoue G, Miyagi M, Takata K, Yokozeki Y, Takaso M. Acceleration of bone union by in situ-formed hydrogel containing bone morphogenetic protein-2 in a mouse refractory fracture model. J Orthop Surg Res 2020; 15:426. [PMID: 32948214 PMCID: PMC7501615 DOI: 10.1186/s13018-020-01953-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 09/09/2020] [Indexed: 11/30/2022] Open
Abstract
Background An enzymatic crosslinking strategy using hydrogen peroxide and horseradish peroxidase is receiving increasing attention for application with in situ-formed hydrogels (IFHs). Several studies have reported the application of IFHs in cell delivery and tissue engineering. IFHs may also be ideal carrier materials for bone repair, although their potential as a carrier for bone morphogenetic protein (BMP)-2 has yet to be examined. Here, we examined the effect of an IFH made of hyaluronic acid (IFH-HA) containing BMP-2 in promoting osteogenesis in a mouse refractory fracture model. Methods Immediately following a fracture procedure, animals either received no treatment (control) or an injection of IFH-HA/PBS or IFH-HA containing 2 μg BMP-2 (IFH-HA/BMP-2) into the fracture site (n = 16, each treatment). Results Fracture sites injected with IFH-HA/BMP-2 showed significantly greater bone volume, bone mineral content, and bone union compared with sites receiving no treatment or treated with IFH-HA/PBS alone (each n = 10). Gene expression levels of osteogenic markers, Alpl, Bglap, and Osx, were significantly raised in the IFH-HA/BMP-2 group compared to the IFH-HA/PBS and control groups (each n = 6). Conclusion IFH-HA/BMP-2 may contribute to the treatment of refractory fractures.
Collapse
Affiliation(s)
- Shintaro Shoji
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku, Kitasato, Sagamihara City, Kanagawa, 252-0374, Japan
| | - Kentaro Uchida
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku, Kitasato, Sagamihara City, Kanagawa, 252-0374, Japan. .,Shonan University of Medical Sciences Research Institute, Nishikubo 500, Chigasaki City, Kanagawa, 253-0083, Japan.
| | - Wataru Satio
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku, Kitasato, Sagamihara City, Kanagawa, 252-0374, Japan
| | - Hiroyuki Sekiguchi
- Shonan University of Medical Sciences Research Institute, Nishikubo 500, Chigasaki City, Kanagawa, 253-0083, Japan
| | - Gen Inoue
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku, Kitasato, Sagamihara City, Kanagawa, 252-0374, Japan
| | - Masayuki Miyagi
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku, Kitasato, Sagamihara City, Kanagawa, 252-0374, Japan
| | - Ken Takata
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku, Kitasato, Sagamihara City, Kanagawa, 252-0374, Japan
| | - Yuji Yokozeki
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku, Kitasato, Sagamihara City, Kanagawa, 252-0374, Japan
| | - Masashi Takaso
- Department of Orthopedic Surgery, Kitasato University School of Medicine, 1-15-1 Minami-ku, Kitasato, Sagamihara City, Kanagawa, 252-0374, Japan
| |
Collapse
|
6
|
Tavakoli J, Wang J, Chuah C, Tang Y. Natural-based Hydrogels: A Journey from Simple to Smart Networks for Medical Examination. Curr Med Chem 2020; 27:2704-2733. [PMID: 31418656 DOI: 10.2174/0929867326666190816125144] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 07/22/2019] [Accepted: 08/01/2019] [Indexed: 02/07/2023]
Abstract
Natural hydrogels, due to their unique biological properties, have been used extensively for various medical and clinical examinations that are performed to investigate the signs of disease. Recently, complex-crosslinking strategies improved the mechanical properties and advanced approaches have resulted in the introduction of naturally derived hydrogels that exhibit high biocompatibility, with shape memory and self-healing characteristics. Moreover, the creation of self-assembled natural hydrogels under physiological conditions has provided the opportunity to engineer fine-tuning properties. To highlight recent studies of natural-based hydrogels and their applications for medical investigation, a critical review was undertaken using published papers from the Science Direct database. This review presents different natural-based hydrogels (natural, natural-synthetic hybrid and complex-crosslinked hydrogels), their historical evolution, and recent studies of medical examination applications. The application of natural-based hydrogels in the design and fabrication of biosensors, catheters and medical electrodes, detection of cancer, targeted delivery of imaging compounds (bioimaging) and fabrication of fluorescent bioprobes is summarised here. Without doubt, in future, more useful and practical concepts will be derived to identify natural-based hydrogels for a wide range of clinical examination applications.
Collapse
Affiliation(s)
- Javad Tavakoli
- Institute of NanoScale Science and Technology, Medical Device Research Institute, College of Science and Engineering, Flinders University, South Australia 5042, Australia.,School of Biomedical Engineering, University of Technology Sydney, Ultimo, 2007 NSW, Australia
| | - Jing Wang
- Institute of NanoScale Science and Technology, Medical Device Research Institute, College of Science and Engineering, Flinders University, South Australia 5042, Australia.,Key Laboratory of Advanced Textile Composite Materials of Ministry of Education, Institute of Textile Composite, School of Textile, Tianjin Polytechnic University, Tianjin 300387, China
| | - Clarence Chuah
- Institute of NanoScale Science and Technology, Medical Device Research Institute, College of Science and Engineering, Flinders University, South Australia 5042, Australia
| | - Youhong Tang
- Institute of NanoScale Science and Technology, Medical Device Research Institute, College of Science and Engineering, Flinders University, South Australia 5042, Australia
| |
Collapse
|
7
|
Donnaloja F, Jacchetti E, Soncini M, Raimondi MT. Natural and Synthetic Polymers for Bone Scaffolds Optimization. Polymers (Basel) 2020; 12:E905. [PMID: 32295115 PMCID: PMC7240703 DOI: 10.3390/polym12040905] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/09/2020] [Accepted: 04/11/2020] [Indexed: 02/07/2023] Open
Abstract
Bone tissue is the structural component of the body, which allows locomotion, protects vital internal organs, and provides the maintenance of mineral homeostasis. Several bone-related pathologies generate critical-size bone defects that our organism is not able to heal spontaneously and require a therapeutic action. Conventional therapies span from pharmacological to interventional methodologies, all of them characterized by several drawbacks. To circumvent these effects, tissue engineering and regenerative medicine are innovative and promising approaches that exploit the capability of bone progenitors, especially mesenchymal stem cells, to differentiate into functional bone cells. So far, several materials have been tested in order to guarantee the specific requirements for bone tissue regeneration, ranging from the material biocompatibility to the ideal 3D bone-like architectural structure. In this review, we analyse the state-of-the-art of the most widespread polymeric scaffold materials and their application in in vitro and in vivo models, in order to evaluate their usability in the field of bone tissue engineering. Here, we will present several adopted strategies in scaffold production, from the different combination of materials, to chemical factor inclusion, embedding of cells, and manufacturing technology improvement.
Collapse
Affiliation(s)
- Francesca Donnaloja
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, 20133 Milan, Italy; (E.J.); (M.T.R.)
| | - Emanuela Jacchetti
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, 20133 Milan, Italy; (E.J.); (M.T.R.)
| | - Monica Soncini
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy;
| | - Manuela T. Raimondi
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, 20133 Milan, Italy; (E.J.); (M.T.R.)
| |
Collapse
|
8
|
Zhai P, Peng X, Li B, Liu Y, Sun H, Li X. The application of hyaluronic acid in bone regeneration. Int J Biol Macromol 2019; 151:1224-1239. [PMID: 31751713 DOI: 10.1016/j.ijbiomac.2019.10.169] [Citation(s) in RCA: 182] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/12/2019] [Accepted: 10/22/2019] [Indexed: 12/20/2022]
Abstract
Hyaluronic acid (HA) exists naturally as an important component of the extracellular matrix (ECM) in the human body. In recent decades, HA has been widely used in bone regeneration, and is currently a popular topic, particularly in the craniofacial and dental fields. From maxilla augmentation to craniofacial bone trauma, there is now a large demand for bone regenerative therapy. Serving as a cell-seeding scaffold or a carrier for bioactive components, hyaluronic acid-incorporated scaffolds and carriers in bone regeneration can be fabricated into either rigid or colloidal forms. Since the type of material used is a critical factor in the biological properties of a scaffold, HA derivatives or HA-incorporated composite scaffolds have shown excellent potential for improving osteogenesis and mineralization. Furthermore, in order to better enhance osteogenesis, local delivery carriers based on hyaluronic acid derivatives, rather than specifically serving as scaffolds, can be established by loading different osteoinductive or osteogenetic components and acquiring different release patterns. Such osteoinductive carriers immobilized on implant surfaces are also effective in improving osseointegration. Thus, as such a competent biomaterial, hyaluronic acid should be considered a promising tool in bone regeneration.
Collapse
Affiliation(s)
- Peisong Zhai
- Department of Endodontics, School of Stomotology, Jilin University, Changchun 130021, PR China
| | - Xiaoxing Peng
- Radiology Department of Hospital Attached to Changchun University of Chinese Medicine, Changchun, PR China
| | - Baoquan Li
- Department of Endodontics, School of Stomotology, Jilin University, Changchun 130021, PR China
| | - Yiping Liu
- Department of Endodontics, School of Stomotology, Jilin University, Changchun 130021, PR China
| | - Hongchen Sun
- Department of Endodontics, School of Stomotology, Jilin University, Changchun 130021, PR China
| | - Xiangwei Li
- Department of Endodontics, School of Stomotology, Jilin University, Changchun 130021, PR China.
| |
Collapse
|
9
|
Wu X, Stroll SI, Lantigua D, Suvarnapathaki S, Camci-Unal G. Eggshell particle-reinforced hydrogels for bone tissue engineering: an orthogonal approach. Biomater Sci 2019; 7:2675-2685. [DOI: 10.1039/c9bm00230h] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Eggshell microparticle-reinforced hydrogels have been fabricated and characterized to obtain mechanically stable and biologically active scaffolds that can direct the differentiation of cells.
Collapse
Affiliation(s)
- Xinchen Wu
- Biomedical Engineering and Biotechnology Program
- University of Massachusetts Lowell
- Lowell
- USA
- Department of Chemical Engineering
| | - Stephanie I. Stroll
- Department of Chemical Engineering
- University of Massachusetts Lowell
- Lowell
- USA
- Department of Biological Sciences
| | - Darlin Lantigua
- Biomedical Engineering and Biotechnology Program
- University of Massachusetts Lowell
- Lowell
- USA
- Department of Chemical Engineering
| | - Sanika Suvarnapathaki
- Biomedical Engineering and Biotechnology Program
- University of Massachusetts Lowell
- Lowell
- USA
- Department of Chemical Engineering
| | - Gulden Camci-Unal
- Department of Chemical Engineering
- University of Massachusetts Lowell
- Lowell
- USA
| |
Collapse
|
10
|
Yan HJ, Casalini T, Hulsart-Billström G, Wang S, Oommen OP, Salvalaglio M, Larsson S, Hilborn J, Varghese OP. Synthetic design of growth factor sequestering extracellular matrix mimetic hydrogel for promoting in vivo bone formation. Biomaterials 2018; 161:190-202. [PMID: 29421555 DOI: 10.1016/j.biomaterials.2018.01.041] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/25/2018] [Accepted: 01/25/2018] [Indexed: 01/31/2023]
Abstract
Synthetic scaffolds that possess an intrinsic capability to protect and sequester sensitive growth factors is a primary requisite for developing successful tissue engineering strategies. Growth factors such as recombinant human bone morphogenetic protein-2 (rhBMP-2) is highly susceptible to premature degradation and to provide a meaningful clinical outcome require high doses that can cause serious side effects. We discovered a unique strategy to stabilize and sequester rhBMP-2 by enhancing its molecular interactions with hyaluronic acid (HA), an extracellular matrix (ECM) component. We found that by tuning the initial protonation state of carboxylic acid residues of HA in a covalently crosslinked hydrogel modulate BMP-2 release at physiological pH by minimizing the electrostatic repulsion and maximizing the Van der Waals interactions. At neutral pH, BMP-2 release is primarily governed by Fickian diffusion, whereas at acidic pH both diffusion and electrostatic interactions between HA and BMP-2 become important as confirmed by molecular dynamics simulations. Our results were also validated in an in vivo rat ectopic model with rhBMP-2 loaded hydrogels, which demonstrated superior bone formation with acidic hydrogel as compared to the neutral counterpart. We believe this study provides new insight on growth factor stabilization and highlights the therapeutic potential of engineered matrices for rhBMP-2 delivery and may help to curtail the adverse side effects associated with the high dose of the growth factor.
Collapse
Affiliation(s)
- Hong Ji Yan
- Department of Chemistry, The Ångström Laboratory, Uppsala University, SE-751 21, Uppsala, Sweden
| | - Tommaso Casalini
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland; Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland; Institute of Mechanical Engineering and Material Technology, Department of Innovative Technologies, SUPSI, 6928, Manno, Switzerland
| | | | - Shujiang Wang
- Department of Chemistry, The Ångström Laboratory, Uppsala University, SE-751 21, Uppsala, Sweden
| | - Oommen P Oommen
- Bioengineering and Nanomedicine Lab, Faculty of Biomedical Sciences and Engineering & Biomeditech Institute, Tampere University of Technology, Tampere, 33720, Finland
| | - Matteo Salvalaglio
- Thomas Young Centre and Department of Chemical Engineering, University College London, London WC1E 7JE, UK
| | - Sune Larsson
- Department of Orthopedics, Uppsala University, Uppsala, Sweden
| | - Jöns Hilborn
- Department of Chemistry, The Ångström Laboratory, Uppsala University, SE-751 21, Uppsala, Sweden
| | - Oommen P Varghese
- Department of Chemistry, The Ångström Laboratory, Uppsala University, SE-751 21, Uppsala, Sweden.
| |
Collapse
|