1
|
Impaired Bestrophin Channel Activity in an iPSC-RPE Model of Best Vitelliform Macular Dystrophy (BVMD) from an Early Onset Patient Carrying the P77S Dominant Mutation. Int J Mol Sci 2022; 23:ijms23137432. [PMID: 35806438 PMCID: PMC9266689 DOI: 10.3390/ijms23137432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/01/2022] [Indexed: 01/25/2023] Open
Abstract
Best Vitelliform Macular dystrophy (BVMD) is the most prevalent of the distinctive retinal dystrophies caused by mutations in the BEST1 gene. This gene, which encodes for a homopentameric calcium-activated ion channel, is crucial for the homeostasis and function of the retinal pigment epithelia (RPE), the cell type responsible for recycling the visual pigments generated by photoreceptor cells. In BVMD patients, mutations in this gene induce functional problems in the RPE cell layer with an accumulation of lipofucsin that evolves into cell death and loss of sight. In this work, we employ iPSC-RPE cells derived from a patient with the p.Pro77Ser dominant mutation to determine the correlation between this variant and the ocular phenotype. To this purpose, gene and protein expression and localization are evaluated in iPSC-RPE cells along with functional assays like phagocytosis and anion channel activity. Our cell model shows no differences in gene expression, protein expression/localization, or phagocytosis capacity, but presents an increased chloride entrance, indicating that the p.Pro77Ser variant might be a gain-of-function mutation. We hypothesize that this variant disturbs the neck region of the BEST1 channel, affecting channel function but maintaining cell homeostasis in the short term. This data shed new light on the different phenotypes of dominant mutations in BEST1, and emphasize the importance of understanding its molecular mechanisms. Furthermore, the data widen the knowledge of this pathology and open the door for a better diagnosis and prognosis of the disease.
Collapse
|
2
|
Rohani L, Borys BS, Razian G, Naghsh P, Liu S, Johnson AA, Machiraju P, Holland H, Lewis IA, Groves RA, Toms D, Gordon PMK, Li JW, So T, Dang T, Kallos MS, Rancourt DE. Stirred suspension bioreactors maintain naïve pluripotency of human pluripotent stem cells. Commun Biol 2020; 3:492. [PMID: 32895477 PMCID: PMC7476926 DOI: 10.1038/s42003-020-01218-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 08/03/2020] [Indexed: 11/11/2022] Open
Abstract
Due to their ability to standardize key physiological parameters, stirred suspension bioreactors can potentially scale the production of quality-controlled pluripotent stem cells (PSCs) for cell therapy application. Because of differences in bioreactor expansion efficiency between mouse (m) and human (h) PSCs, we investigated if conversion of hPSCs, from the conventional "primed" pluripotent state towards the "naïve" state prevalent in mPSCs, could be used to enhance hPSC production. Through transcriptomic enrichment of mechano-sensing signaling, the expression of epigenetic regulators, metabolomics, and cell-surface protein marker analyses, we show that the stirred suspension bioreactor environment helps maintain a naïve-like pluripotent state. Our research corroborates that converting hPSCs towards a naïve state enhances hPSC manufacturing and indicates a potentially important role for the stirred suspension bioreactor's mechanical environment in maintaining naïve-like pluripotency.
Collapse
Affiliation(s)
- Leili Rohani
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Breanna S Borys
- Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, Canada
| | - Golsa Razian
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Pooyan Naghsh
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Shiying Liu
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | | | - Pranav Machiraju
- Department of Paediatrics and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Heidrun Holland
- Saxonian Incubator for Clinical Translation (SIKT), University of Leipzig, Leipzig, Germany
| | - Ian A Lewis
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Ryan A Groves
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Derek Toms
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Paul M K Gordon
- CSM Center for Health Genomic and Informatics, University of Calgary, Calgary, AB, Canada
| | - Joyce W Li
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Tania So
- Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, Canada
| | - Tiffany Dang
- Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, Canada
| | - Michael S Kallos
- Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, Canada
| | - Derrick E Rancourt
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
3
|
Johnson AA. Lipid Hydrolase Enzymes: Pragmatic Prolongevity Targets for Improved Human Healthspan? Rejuvenation Res 2019; 23:107-121. [PMID: 31426688 DOI: 10.1089/rej.2019.2211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Compelling evidence suggests that lipid metabolism, which plays critical roles in fat storage, cell membrane maintenance, and cell signaling, is intricately linked to aging. Lipid hydrolases are important enzymes that catalyze the hydrolysis of more complex lipids into simpler lipids. Diverse interventions targeting lipid hydrolases can prolong or shorten life in model organisms. For example, the genetic removal of or RNAi knockdown against a phospholipase can reduce lifespan in Caenorhabditis elegans, Drosophila melanogaster, and Mus musculus. The removal of lysosomal acid lipase results in premature death in mice, while its overexpression in nematodes generates lean, long-lived individuals. The overexpression or inhibition of diacylglycerol lipase leads to enhanced or reduced longevity, respectively, in both worms and flies. Lifespan can also be extended by knocking down triacylglycerol lipases in yeast, overexpressing fatty acid amide hydrolase in worms, or removing hepatic lipase in a mouse model of coronary disease. Conversely, flies lacking the triacylglycerol lipase Brummer are obese and short lived. Linking sphingolipids and aging, removing the sphingomyelinase inositol phosphosphingolipid phospholipase shortens chronological lifespan in Saccharomyces cerevisiae, while inhibiting an acid sphingomyelinase in worms or inactivating alkaline ceramidase in flies extends lifespan. The clinical potential of manipulating these enzymes is highlighted by the FDA-approved obesity drug orlistat, which is an inhibitor of pancreatic and hepatic lipases that induces weight loss and improves insulin/glucose homeostasis. Additional research is warranted to better understand how these lipid hydrolases impact aging and to determine if clinical interventions targeting them are capable of improving human healthspan.
Collapse
|
4
|
Addressing Variability and Heterogeneity of Induced Pluripotent Stem Cell-Derived Cardiomyocytes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1212:1-29. [DOI: 10.1007/5584_2019_350] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
5
|
Rohani L, Johnson AA, Naghsh P, Rancourt DE, Ulrich H, Holland H. Concise Review: Molecular Cytogenetics and Quality Control: Clinical Guardians for Pluripotent Stem Cells. Stem Cells Transl Med 2018; 7:867-875. [PMID: 30218497 PMCID: PMC6265634 DOI: 10.1002/sctm.18-0087] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 07/07/2018] [Indexed: 12/13/2022] Open
Abstract
Now that induced pluripotent stem cell (iPSC)‐based transplants have been performed in humans and organizations have begun producing clinical‐grade iPSCs, it is imperative that strict quality control standards are agreed upon. This is essential as both ESCs and iPSCs have been shown to accumulate genomic aberrations during long‐term culturing. These aberrations can include copy number variations, trisomy, amplifications of chromosomal regions, deletions of chromosomal regions, loss of heterozygosity, and epigenetic abnormalities. Moreover, although the differences between iPSCs and ESCs appear largely negligible when a high enough n number is used for comparison, the reprogramming process can generate further aberrations in iPSCs, including copy number variations and deletions in tumor‐suppressor genes. If mutations or epigenetic signatures are present in parental cells, these can also be carried over into iPSCs. To maximize patient safety, we recommend a set of standards to be utilized when preparing iPSCs for clinical use. Reprogramming methods that do not involve genomic integration should be used. Cultured cells should be grown using feeder‐free and serum‐free systems to avoid animal contamination. Karyotyping, whole‐genome sequencing, gene expression analyses, and standard sterility tests should all become routine quality control tests. Analysis of mitochondrial DNA integrity, whole‐epigenome analyses, as well as single‐cell genome sequencing of large cell populations may also prove beneficial. Furthermore, clinical‐grade stem cells need to be produced under accepted regulatory good manufacturing process standards. The creation of haplobanks that provide major histocompatibility complex matching is also recommended to improve allogeneic stem cell engraftment. Stem Cells Translational Medicine2018;7:867–875
Collapse
Affiliation(s)
- Leili Rohani
- Saxonian Incubator for Clinical Translation (SIKT), University of Leipzig, Leipzig, Germany.,Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - Adiv A Johnson
- Department of Ophthalmology, Mayo Clinic, Rochester, Minnesota, USA
| | - Pooyan Naghsh
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - Derrick E Rancourt
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Heidrun Holland
- Saxonian Incubator for Clinical Translation (SIKT), University of Leipzig, Leipzig, Germany
| |
Collapse
|
6
|
Foltz LP, Clegg DO. Patient-derived induced pluripotent stem cells for modelling genetic retinal dystrophies. Prog Retin Eye Res 2018; 68:54-66. [PMID: 30217765 DOI: 10.1016/j.preteyeres.2018.09.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 09/05/2018] [Accepted: 09/07/2018] [Indexed: 12/22/2022]
Abstract
The human retina is a highly complex tissue that makes up an integral part of our central nervous system. It is astonishing that our retina works seamlessly to provide one of our most critical senses, and it is equally devastating when a disease destroys a portion of the retina and robs people of their vision. After decades of research, scientists are beginning to understand retinal cells in a way that can benefit the millions of individuals suffering from inherited blindness. This understanding has come about in part with the ability to culture human embryonic stem cells and the innovation of induced pluripotent stem cells, which can be cultured from patients and used to model their disease. In this review, we highlight the successes of specific disease modelling studies and resulting molecular discoveries. The greatest strides in cellular modelling have come from mutations in genes with established and well-understood cellular functions in the context of the retina. We believe that the future of cellular modelling depends on emphasising reproducible production of retinal cell types, demonstrating functional rescue using site-specific programmable nucleases, and shifting towards unbiased screening using next generation sequencing.
Collapse
Affiliation(s)
- Leah P Foltz
- Biochemistry and Molecular Biology, University of California, Santa Barbara, CA, USA; Center for Stem Cell Biology and Engineering, University of California, Santa Barbara, CA, USA.
| | - Dennis O Clegg
- Biochemistry and Molecular Biology, University of California, Santa Barbara, CA, USA; Center for Stem Cell Biology and Engineering, University of California, Santa Barbara, CA, USA
| |
Collapse
|
7
|
Parisi S, Polishchuk EV, Allocca S, Ciano M, Musto A, Gallo M, Perone L, Ranucci G, Iorio R, Polishchuk RS, Bonatti S. Characterization of the most frequent ATP7B mutation causing Wilson disease in hepatocytes from patient induced pluripotent stem cells. Sci Rep 2018; 8:6247. [PMID: 29674751 PMCID: PMC5908878 DOI: 10.1038/s41598-018-24717-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/09/2018] [Indexed: 12/27/2022] Open
Abstract
H1069Q substitution represents the most frequent mutation of the copper transporter ATP7B causing Wilson disease in Caucasian population. ATP7B localizes to the Golgi complex in hepatocytes but moves in response to copper overload to the endo-lysosomal compartment to support copper excretion via bile canaliculi. In heterologous or hepatoma-derived cell lines, overexpressed ATP7B-H1069Q is strongly retained in the ER and fails to move to the post-Golgi sites, resulting in toxic copper accumulation. However, this pathogenic mechanism has never been tested in patients’ hepatocytes, while animal models recapitulating this form of WD are still lacking. To reach this goal, we have reprogrammed skin fibroblasts of homozygous ATP7B-H1069Q patients into induced pluripotent stem cells and differentiated them into hepatocyte-like cells. Surprisingly, in HLCs we found one third of ATP7B-H1069Q localized in the Golgi complex and able to move to the endo-lysosomal compartment upon copper stimulation. However, despite normal mRNA levels, the expression of the mutant protein was only 20% compared to the control because of endoplasmic reticulum-associated degradation. These results pinpoint rapid degradation as the major cause for loss of ATP7B function in H1069Q patients, and thus as the primary target for designing therapeutic strategies to rescue ATP7B-H1069Q function.
Collapse
Affiliation(s)
- Silvia Parisi
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy.
| | | | - Simona Allocca
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Michela Ciano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Anna Musto
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Maria Gallo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Lucia Perone
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Giusy Ranucci
- Department of Translational Medical Science, Section of Pediatric, University of Naples Federico II, Naples, Italy
| | - Raffaele Iorio
- Department of Translational Medical Science, Section of Pediatric, University of Naples Federico II, Naples, Italy
| | | | - Stefano Bonatti
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
8
|
Marmorstein AD, Johnson AA, Bachman LA, Andrews-Pfannkoch C, Knudsen T, Gilles BJ, Hill M, Gandhi JK, Marmorstein LY, Pulido JS. Mutant Best1 Expression and Impaired Phagocytosis in an iPSC Model of Autosomal Recessive Bestrophinopathy. Sci Rep 2018. [PMID: 29540715 PMCID: PMC5852082 DOI: 10.1038/s41598-018-21651-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Autosomal recessive bestrophinopathy (ARB) is caused by mutations in the gene BEST1 which encodes bestrophin 1 (Best1), an anion channel expressed in retinal pigment epithelial (RPE) cells. It has been hypothesized that ARB represents the human null phenotype for BEST1 and that this occurs due to nonsense mediated decay (NMD). To test this hypothesis, we generated induced pluripotent stem cells (iPSCs) from a patient with ARB and her parents. After differentiation to retinal pigment epithelial (iPSC-RPE) cells, both BEST1 mRNA and Best1 protein expression were compared to controls. BEST1 mRNA expression levels, determined by quantitative PCR, were similar in ARB iPSC-RPE, parental cells, and genetically unrelated controls. Western blotting revealed that CRALBP and RPE65 were expressed within the range delineated by unrelated controls in iPSC-RPE from the ARB donor and her parents. Best1 protein was detected in different clones of ARB iPSC-RPE, but at reduced levels compared to all controls. When tested for the ability to phagocytose photoreceptor outer segments, ARB iPSC-RPE exhibited impaired internalization. These data suggest that impaired phagocytosis is a trait common to the bestrophinopathies. Furthermore, ARB is not universally the result of NMD and ARB, in this patient, is not due to the absence of Best1.
Collapse
Affiliation(s)
- Alan D Marmorstein
- Department of Ophthalmology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| | - Adiv A Johnson
- Department of Ophthalmology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Lori A Bachman
- Department of Ophthalmology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | | | - Travis Knudsen
- Department of Ophthalmology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Benjamin J Gilles
- Department of Ophthalmology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Matthew Hill
- Department of Ophthalmology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Jarel K Gandhi
- Department of Ophthalmology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Lihua Y Marmorstein
- Department of Ophthalmology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Jose S Pulido
- Department of Ophthalmology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| |
Collapse
|