1
|
Kim RG, Abisado M, Villaverde J, Sampedro GA. A Survey of Image-Based Fault Monitoring in Additive Manufacturing: Recent Developments and Future Directions. SENSORS (BASEL, SWITZERLAND) 2023; 23:6821. [PMID: 37571604 PMCID: PMC10422627 DOI: 10.3390/s23156821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/10/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023]
Abstract
Additive manufacturing (AM) has emerged as a transformative technology for various industries, enabling the production of complex and customized parts. However, ensuring the quality and reliability of AM parts remains a critical challenge. Thus, image-based fault monitoring has gained significant attention as an efficient approach for detecting and classifying faults in AM processes. This paper presents a comprehensive survey of image-based fault monitoring in AM, focusing on recent developments and future directions. Specifically, the proponents garnered relevant papers from 2019 to 2023, gathering a total of 53 papers. This paper discusses the essential techniques, methodologies, and algorithms employed in image-based fault monitoring. Furthermore, recent developments are explored such as the use of novel image acquisition techniques, algorithms, and methods. In this paper, insights into future directions are provided, such as the need for more robust image processing algorithms, efficient data acquisition and analysis methods, standardized benchmarks and datasets, and more research in fault monitoring. By addressing these challenges and pursuing future directions, image-based fault monitoring in AM can be enhanced, improving quality control, process optimization, and overall manufacturing reliability.
Collapse
Affiliation(s)
- Ryanne Gail Kim
- Research and Development Center, Philippine Coding Camp, 2401 Taft Ave, Malate, Manila 1004, Philippines;
| | - Mideth Abisado
- College of Computing and Information Technologies, National University, Manila 1008, Philippines;
| | - Jocelyn Villaverde
- School of Electrical, Electronics and Computer Engineering, Mapúa University, Manila 1002, Philippines;
| | - Gabriel Avelino Sampedro
- Research and Development Center, Philippine Coding Camp, 2401 Taft Ave, Malate, Manila 1004, Philippines;
- Faculty of Information and Communication Studies, University of the Philippines Open University, Laguna 4031, Philippines
- College of Computer Studies, De La Salle University, 2401 Taft Ave, Malate, Manila 1004, Philippines
| |
Collapse
|
2
|
Zhang Q, Qiang L, Liu Y, Fan M, Si X, Zheng P. Biomaterial-assisted tumor therapy: A brief review of hydroxyapatite nanoparticles and its composites used in bone tumors therapy. Front Bioeng Biotechnol 2023; 11:1167474. [PMID: 37091350 PMCID: PMC10119417 DOI: 10.3389/fbioe.2023.1167474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/24/2023] [Indexed: 04/25/2023] Open
Abstract
Malignant bone tumors can inflict significant damage to affected bones, leaving patients to contend with issues like residual tumor cells, bone defects, and bacterial infections post-surgery. However, hydroxyapatite nanoparticles (nHAp), the principal inorganic constituent of natural bone, possess numerous advantages such as high biocompatibility, bone conduction ability, and a large surface area. Moreover, nHAp's nanoscale particle size enables it to impede the growth of various tumor cells via diverse pathways. This article presents a comprehensive review of relevant literature spanning the past 2 decades concerning nHAp and bone tumors. The primary goal is to explore the mechanisms responsible for nHAp's ability to hinder tumor initiation and progression, as well as to investigate the potential of integrating other drugs and components for bone tumor diagnosis and treatment. Lastly, the article discusses future prospects for the development of hydroxyapatite materials as a promising modality for tumor therapy.
Collapse
Affiliation(s)
- Quan Zhang
- Department of Orthopaedic Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, China
| | - Lei Qiang
- Department of Orthopaedic Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, China
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Yihao Liu
- Department of Orthopaedic Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Minjie Fan
- Department of Orthopaedic Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Xinxin Si
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, China
- *Correspondence: Xinxin Si, ; Pengfei Zheng,
| | - Pengfei Zheng
- Department of Orthopaedic Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Xinxin Si, ; Pengfei Zheng,
| |
Collapse
|
3
|
Tsiklin IL, Shabunin AV, Kolsanov AV, Volova LT. In Vivo Bone Tissue Engineering Strategies: Advances and Prospects. Polymers (Basel) 2022; 14:polym14153222. [PMID: 35956735 PMCID: PMC9370883 DOI: 10.3390/polym14153222] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/25/2022] [Accepted: 08/04/2022] [Indexed: 12/12/2022] Open
Abstract
Reconstruction of critical-sized bone defects remains a tremendous challenge for surgeons worldwide. Despite the variety of surgical techniques, current clinical strategies for bone defect repair demonstrate significant limitations and drawbacks, including donor-site morbidity, poor anatomical match, insufficient bone volume, bone graft resorption, and rejection. Bone tissue engineering (BTE) has emerged as a novel approach to guided bone tissue regeneration. BTE focuses on in vitro manipulations with seed cells, growth factors and bioactive scaffolds using bioreactors. The successful clinical translation of BTE requires overcoming a number of significant challenges. Currently, insufficient vascularization is the critical limitation for viability of the bone tissue-engineered construct. Furthermore, efficacy and safety of the scaffolds cell-seeding and exogenous growth factors administration are still controversial. The in vivo bioreactor principle (IVB) is an exceptionally promising concept for the in vivo bone tissue regeneration in a predictable patient-specific manner. This concept is based on the self-regenerative capacity of the human body, and combines flap prefabrication and axial vascularization strategies. Multiple experimental studies on in vivo BTE strategies presented in this review demonstrate the efficacy of this approach. Routine clinical application of the in vivo bioreactor principle is the future direction of BTE; however, it requires further investigation for overcoming some significant limitations.
Collapse
Affiliation(s)
- Ilya L. Tsiklin
- Biotechnology Center “Biotech”, Samara State Medical University, 443079 Samara, Russia
- City Clinical Hospital Botkin, Moscow Healthcare Department, 125284 Moscow, Russia
- Correspondence: ; Tel.: +7-903-621-81-88
| | - Aleksey V. Shabunin
- City Clinical Hospital Botkin, Moscow Healthcare Department, 125284 Moscow, Russia
| | - Alexandr V. Kolsanov
- Biotechnology Center “Biotech”, Samara State Medical University, 443079 Samara, Russia
| | - Larisa T. Volova
- Biotechnology Center “Biotech”, Samara State Medical University, 443079 Samara, Russia
| |
Collapse
|
4
|
Ahmad AF, Yaakob H, Khalil A, Georges P. Evaluating patients’ satisfaction level after using 3D printed PEEK facial implants in repairing maxillofacial deformities. Ann Med Surg (Lond) 2022; 79:104095. [PMID: 35860120 PMCID: PMC9289507 DOI: 10.1016/j.amsu.2022.104095] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/24/2022] [Accepted: 06/24/2022] [Indexed: 11/17/2022] Open
Abstract
Background it is generally the case in any traumatic accident where a loss in hard tissue occurs to preform restorative plastic surgery, as there are many materials and approaches used to restore the loss, this research sheds the light on the use of one such material and approach being 3D printed facial implants manufactured from PolyEther Ether Ketone (PEEK) and to evaluate the level of patients’ satisfaction following the use of said method in repairing maxillofacial deformities. Materials and methods a research sample consisting of 10 patients with facial deformities underwent maxillofacial reconstructive surgery between 2020 and 2021 in the Department of Oral and Maxillofacial Surgery in the Tishreen University Hospital - Latakia - Syria. All patients underwent Computed Tomography (CT) scans, then the design of the required facial implant was carried out, the final form of the facial implant was printed from PolyEther Ether Ketone (PEEK), and then surgical work was performed, a check-up after 3 months of the surgical procedure was carried out to evaluate the level of satisfaction on a scale of 1–5. Results The results from the 10 patients showed a good level of satisfaction except in one case where the facial implant had to be removed due to recurrent infection where the patient showed no signs of response to medicinal treatment following the surgery. Conclusions this research suggests that the use of 3D printed PEEK facial implants to be very agreeable in terms of functionality and aesthetics in treating various facial deformities. 3D Printed PEEK PSIs implants are used for repairing facial injuries. PEEK implants are very good means to achieve acceptable aesthetic results. The use of the method is very convenient and saves time and effort. After surgery results were mostly pleasing.
Collapse
Affiliation(s)
- Ahmad Fayez Ahmad
- Department of Oral and Maxillofacial Surgery, Tishreen University Hospital, Faculty of Dentistry, Tishreen University, Latakia, Syria
| | - Hekmat Yaakob
- Head of the Department of Oral and Maxillofacial Surgery, Tishreen University Hospital, Faculty of Dentistry, Tishreen University, Latakia, Syria
| | - Ali Khalil
- Department of Oral and Maxillofacial Surgery, Tishreen University Hospital, Faculty of Dentistry, Tishreen University, Latakia, Syria
| | - Pierre Georges
- Faculty of Dentistry, Al Hawash Private University, Al Mouzaineh, Homs, Syria
- Corresponding author. Omar Al Shamaa st., Homs, Syria.
| |
Collapse
|
5
|
Cornejo J, Cornejo-Aguilar JA, Vargas M, Helguero CG, Milanezi de Andrade R, Torres-Montoya S, Asensio-Salazar J, Rivero Calle A, Martínez Santos J, Damon A, Quiñones-Hinojosa A, Quintero-Consuegra MD, Umaña JP, Gallo-Bernal S, Briceño M, Tripodi P, Sebastian R, Perales-Villarroel P, De la Cruz-Ku G, Mckenzie T, Arruarana VS, Ji J, Zuluaga L, Haehn DA, Paoli A, Villa JC, Martinez R, Gonzalez C, Grossmann RJ, Escalona G, Cinelli I, Russomano T. Anatomical Engineering and 3D Printing for Surgery and Medical Devices: International Review and Future Exponential Innovations. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6797745. [PMID: 35372574 PMCID: PMC8970887 DOI: 10.1155/2022/6797745] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/16/2022] [Accepted: 02/24/2022] [Indexed: 12/26/2022]
Abstract
Three-dimensional printing (3DP) has recently gained importance in the medical industry, especially in surgical specialties. It uses different techniques and materials based on patients' needs, which allows bioprofessionals to design and develop unique pieces using medical imaging provided by computed tomography (CT) and magnetic resonance imaging (MRI). Therefore, the Department of Biology and Medicine and the Department of Physics and Engineering, at the Bioastronautics and Space Mechatronics Research Group, have managed and supervised an international cooperation study, in order to present a general review of the innovative surgical applications, focused on anatomical systems, such as the nervous and craniofacial system, cardiovascular system, digestive system, genitourinary system, and musculoskeletal system. Finally, the integration with augmented, mixed, virtual reality is analyzed to show the advantages of personalized treatments, taking into account the improvements for preoperative, intraoperative planning, and medical training. Also, this article explores the creation of devices and tools for space surgery to get better outcomes under changing gravity conditions.
Collapse
Affiliation(s)
- José Cornejo
- Facultad de Ingeniería, Universidad San Ignacio de Loyola, La Molina, Lima 15024, Peru
- Department of Medicine and Biology & Department of Physics and Engineering, Bioastronautics and Space Mechatronics Research Group, Lima 15024, Peru
| | | | | | | | - Rafhael Milanezi de Andrade
- Robotics and Biomechanics Laboratory, Department of Mechanical Engineering, Universidade Federal do Espírito Santo, Brazil
| | | | | | - Alvaro Rivero Calle
- Department of Oral and Maxillofacial Surgery, Hospital 12 de Octubre, Madrid, Spain
| | - Jaime Martínez Santos
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, USA
| | - Aaron Damon
- Department of Neurosurgery, Mayo Clinic, FL, USA
| | | | | | - Juan Pablo Umaña
- Cardiovascular Surgery, Instituto de Cardiología-Fundación Cardioinfantil, Universidad del Rosario, Bogotá DC, Colombia
| | | | - Manolo Briceño
- Villamedic Group, Lima, Peru
- Clínica Internacional, Lima, Peru
| | | | - Raul Sebastian
- Department of Surgery, Northwest Hospital, Randallstown, MD, USA
| | | | - Gabriel De la Cruz-Ku
- Universidad Científica del Sur, Lima, Peru
- Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | | | | | - Jiakai Ji
- Obstetrics and Gynecology, Lincoln Medical and Mental Health Center, Bronx, NY, USA
| | - Laura Zuluaga
- Department of Urology, Fundación Santa Fe de Bogotá, Colombia
| | | | - Albit Paoli
- Howard University Hospital, Washington, DC, USA
| | | | | | - Cristians Gonzalez
- Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Institut of Image-Guided Surgery (IHU-Strasbourg), Strasbourg, France
| | | | - Gabriel Escalona
- Experimental Surgery and Simulation Center, Department of Digestive Surgery, Catholic University of Chile, Santiago, Chile
| | - Ilaria Cinelli
- Aerospace Human Factors Association, Aerospace Medical Association, VA, USA
| | | |
Collapse
|
6
|
Shape memory elastomers: A review of synthesis, design, advanced manufacturing, and emerging applications. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5652] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
7
|
Fu JN, Wang X, Yang M, Chen YR, Zhang JY, Deng RH, Zhang ZN, Yu JK, Yuan FZ. Scaffold-Based Tissue Engineering Strategies for Osteochondral Repair. Front Bioeng Biotechnol 2022; 9:812383. [PMID: 35087809 PMCID: PMC8787149 DOI: 10.3389/fbioe.2021.812383] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/16/2021] [Indexed: 12/19/2022] Open
Abstract
Over centuries, several advances have been made in osteochondral (OC) tissue engineering to regenerate more biomimetic tissue. As an essential component of tissue engineering, scaffolds provide structural and functional support for cell growth and differentiation. Numerous scaffold types, such as porous, hydrogel, fibrous, microsphere, metal, composite and decellularized matrix, have been reported and evaluated for OC tissue regeneration in vitro and in vivo, with respective advantages and disadvantages. Unfortunately, due to the inherent complexity of organizational structure and the objective limitations of manufacturing technologies and biomaterials, we have not yet achieved stable and satisfactory effects of OC defects repair. In this review, we summarize the complicated gradients of natural OC tissue and then discuss various osteochondral tissue engineering strategies, focusing on scaffold design with abundant cell resources, material types, fabrication techniques and functional properties.
Collapse
Affiliation(s)
- Jiang-Nan Fu
- Department of Sports Medicine, Peking University Third Hospital, Beijing, China.,Institute of Sports Medicine of Peking University, Beijing, China
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Meng Yang
- Department of Sports Medicine, Peking University Third Hospital, Beijing, China.,Institute of Sports Medicine of Peking University, Beijing, China
| | - You-Rong Chen
- Department of Sports Medicine, Peking University Third Hospital, Beijing, China.,Institute of Sports Medicine of Peking University, Beijing, China
| | - Ji-Ying Zhang
- Department of Sports Medicine, Peking University Third Hospital, Beijing, China.,Institute of Sports Medicine of Peking University, Beijing, China
| | - Rong-Hui Deng
- Department of Sports Medicine, Peking University Third Hospital, Beijing, China.,Institute of Sports Medicine of Peking University, Beijing, China
| | - Zi-Ning Zhang
- Department of Sports Medicine, Peking University Third Hospital, Beijing, China.,Institute of Sports Medicine of Peking University, Beijing, China
| | - Jia-Kuo Yu
- Department of Sports Medicine, Peking University Third Hospital, Beijing, China.,Institute of Sports Medicine of Peking University, Beijing, China
| | - Fu-Zhen Yuan
- Department of Sports Medicine, Peking University Third Hospital, Beijing, China.,Institute of Sports Medicine of Peking University, Beijing, China
| |
Collapse
|
8
|
Exploiting the fundamentals of biological organization for the advancement of biofabrication. Curr Opin Biotechnol 2021; 74:42-54. [PMID: 34798447 DOI: 10.1016/j.copbio.2021.10.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/26/2021] [Accepted: 10/14/2021] [Indexed: 12/12/2022]
Abstract
The field of biofabrication continues to progress, offering higher levels of spatial control, reproducibility, and functionality. However, we remain far from recapitulating what nature has achieved. Biological systems such as tissues and organs are assembled from the bottom-up through coordinated supramolecular and cellular processes that result in their remarkable structures and functionalities. In this perspective, we propose that incorporating such biological assembling mechanisms within fabrication techniques, offers an opportunity to push the boundaries of biofabrication. We dissect these mechanisms into distinct biological organization principles (BOPs) including self-assembly, compartmentalization, diffusion-reaction, disorder-to-order transitions, and out-of-equilibrium processes. We highlight recent work demonstrating the viability and potential of these approaches to enhance scalability, reproducibility, vascularization, and biomimicry; as well as current challenges to overcome.
Collapse
|
9
|
Supercritical Impregnation of PLA Filaments with Mango Leaf Extract to Manufacture Functionalized Biomedical Devices by 3D Printing. Polymers (Basel) 2021; 13:polym13132125. [PMID: 34203556 PMCID: PMC8271598 DOI: 10.3390/polym13132125] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 01/03/2023] Open
Abstract
Polylactic Acid (PLA) filaments impregnated with ethanolic mango leaves extract (MLE) with pharmacological properties were obtained by supercritical impregnation. The effects of pressure, temperature and amount of extract on the response variables, i.e., swelling, extract loading and bioactivity of the PLA filaments, were determined. The analysis of the filaments biocapacities revealed that impregnated PLA filaments showed 11.07% antidenaturant capacity and 88.13% antioxidant activity, which after a 9-day incubation shifted to 30.10% and 9.90%, respectively. Subsequently, the same tests were conducted on printed samples. Before their incubation, the printed samples showed 79.09% antioxidant activity and no antidenaturant capacity was detected. However, after their incubation, the antioxidant activity went down to only 2.50%, while the antidenaturant capacity raised up to 23.50%. The persistence of the bioactive properties after printing opens the possibility of using the functionalized PLA filaments as the feed for a three-dimensional (3D) printer.
Collapse
|
10
|
Charbonnier B, Hadida M, Marchat D. Additive manufacturing pertaining to bone: Hopes, reality and future challenges for clinical applications. Acta Biomater 2021; 121:1-28. [PMID: 33271354 DOI: 10.1016/j.actbio.2020.11.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/06/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022]
Abstract
For the past 20 years, the democratization of additive manufacturing (AM) technologies has made many of us dream of: low cost, waste-free, and on-demand production of functional parts; fully customized tools; designs limited by imagination only, etc. As every patient is unique, the potential of AM for the medical field is thought to be considerable: AM would allow the division of dedicated patient-specific healthcare solutions entirely adapted to the patients' clinical needs. Pertinently, this review offers an extensive overview of bone-related clinical applications of AM and ongoing research trends, from 3D anatomical models for patient and student education to ephemeral structures supporting and promoting bone regeneration. Today, AM has undoubtably improved patient care and should facilitate many more improvements in the near future. However, despite extensive research, AM-based strategies for bone regeneration remain the only bone-related field without compelling clinical proof of concept to date. This may be due to a lack of understanding of the biological mechanisms guiding and promoting bone formation and due to the traditional top-down strategies devised to solve clinical issues. Indeed, the integrated holistic approach recommended for the design of regenerative systems (i.e., fixation systems and scaffolds) has remained at the conceptual state. Challenged by these issues, a slower but incremental research dynamic has occurred for the last few years, and recent progress suggests notable improvement in the years to come, with in view the development of safe, robust and standardized patient-specific clinical solutions for the regeneration of large bone defects.
Collapse
|
11
|
Zhang G, Zhao P, Lin L, Qin L, Huan Z, Leeflang S, Zadpoor AA, Zhou J, Wu L. Surface-treated 3D printed Ti-6Al-4V scaffolds with enhanced bone regeneration performance: an in vivo study. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:39. [PMID: 33553332 PMCID: PMC7859759 DOI: 10.21037/atm-20-3829] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Background Given their highly adjustable and predictable properties, three-dimensional(3D) printed geometrically ordered porous biomaterials offer unique opportunities as orthopedic implants. The performance of such biomaterials is, however, as much a result of the surface properties of the struts as it is of the 3D porous structure. In our previous study, we have investigated the in vitro performances of selective laser melted (SLM) Ti-6Al-4V scaffolds which are surface modified by the bioactive glass (BG) and mesoporous bioactive glass (MBG), respectively. The results demonstrated that such modification enhanced the attachment, proliferation, and differentiation of human bone marrow stromal cells (hBMSC). Here, we take the next step by assessing the therapeutic potential of 3D printed Ti-6Al-4V scaffolds with BG and MBG surface modifications for bone regeneration in a rabbit bone defect model. Methods 3D printed Ti-6Al-4V scaffolds with BG and MBG surface modifications were implanted into the femoral condyle of the rabbits, the Ti-6Al-4V scaffolds without surface modification were used as the control. At week 3, 6, and 9 after the implantation, micro-computed tomography (micro-CT) imaging, fluorescence double-labeling to determine the mineral apposition rate (MAR), and histological analysis of non-decalcified sections were performed. Results We found significantly higher volumes of regenerated bone, significantly higher values of the relevant bone morphometric parameters, clear signs of bone matrix apposition and maturation, and the evidence of progressed angiogenesis and blood vessel formation in the groups where the bioactive glass was added as a coating, particularly the MGB group. Conclusions The MBG coating resulted in enhanced osteoconduction and vascularization in bone defect healing, which was attributed to the release of silicon and calcium ions and the presence of a nano-mesoporous structure on the surface of the MBG specimens.
Collapse
Affiliation(s)
- Guangdao Zhang
- Department of Prosthodontics, School of Stomatology, China Medical University, Shenyang, China
| | - Pengyu Zhao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Lin Lin
- The First People's Hospital of Shenyang, Shenyang, China
| | - Limei Qin
- Department of Prosthodontics, School of Stomatology, China Medical University, Shenyang, China
| | - Zhiguang Huan
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Sander Leeflang
- Department of Biomechanical Engineering, Delft University of Technology, The Netherlands
| | - Amir A Zadpoor
- Department of Biomechanical Engineering, Delft University of Technology, The Netherlands
| | - Jie Zhou
- Department of Biomechanical Engineering, Delft University of Technology, The Netherlands
| | - Lin Wu
- Department of Prosthodontics, School of Stomatology, China Medical University, Shenyang, China
| |
Collapse
|
12
|
Boularaoui S, Al Hussein G, Khan KA, Christoforou N, Stefanini C. An overview of extrusion-based bioprinting with a focus on induced shear stress and its effect on cell viability. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.bprint.2020.e00093] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
13
|
Oladapo BI, Zahedi SA, Ismail SO, Omigbodun FT, Bowoto OK, Olawumi MA, Muhammad MA. 3D printing of PEEK–cHAp scaffold for medical bone implant. Biodes Manuf 2020. [DOI: 10.1007/s42242-020-00098-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
14
|
Tong Y, Kaplan DJ, Spivak JM, Bendo JA. Three-dimensional printing in spine surgery: a review of current applications. Spine J 2020; 20:833-846. [PMID: 31731009 DOI: 10.1016/j.spinee.2019.11.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/06/2019] [Accepted: 11/08/2019] [Indexed: 02/03/2023]
Abstract
In recent years, the use of three-dimensional printing (3DP) technology has gained traction in orthopedic spine surgery. Although research on this topic is still primarily limited to case reports and small cohort studies, it is evident that there are many avenues for 3DP innovation in the field. This review article aims to discuss the current and emerging 3DP applications in spine surgery, as well as the challenges of 3DP production and limitations in its use. 3DP models have been presented as helpful tools for patient education, medical training, and presurgical planning. Intraoperatively, 3DP devices may serve as patient-specific surgical guides and implants that improve surgical outcomes. However, the time, cost, and learning curve associated with constructing a 3DP model are major barriers to widespread use in spine surgery. Considering the costs and benefits of 3DP along with the varying risks associated with different spine procedures, 3DP technology is likely most valuable for complex or atypical spine disorder cases. Further research is warranted to gain a better understanding of how 3DP can and will impact spine surgery.
Collapse
Affiliation(s)
- Yixuan Tong
- New York University Grossman School of Medicine, 550 1st Ave, New York, NY 10016, USA
| | - Daniel James Kaplan
- Spine Division, New York University Langone Orthopedic Hospital, 301 E 17th St, New York, NY 10010, USA
| | - Jeffrey M Spivak
- Spine Division, New York University Langone Orthopedic Hospital, 301 E 17th St, New York, NY 10010, USA
| | - John A Bendo
- Spine Division, New York University Langone Orthopedic Hospital, 301 E 17th St, New York, NY 10010, USA.
| |
Collapse
|
15
|
Basgul C, MacDonald DW, Siskey R, Kurtz SM. Thermal Localization Improves the Interlayer Adhesion and Structural Integrity of 3D printed PEEK Lumbar Spinal Cages. MATERIALIA 2020; 10:100650. [PMID: 32318685 PMCID: PMC7172383 DOI: 10.1016/j.mtla.2020.100650] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Additive manufacturing (AM) is a potential application for polyetheretherketone (PEEK) spinal interbody fusion cages, which were introduced as an alternative to titanium cages because of their biocompatibility, radiolucency and strength. However, AM of PEEK is challenging due to high melting temperature and thermal gradient. Although fused filament fabrication (FFF) techniques have been shown to 3D print PEEK, layer delamination was identified in PEEK cages printed with a first generation FFF PEEK printer [1]. A standard cage design [2] was 3D printed with a second generation FFF PEEK printer. The effect of changing layer cooling time on FFF cages' mechanical strength was investigated by varying nozzle sizes (0.2 mm and 0.4 mm), print speeds (1500 and 2500 mm/min), and the number of cages printed in a single build (1, 4 and 8). To calculate the porosity percentage, FFF cages were micro-CT scanned prior to destructive testing. Mechanical tests were then conducted on FFF cages according to ASTM F2077 [2]. Although altering the cooling time of a layer was not able to change the failure mechanism of FFF cages, it was able to improve cages' mechanical strength. Printing a single cage per build caused a higher ultimate load than printing multiple cages per build. Regardless of the cage number printed per build, cages printed with bigger nozzle diameter achieved higher ultimate load compared to cages printed with smaller nozzle diameter. Printing with a bigger nozzle diameter resulted in less porosity, which might have an additional affect on the interlayer delamination failure mechanism.
Collapse
Affiliation(s)
- Cemile Basgul
- Implant Research Center, School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA
| | - Daniel W. MacDonald
- Implant Research Center, School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA
| | - Ryan Siskey
- Implant Research Center, School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA
- Exponent, Inc., Philadelphia, PA
| | - Steven M. Kurtz
- Implant Research Center, School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA
- Exponent, Inc., Philadelphia, PA
| |
Collapse
|
16
|
Ying R, Wang H, Sun R, Chen K. Preparation and properties of a highly dispersed nano-hydroxyapatite colloid used as a reinforcing filler for chitosan. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110689. [PMID: 32204004 DOI: 10.1016/j.msec.2020.110689] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/16/2020] [Accepted: 01/21/2020] [Indexed: 12/13/2022]
Abstract
Hydroxyapatite/chitosan (HAp/CS) composites have been widely studied and applied in tissue engineering fields due to their excellent biocompatibility and degradability. However, to improve the mechanical properties of CS, cross-linking agents are commonly added, which will seriously affect its biocompatibility and safety. In this study, the homogenously dispersed nano-hydroxyapatite (nHAp) colloidal solution was first synthesized using a co-precipitation method. The three-dimensional porous nano-hydroxyapatite/chitosan (nHAp/CS) composite scaffolds with different nHAp contents were then obtained through an environmentally friendly freeze-drying process without any cross-linking. The microstructure, porosity, phase composition, swelling ratio, mechanical properties, and biocompatibility of the nHAp/CS scaffolds were thoroughly investigated. The as-prepared nHAp/CS scaffolds exhibited a high porosity and excellent swelling performance. Compared with pure CS scaffolds, the nHAp/CS composite scaffolds not only showed higher compressive modulus but also exhibited better biocompatibility. This study provides a simple and environmentally friendly technique to construct three-dimensional porous nHAp/CS composite scaffolds, which demonstrate promising potential by being a scaffold material for bone tissue engineering.
Collapse
Affiliation(s)
- Ruilian Ying
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, PR China
| | - Huachun Wang
- Qilu Hospital of Shandong University (Qingdao), Qingdao 266035, PR China
| | - Ruixue Sun
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, PR China.
| | - Kezheng Chen
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, PR China
| |
Collapse
|
17
|
Mathew E, Domínguez-Robles J, Stewart SA, Mancuso E, O'Donnell K, Larrañeta E, Lamprou DA. Fused Deposition Modeling as an Effective Tool for Anti-Infective Dialysis Catheter Fabrication. ACS Biomater Sci Eng 2019; 5:6300-6310. [PMID: 33405537 DOI: 10.1021/acsbiomaterials.9b01185] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Catheter-associated infections are a common complication that occurs in dialysis patients. Current strategies to prevent infection include catheter coatings containing heparin, pyrogallol, or silver nanoparticles, which all have an increased risk of causing resistance in bacteria. Therefore, a novel approach for manufacture, such as the use of additive manufacturing (AM), also known as three-dimensional (3D) printing, is required. Filaments were produced by extrusion using thermoplastic polyurethane (TPU) and tetracycline hydrochloride (TC) in various concentrations (e.g., 0, 0.25, 0.5, and 1%). The extruded filaments were used in a fused deposition modeling (FDM) 3D printer to print catheter constructs at varying concentrations. Release studies in phosphate-buffered saline, microbiology studies, thermal analysis, contact angle, attenuated total reflection-Fourier transform infrared, scanning electron microscopy, and X-ray microcomputer tomography (μCT) analysis were conducted on the printed catheters. The results suggested that TC was uniformly distributed within the TPU matrix. The microbiology testing of the catheters showed that devices containing TC had an inhibitory effect on the growth of Staphylococcus aureus NCTC 10788 bacteria. Catheters containing 1% TC maintained inhibitory effect after 10 day release studies. After an initial burst release in the first 24 h, there was a steady release of TC in all concentrations of catheters. 3D-printed antibiotic catheters were successfully printed with inhibitory effect on S. aureus bacteria. Finally, TC containing catheters showed resistance to S. aureus adherence to their surfaces when compared with catheters containing no TC. Catheters containing 1% of TC showed a bacterial adherence reduction of up to 99.97%. Accordingly, the incorporation of TC to TPU materials can be effectively used to prepare anti-infective catheters using FDM. This study highlights the potential for drug-impregnated medical devices to be created through AM.
Collapse
Affiliation(s)
- Essyrose Mathew
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, U.K
| | - Juan Domínguez-Robles
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, U.K
| | - Sarah A Stewart
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, U.K
| | - Elena Mancuso
- Nanotechnology and Integrated Bio-Engineering Centre (NIBEC), Ulster University, Jordanstown Campus BT37 0QB, U.K
| | - Kieran O'Donnell
- Nanotechnology and Integrated Bio-Engineering Centre (NIBEC), Ulster University, Jordanstown Campus BT37 0QB, U.K
| | - Eneko Larrañeta
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, U.K
| | - Dimitrios A Lamprou
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, U.K
| |
Collapse
|
18
|
Liang J, Guo H, Guo J, Tan J, Hu Y, Li K, Wang M. Short-term clinical effect of 3D printing techniques on the correction of complex malformations. DER ORTHOPADE 2019; 48:862-867. [PMID: 31119305 PMCID: PMC6763623 DOI: 10.1007/s00132-019-03717-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND To explore the clinical effects of 3D printing techniques on the correction of complex malformation. METHOD A computed tomography (CT) scan was used to collect data on malformations of patients and the orthopedic plan was made by virtual manipulation of the reality before surgery. The results of the virtual orthopedics were compared with the expected results. A guide plate for osteotomy was also utilized when necessary. The actual operation was carried out according to the plan. RESULTS The average age of the 11 patients was 19.09 years (19.09 ± 6.93 years) and the average follow-up was 16 months (16 ± 15.11 months). The symptoms were obviously improved. The preoperative World Health Organization Disability Assessment Schedule (WHODAS 2.0) score, modified Barthel index and Functional Independence Measure (FIM) score in patients were 70.45 ± 15.75, 96.55 ± 3.78 and 121.36 ± 4.15, respectively and correspondingly 53 ± 12.75, 98.82 ± 1.66 and 123.82 ± 4.60 after surgery, respectively. There were significant differences before and after surgery (P < 0.05). CONCLUSION The use of 3D printing technology can provide intuitive and accurate help for the correction of complex limb malformations and greatly facilitates the communication between doctors and patients. The FIM score is suitable for the evaluation of the curative effect before and after the treatment of patients with complex malformations.
Collapse
Affiliation(s)
- Jieyu Liang
- Department of Orthopedics, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Hongbin Guo
- Department of Orthopedics, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Jingyuan Guo
- Department of Orthopedics, the third Hospital of HuaiHua City, 418000, Huaihua, Hunan, China
| | - Juyu Tan
- Department of Orthopedics, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Yihe Hu
- Department of Orthopedics, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Kanghua Li
- Department of Orthopedics, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Min Wang
- Department of EndocrineXiangya Hospital, Central South University, 410008, Changsha, Hunan, China.
| |
Collapse
|
19
|
Liao W, Xu L, Wangrao K, Du Y, Xiong Q, Yao Y. Three-dimensional printing with biomaterials in craniofacial and dental tissue engineering. PeerJ 2019; 7:e7271. [PMID: 31328038 PMCID: PMC6622164 DOI: 10.7717/peerj.7271] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 06/10/2019] [Indexed: 02/05/2023] Open
Abstract
With the development of technology, tissue engineering (TE) has been widely applied in the medical field. In recent years, due to its accuracy and the demands of solid freeform fabrication in TE, three-dimensional printing, also known as additive manufacturing (AM), has been applied for biological scaffold fabrication in craniofacial and dental regeneration. In this review, we have compared several types of AM techniques and summarized their advantages and limitations. The range of printable materials used in craniofacial and dental tissue includes all the biomaterials. Thus, basic and clinical studies were discussed in this review to present the application of AM techniques in craniofacial and dental tissue and their advances during these years, which might provide information for further AM studies in craniofacial and dental TE.
Collapse
Affiliation(s)
- Wen Liao
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Lin Xu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Kaijuan Wangrao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yu Du
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Qiuchan Xiong
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.,Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yang Yao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.,Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
20
|
Cidonio G, Glinka M, Dawson JI, Oreffo ROC. The cell in the ink: Improving biofabrication by printing stem cells for skeletal regenerative medicine. Biomaterials 2019; 209:10-24. [PMID: 31022557 PMCID: PMC6527863 DOI: 10.1016/j.biomaterials.2019.04.009] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/28/2019] [Accepted: 04/06/2019] [Indexed: 01/08/2023]
Abstract
Recent advances in regenerative medicine have confirmed the potential to manufacture viable and effective tissue engineering 3D constructs comprising living cells for tissue repair and augmentation. Cell printing has shown promising potential in cell patterning in a number of studies enabling stem cells to be precisely deposited as a blueprint for tissue regeneration guidance. Such manufacturing techniques, however, face a number of challenges including; (i) post-printing cell damage, (ii) proliferation impairment and, (iii) poor or excessive final cell density deposition. The use of hydrogels offers one approach to address these issues given the ability to tune these biomaterials and subsequent application as vectors capable of delivering cell populations and as extrusion pastes. While stem cell-laden hydrogel 3D constructs have been widely established in vitro, clinical relevance, evidenced by in vivo long-term efficacy and clinical application, remains to be demonstrated. This review explores the central features of cell printing, cell-hydrogel properties and cell-biomaterial interactions together with the current advances and challenges in stem cell printing. A key focus is the translational hurdles to clinical application and how in vivo research can reshape and inform cell printing applications for an ageing population.
Collapse
Affiliation(s)
- G Cidonio
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK; Engineering Materials Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton, UK
| | - M Glinka
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - J I Dawson
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - R O C Oreffo
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.
| |
Collapse
|
21
|
|
22
|
Ashammakhi N, Hasan A, Kaarela O, Byambaa B, Sheikhi A, Gaharwar AK, Khademhosseini A. Advancing Frontiers in Bone Bioprinting. Adv Healthc Mater 2019; 8:e1801048. [PMID: 30734530 DOI: 10.1002/adhm.201801048] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/26/2018] [Indexed: 12/20/2022]
Abstract
Three-dimensional (3D) bioprinting of cell-laden biomaterials is used to fabricate constructs that can mimic the structure of native tissues. The main techniques used for 3D bioprinting include microextrusion, inkjet, and laser-assisted bioprinting. Bioinks used for bone bioprinting include hydrogels loaded with bioactive ceramics, cells, and growth factors. In this review, a critical overview of the recent literature on various types of bioinks used for bone bioprinting is presented. Major challenges, such as the vascularity, clinically relevant size, and mechanical properties of 3D printed structures, that need to be addressed to successfully use the technology in clinical settings, are discussed. Emerging approaches to solve these problems are reviewed, and future strategies to design customized 3D printed structures are proposed.
Collapse
Affiliation(s)
- Nureddin Ashammakhi
- Center for Minimally Invasive Therapeutics (C‐MIT)University of California – Los Angeles Los Angeles CA 90095 USA
- California NanoSystems Institute (CNSI)University of California – Los Angeles Los Angeles CA 90095 USA
- Department of BioengineeringUniversity of California – Los Angeles Los Angeles CA 90095 USA
- Division of Plastic SurgeryDepartment of SurgeryOulu Univesity Hospital Oulu FI‐90014 Finland
| | - Anwarul Hasan
- Department of Mechanical and Industrial EngineeringCollege of EngineeringQatar University Doha 2713 Qatar
- Biomedical Research CenterQatar University Doha 2713 Qatar
| | - Outi Kaarela
- Division of Plastic SurgeryDepartment of SurgeryOulu Univesity Hospital Oulu FI‐90014 Finland
| | - Batzaya Byambaa
- Center for Biomedical EngineeringDepartment of MedicineBrigham and Women's HospitalHarvard Medical School Cambridge MA 02115 USA
- Harvard‐MIT Division of Health Sciences and TechnologyMassachusetts Institute of Technology Cambridge MA 02139 USA
| | - Amir Sheikhi
- Center for Minimally Invasive Therapeutics (C‐MIT)University of California – Los Angeles Los Angeles CA 90095 USA
| | - Akhilesh K. Gaharwar
- Department of Biomedical EngineeringDepartment of Materials Science and Engineeringand Center for Remote Health and TechnologiesTexas A&M University College Station TX 77841 USA
| | - Ali Khademhosseini
- Center for Minimally Invasive Therapeutics (C‐MIT)University of California – Los Angeles Los Angeles CA 90095 USA
- California NanoSystems Institute (CNSI)University of California – Los Angeles Los Angeles CA 90095 USA
- Department of BioengineeringUniversity of California – Los Angeles Los Angeles CA 90095 USA
| |
Collapse
|
23
|
Abstract
Implants are being continuously developed to achieve personalized therapy. With the advent of 3-dimensional (3D) printing, it is becoming possible to produce customized precisely fitting implants that can be derived from 3D images fed into 3D printers. In addition, it is possible to combine various materials, such as ceramics, to render these constructs osteoconductive or growth factors to make them osteoinductive. Constructs can be seeded with cells to engineer bone tissue. Alternatively, it is possible to load cells into the biomaterial to form so called bioink and print them together to from 3D bioprinted constructs that are characterized by having more homogenous cell distribution in their matrix. To date, 3D printing was applied in the clinic mostly for surgical training and for planning of surgery, with limited use in producing 3D implants for clinical application. Few examples exist so far, which include mostly the 3D printed implants applied in maxillofacial surgery and in orthopedic surgery, which are discussed in this report. Wider clinical application of 3D printing will help the adoption of 3D printers as essential tools in the clinics in future and thus, contribute to realization of personalized medicine.
Collapse
|
24
|
Petretta M, Desando G, Grigolo B, Roseti L. 3D printing of musculoskeletal tissues: impact on safety and health at work. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2019; 82:891-912. [PMID: 31545145 DOI: 10.1080/15287394.2019.1663458] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Additive manufacturing (commonly referred to as 3D printing) created an attractive approach for regenerative medicine research in musculoskeletal tissue engineering. Given the high number of fabrication technologies available, characterized by different working and physical principles, there are several related risks that need to be managed to protect operators. Recently, an increasing number of studies demonstrated that several types of 3D printers are emitters of ultrafine particles and volatile organic compounds whose harmful effects through inhalation, ingestion and skin uptake are known. Confirmation of danger of these products is not yet final, but this provides a basis to adopt preventive measures in agreement with the precautionary principle. The purpose of this investigation was to provide a useful tool to the researcher for managing the risks related to the use of different kinds of three-dimensional printers (3D printers) in the lab, especiallyconcerning orthopedic applications, and to define appropriate control measures. Particular attention was given to new emerging risks and to developing response strategies for a comprehensive coverage of the health and safety of operators.
Collapse
Affiliation(s)
- Mauro Petretta
- RegenHU ltd, Z.I. du Vivier , Villaz-ST-Pierre , Switzerland
- RAMSES Laboratory, Rizzoli RIT-Research, Innovation & Technology Department, Istituto di Ricerca Codivilla Putti, IRCCS Istituto Ortopedico Rizzoli , Bologna , Italy
| | - Giovanna Desando
- RAMSES Laboratory, Rizzoli RIT-Research, Innovation & Technology Department, Istituto di Ricerca Codivilla Putti, IRCCS Istituto Ortopedico Rizzoli , Bologna , Italy
| | - Brunella Grigolo
- RAMSES Laboratory, Rizzoli RIT-Research, Innovation & Technology Department, Istituto di Ricerca Codivilla Putti, IRCCS Istituto Ortopedico Rizzoli , Bologna , Italy
| | - Livia Roseti
- RAMSES Laboratory, Rizzoli RIT-Research, Innovation & Technology Department, Istituto di Ricerca Codivilla Putti, IRCCS Istituto Ortopedico Rizzoli , Bologna , Italy
| |
Collapse
|
25
|
Basgul C, Yu T, MacDonald DW, Siskey R, Marcolongo M, Kurtz SM. Structure-Property Relationships for 3D printed PEEK Intervertebral Lumbar Cages Produced using Fused Filament Fabrication. JOURNAL OF MATERIALS RESEARCH 2018; 33:2040-2051. [PMID: 30555210 PMCID: PMC6289530 DOI: 10.1557/jmr.2018.178] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Recent advances in additive manufacturing technology now enable fused filament fabrication (FFF) of Polyetheretherketone (PEEK). A standardized lumbar fusion cage design was 3D printed with different speeds of the print head nozzle to investigate whether 3D printed PEEK cages exhibit sufficient material properties for lumbar fusion applications. It was observed that the compressive and shear strength of the 3D printed cages were 63-71% of the machined cages, whereas the torsion strength was 92%. Printing speed is an important printing parameter for 3D printed PEEK, which resulted in up to 20% porosity at the highest speed of 3000 mm/min, leading to reduced cage strength. Printing speeds below 1500 mm/min can be chosen as the optimal printing speed for this printer to reduce the printing time while maintaining strength. The crystallinity of printed PEEK did not differ significantly from as-machined PEEK cages from extruded rods, indicating that the processing provides similar microstructure.
Collapse
Affiliation(s)
- Cemile Basgul
- Implant Research Center, School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA
| | - Tony Yu
- Materials Science and Engineering, Drexel University, Philadelphia, PA
| | - Daniel W. MacDonald
- Implant Research Center, School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA
| | - Ryan Siskey
- Implant Research Center, School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA
- Exponent, Inc., Philadelphia, PA
| | | | - Steven M. Kurtz
- Implant Research Center, School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA
- Exponent, Inc., Philadelphia, PA
| |
Collapse
|
26
|
Abstract
Increasing innovation in rapid prototyping (RP) and additive manufacturing (AM), also known as 3D printing, is bringing about major changes in translational surgical research. This review describes the current position in the use of additive manufacturing in orthopaedic surgery. Cite this article: Bone Joint J 2018;100-B:455-60.
Collapse
Affiliation(s)
- A Mumith
- University College London, Royal National Orthopaedic Hospital, Brockley Hill, Stanmore, Middlesex HA7 4LP, UK
| | - M Thomas
- University College London, Royal National Orthopaedic Hospital, Brockley Hill, Stanmore, Middlesex HA7 4LP, UK
| | - Z Shah
- Guy's and St Thomas' NHS Foundation Trust, Great Maze Pond, London SE1 7EH, UK
| | - M Coathup
- University College London, Royal National Orthopaedic Hospital, Brockley Hill, Stanmore, Middlesex HA7 4LP, UK
| | - G Blunn
- University College London, Royal National Orthopaedic Hospital, Brockley Hill, Stanmore, Middlesex HA7 4LP, UK and School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK
| |
Collapse
|
27
|
Emergence of Three-Dimensional Printing Technology and Its Utility in Spine Surgery. Asian Spine J 2018; 12:365-371. [PMID: 29713420 PMCID: PMC5913030 DOI: 10.4184/asj.2018.12.2.365] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 11/02/2017] [Accepted: 11/02/2017] [Indexed: 01/03/2023] Open
Abstract
In the last decade, spine surgery has advanced tremendously. Tissue engineering and three-dimensional (3D) printing/additive manufacturing have provided promising new research avenues in the fields of medicine and orthopedics in recent literature, and their emergent role in spine surgery is encouraging. We reviewed recent articles that highlighted the role of 3D printing in medicine, orthopedics, and spine surgery and summarized the utility of 3D printing. 3D printing has shown promising results in various aspects of spine surgery and can be a useful tool for spine surgeons. The growing research on tissue bioengineering and its application in conjunction with additive manufacturing has revealed great potential for tissue bioengineering in the treatment of spinal ailments.
Collapse
|
28
|
Ho CMB, Mishra A, Hu K, An J, Kim YJ, Yoon YJ. Femtosecond-Laser-Based 3D Printing for Tissue Engineering and Cell Biology Applications. ACS Biomater Sci Eng 2017; 3:2198-2214. [PMID: 33445279 DOI: 10.1021/acsbiomaterials.7b00438] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Fabrication of 3D cell scaffolds has gained tremendous attention in recent years because of its applications in tissue engineering and cell biology applications. The success of tissue engineering or cell interactions mainly depends on the fabrication of well-defined microstructures, which ought to be biocompatible for cell proliferation. Femtosecond-laser-based 3D printing is one of the solution candidates that can be used to manufacture 3D tissue scaffolds through computer-aided design (CAD) which can be efficiently engineered to mimic the microenvironment of tissues. UV-based lithography has also been used for constructing the cellular scaffolds but the toxicity of UV light to the cells has prevented its application to the direct patterning of the cells in the scaffold. Although the mask-based lithography has provided a high resolution, it has only enabled 2D patterning not arbitrary 3D printing with design flexibility. Femtosecond-laser-based 3D printing is trending in the area of tissue engineering and cell biology applications due to the formation of well-defined micro- and submicrometer structures via visible and near-infrared (NIR) femtosecond laser pulses, followed by the fabrication of cell scaffold microstructures with a high precision. Laser direct writing and multiphoton polymerization are being used for fabricating the cell scaffolds, The implication of spatial light modulators in the interference lithography to generate the digital hologram will be the future prospective of mask-based lithography. Polyethylene glycol diacrylate (PEG-DA), ormocomp, pentaerythritol tetraacrylate (PETTA) have been fabricated through TPP to generate the cell scaffolds, whereas SU-8 was used to fabricate the microrobots for targeted drug delivery. Well-designed and precisely fabricated 3D cell scaffolds manufactured by femtosecond-laser-based 3D printing can be potentially used for studying cell migration, matrix invasion and nuclear stiffness to determine stage of cancer and will open broader horizons in the future in tissue engineering and biology applications.
Collapse
Affiliation(s)
- Chee Meng Benjamin Ho
- School of Mechanical & Aerospace Engineering and §Singapore Centre for 3D Printing, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
| | - Abhinay Mishra
- School of Mechanical & Aerospace Engineering and Singapore Centre for 3D Printing, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
| | - Kan Hu
- School of Mechanical & Aerospace Engineering and Singapore Centre for 3D Printing, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
| | - Jianing An
- School of Mechanical & Aerospace Engineering and Singapore Centre for 3D Printing, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
| | - Young-Jin Kim
- School of Mechanical & Aerospace Engineering and Singapore Centre for 3D Printing, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
| | - Yong-Jin Yoon
- School of Mechanical & Aerospace Engineering and Singapore Centre for 3D Printing, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
| |
Collapse
|
29
|
Osagie L, Shaunak S, Murtaza A, Cerovac S, Umarji S. Advances in 3D Modeling: Preoperative Templating for Revision Wrist Surgery. Hand (N Y) 2017; 12:NP68-NP72. [PMID: 28832216 PMCID: PMC5684935 DOI: 10.1177/1558944716681973] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Three-dimensional (3D) printing is a computer-directed process leading to the layered synthesis of scaled models. The popularity and availability of the technique has exponentially increased over the last decade, and as such is seeing a greater number of medical and surgical applications. METHODS We report 3 cases involving the use of 3D printing as an aid to operative planning in the revision of wrist surgery. RESULTS All patients underwent successful operative interventions with a £34 average cost of model creation. CONCLUSIONS A growing number of reports are emerging in reconstructive surgical specialities including maxillofacial, orthopedic, and plastic surgery; from our experience, we advocate the economically viable use of 3D printing for preoperative templating.
Collapse
Affiliation(s)
- Liza Osagie
- St George’s University Hospitals NHS Foundation Trust, London, UK,Liza Osagie, Trauma and Orthopaedics Department, St George’s Hospital, St George’s University Hospitals NHS Foundation Trust, Blackshaw Road, London SW17, UK.
| | - Shalin Shaunak
- St George’s University Hospitals NHS Foundation Trust, London, UK
| | - Aasim Murtaza
- St George’s University Hospitals NHS Foundation Trust, London, UK
| | - Sonja Cerovac
- St George’s University Hospitals NHS Foundation Trust, London, UK
| | - Shamim Umarji
- St George’s University Hospitals NHS Foundation Trust, London, UK
| |
Collapse
|
30
|
Wilcox B, Mobbs RJ, Wu AM, Phan K. Systematic review of 3D printing in spinal surgery: the current state of play. JOURNAL OF SPINE SURGERY 2017; 3:433-443. [PMID: 29057355 DOI: 10.21037/jss.2017.09.01] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Three-dimensional printing (3DP), also known as "Additive Manufacturing", is a rapidly growing industry, particularly in the area of spinal surgery. Given the complex anatomy of the spine and delicate nature of surrounding structures, 3DP has the potential to aid surgical planning and procedural accuracy. We perform a systematic review of current literature on the applications of 3DP in spinal surgery. Six electronic databases were searched for original published studies reporting cases or outcomes for 3DP surgical models, guides or implants for spinal surgery. The findings of these studies were synthesized and summarized. These searches returned a combined 2,411 articles. Of these, 54 were included in this review. 3DP is currently used for surgical planning, intra-operative surgical guides, customised prostheses as well as "Off-the-Shelf" implants. The technology has the potential for enhanced implant properties, as well as decreased surgical time and better patient outcomes. The majority of the data thus far is from low-quality studies with inherent biases linked with the excitement of a new field. As the body of literature continues to expand, larger scale studies to evaluate advantages and disadvantages, and longer-term follow up will enhance our knowledge of the effect 3DP has in spinal surgery. In addition, issues such as financial impact, time to design and print, materials selection and bio-printing will evolve as this rapidly expanding field matures.
Collapse
Affiliation(s)
- Ben Wilcox
- NeuroSpine Surgery Research Group, Prince of Wales Private Hospital, Sydney, Australia.,Faculty of Medicine, University of New South Wales (UNSW), Randwick, Sydney, Australia
| | - Ralph J Mobbs
- NeuroSpine Surgery Research Group, Prince of Wales Private Hospital, Sydney, Australia.,Faculty of Medicine, University of New South Wales (UNSW), Randwick, Sydney, Australia
| | - Ai-Min Wu
- Department of Spine Surgery, Orthopaedic Hospital, The Second Affiliated Hospital and Yuying Children's Hospital of the Wenzhou Medical University, The Second Medical School of the Wenzhou Medical University, Zhejiang Spine Center, Wenzhou 325027, China
| | - Kevin Phan
- NeuroSpine Surgery Research Group, Prince of Wales Private Hospital, Sydney, Australia.,Faculty of Medicine, University of New South Wales (UNSW), Randwick, Sydney, Australia
| |
Collapse
|
31
|
Orciani M, Fini M, Di Primio R, Mattioli-Belmonte M. Biofabrication and Bone Tissue Regeneration: Cell Source, Approaches, and Challenges. Front Bioeng Biotechnol 2017; 5:17. [PMID: 28386538 PMCID: PMC5362636 DOI: 10.3389/fbioe.2017.00017] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 02/22/2017] [Indexed: 01/06/2023] Open
Abstract
The growing occurrence of bone disorders and the increase in aging population have resulted in the need for more effective therapies to meet this request. Bone tissue engineering strategies, by combining biomaterials, cells, and signaling factors, are seen as alternatives to conventional bone grafts for repairing or rebuilding bone defects. Indeed, skeletal tissue engineering has not yet achieved full translation into clinical practice because of several challenges. Bone biofabrication by additive manufacturing techniques may represent a possible solution, with its intrinsic capability for accuracy, reproducibility, and customization of scaffolds as well as cell and signaling molecule delivery. This review examines the existing research in bone biofabrication and the appropriate cells and factors selection for successful bone regeneration as well as limitations affecting these approaches. Challenges that need to be tackled with the highest priority are the obtainment of appropriate vascularized scaffolds with an accurate spatiotemporal biochemical and mechanical stimuli release, in order to improve osseointegration as well as osteogenesis.
Collapse
Affiliation(s)
- Monia Orciani
- Department of Molecular and Clinical Sciences, Università Politenica delle Marche , Ancona , Italy
| | - Milena Fini
- Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopedic Institute , Bologna , Italy
| | - Roberto Di Primio
- Department of Molecular and Clinical Sciences, Università Politenica delle Marche , Ancona , Italy
| | - Monica Mattioli-Belmonte
- Department of Molecular and Clinical Sciences, Università Politenica delle Marche , Ancona , Italy
| |
Collapse
|
32
|
Foster KR. 3-Dimensional Printing in Medicine: Hype, Hope, and the Challenge of Personalized Medicine. PHILOSOPHY OF ENGINEERING AND TECHNOLOGY 2017. [DOI: 10.1007/978-3-319-45193-0_16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
33
|
Mulford JS, Babazadeh S, Mackay N. Three-dimensional printing in orthopaedic surgery: review of current and future applications. ANZ J Surg 2016; 86:648-53. [PMID: 27071485 DOI: 10.1111/ans.13533] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 01/29/2016] [Accepted: 02/16/2016] [Indexed: 01/01/2023]
Abstract
Three-dimensional (3D) printing is a rapidly evolving technology with the potential for significant contributions to surgical practice. There are many current applications for 3D printing technology with future applications being explored. This technology has applications in preoperative planning, education, custom manufacturing (implants, prosthetics and surgical guides) and exciting potential for biological applications. This article reviews the current and future applications of 3D technology in orthopaedic surgery.
Collapse
Affiliation(s)
- Jonathan S Mulford
- Department of Orthopaedics, Launceston General Hospital, Launceston, Tasmania, Australia
| | - Sina Babazadeh
- Department of Orthopaedics, Launceston General Hospital, Launceston, Tasmania, Australia
| | - Neil Mackay
- Department of Orthopaedics, Launceston General Hospital, Launceston, Tasmania, Australia
| |
Collapse
|
34
|
Holmes B, Bulusu K, Plesniak M, Zhang LG. A synergistic approach to the design, fabrication and evaluation of 3D printed micro and nano featured scaffolds for vascularized bone tissue repair. NANOTECHNOLOGY 2016; 27:064001. [PMID: 26758780 PMCID: PMC5055473 DOI: 10.1088/0957-4484/27/6/064001] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
3D bioprinting has begun to show great promise in advancing the development of functional tissue/organ replacements. However, to realize the true potential of 3D bioprinted tissues for clinical use requires the fabrication of an interconnected and effective vascular network. Solving this challenge is critical, as human tissue relies on an adequate network of blood vessels to transport oxygen, nutrients, other chemicals, biological factors and waste, in and out of the tissue. Here, we have successfully designed and printed a series of novel 3D bone scaffolds with both bone formation supporting structures and highly interconnected 3D microvascular mimicking channels, for efficient and enhanced osteogenic bone regeneration as well as vascular cell growth. Using a chemical functionalization process, we have conjugated our samples with nano hydroxyapatite (nHA), for the creation of novel micro and nano featured devices for vascularized bone growth. We evaluated our scaffolds with mechanical testing, hydrodynamic measurements and in vitro human mesenchymal stem cell (hMSC) adhesion (4 h), proliferation (1, 3 and 5 d) and osteogenic differentiation (1, 2 and 3 weeks). These tests confirmed bone-like physical properties and vascular-like flow profiles, as well as demonstrated enhanced hMSC adhesion, proliferation and osteogenic differentiation. Additional in vitro experiments with human umbilical vein endothelial cells also demonstrated improved vascular cell growth, migration and organization on micro-nano featured scaffolds.
Collapse
Affiliation(s)
- Benjamin Holmes
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington DC 20052, USA
| | - Kartik Bulusu
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington DC 20052, USA
| | - Michael Plesniak
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington DC 20052, USA
| | - Lijie Grace Zhang
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington DC 20052, USA
- Department of Biomedical Engineering, The George Washington University, Washington DC 20052, USA
- Division of Genomic Medicine, Department of Medicine, The George Washington University Medical Center, Washington DC 20052, USA
| |
Collapse
|
35
|
Tang D, Tare RS, Yang LY, Williams DF, Ou KL, Oreffo ROC. Biofabrication of bone tissue: approaches, challenges and translation for bone regeneration. Biomaterials 2016; 83:363-82. [PMID: 26803405 DOI: 10.1016/j.biomaterials.2016.01.024] [Citation(s) in RCA: 348] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/21/2015] [Accepted: 01/01/2016] [Indexed: 02/08/2023]
Abstract
The rising incidence of bone disorders has resulted in the need for more effective therapies to meet this demand, exacerbated by an increasing ageing population. Bone tissue engineering is seen as a means of developing alternatives to conventional bone grafts for repairing or reconstructing bone defects by combining biomaterials, cells and signalling factors. However, skeletal tissue engineering has not yet achieved full translation into clinical practice as a consequence of several challenges. The use of additive manufacturing techniques for bone biofabrication is seen as a potential solution, with its inherent capability for reproducibility, accuracy and customisation of scaffolds as well as cell and signalling factor delivery. This review highlights the current research in bone biofabrication, the necessary factors for successful bone biofabrication, in addition to the current limitations affecting biofabrication, some of which are a consequence of the limitations of the additive manufacturing technology itself.
Collapse
Affiliation(s)
- Daniel Tang
- Centre for Human Development, Stem Cells and Regeneration, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, United Kingdom
| | - Rahul S Tare
- Centre for Human Development, Stem Cells and Regeneration, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, United Kingdom; Engineering Sciences, Faculty of Engineering and the Environment, University of Southampton, Southampton, SO17 1BJ, United Kingdom
| | - Liang-Yo Yang
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan, ROC; Research Centre for Biomedical Devices and Prototyping Production, Taipei Medical University, Taipei, 110, Taiwan, ROC; School of Medicine, College of Medicine, China Medical University, Taichung, 40402, Taiwan, ROC
| | - David F Williams
- Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, Taipei, 110, Taiwan, ROC; Institute of Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Keng-Liang Ou
- Research Centre for Biomedical Devices and Prototyping Production, Taipei Medical University, Taipei, 110, Taiwan, ROC; Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, Taipei, 110, Taiwan, ROC; Research Centre for Biomedical Implants and Microsurgery Devices, Taipei Medical University, Taipei, 110, Taiwan, ROC; Department of Dentistry, Taipei Medical University-Shuang Ho Hospital, New Taipei City, 235, Taiwan, ROC.
| | - Richard O C Oreffo
- Centre for Human Development, Stem Cells and Regeneration, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, United Kingdom.
| |
Collapse
|
36
|
Abstract
Medical advances have led to a welcome increase in life expectancy. However, accompanying longevity introduces new challenges: increases in age-related diseases and associated reductions in quality of life. The loss of skeletal tissue that can accompany trauma, injury, disease or advancing years can result in significant morbidity and significant socio-economic cost and emphasise the need for new, more reliable skeletal regeneration strategies. To address the unmet need for bone augmentation, tissue engineering and regenerative medicine have come to the fore in recent years with new approaches for de novo skeletal tissue formation. Typically, these approaches seek to harness stem cells, innovative scaffolds and biological factors that promise enhanced and more reliable bone formation strategies to improve the quality of life for many. This review provides an overview of recent developments in bone tissue engineering focusing on skeletal stem cells, vascular development, bone formation and the translation from preclinical in vivo models to clinical delivery.
Collapse
|
37
|
Biomimetic approaches in bone tissue engineering: Integrating biological and physicomechanical strategies. Adv Drug Deliv Rev 2015; 84:1-29. [PMID: 25236302 DOI: 10.1016/j.addr.2014.09.005] [Citation(s) in RCA: 282] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Revised: 09/01/2014] [Accepted: 09/05/2014] [Indexed: 02/06/2023]
Abstract
The development of responsive biomaterials capable of demonstrating modulated function in response to dynamic physiological and mechanical changes in vivo remains an important challenge in bone tissue engineering. To achieve long-term repair and good clinical outcomes, biologically responsive approaches that focus on repair and reconstitution of tissue structure and function through drug release, receptor recognition, environmental responsiveness and tuned biodegradability are required. Traditional orthopedic materials lack biomimicry, and mismatches in tissue morphology, or chemical and mechanical properties ultimately accelerate device failure. Multiple stimuli have been proposed as principal contributors or mediators of cell activity and bone tissue formation, including physical (substrate topography, stiffness, shear stress and electrical forces) and biochemical factors (growth factors, genes or proteins). However, optimal solutions to bone regeneration remain elusive. This review will focus on biological and physicomechanical considerations currently being explored in bone tissue engineering.
Collapse
|
38
|
Mosadegh B, Xiong G, Dunham S, Min JK. Current progress in 3D printing for cardiovascular tissue engineering. Biomed Mater 2015; 10:034002. [DOI: 10.1088/1748-6041/10/3/034002] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|