1
|
Nair R, Kasturi M, Mathur V, Seetharam RN, S Vasanthan K. Strategies for developing 3D printed ovarian model for restoring fertility. Clin Transl Sci 2024; 17:e13863. [PMID: 38955776 PMCID: PMC11219245 DOI: 10.1111/cts.13863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/16/2024] [Accepted: 05/31/2024] [Indexed: 07/04/2024] Open
Abstract
Ovaries play a crucial role in the regulation of numerous essential processes that occur within the intricate framework of female physiology. They are entrusted with the responsibility of both generating a new life and orchestrating a delicate hormonal symphony. Understanding their functioning is crucial for gaining insight into the complexities of reproduction, health, and fertility. In addition, ovaries secrete hormones that are crucial for both secondary sexual characteristics and the maintenance of overall health. A three-dimensional (3D) prosthetic ovary has the potential to restore ovarian function and preserve fertility in younger females who have undergone ovariectomies or are afflicted with ovarian malfunction. Clinical studies have not yet commenced, and the production of 3D ovarian tissue for human implantation is still in the research phase. The main challenges faced while creating a 3D ovary for in vivo implantation include sustenance of ovarian follicles, achieving vascular infiltration into the host tissue, and restoring hormone circulation. The complex ovarian microenvironment that is compartmentalized and rigid makes the biomimicking of the 3D ovary challenging in terms of biomaterial selection and bioink composition. The successful restoration of these properties in animal models has led to expectations for the development of human ovaries for implantation. This review article summarizes and evaluates the optimal 3D models of ovarian structures and their safety and efficacy concerns to provide concrete suggestions for future research.
Collapse
Affiliation(s)
- Ramya Nair
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher EducationManipalKarnatakaIndia
| | - Meghana Kasturi
- Department of Mechanical EngineeringUniversity of MichiganDearbornMichiganUSA
| | - Vidhi Mathur
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher EducationManipalKarnatakaIndia
| | - Raviraja N. Seetharam
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher EducationManipalKarnatakaIndia
| | - Kirthanashri S Vasanthan
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher EducationManipalKarnatakaIndia
| |
Collapse
|
2
|
León-Félix CM, Maranhão AQ, Amorim CA, Lucci CM. Optimizing Decellularization of Bovine Ovarian Tissue: Toward a Transplantable Artificial Ovary Scaffold with Minimized Residual Toxicity and Preserved Extracellular Matrix Morphology. Cells Tissues Organs 2024; 213:413-423. [PMID: 38359805 DOI: 10.1159/000537838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/09/2024] [Indexed: 02/17/2024] Open
Abstract
INTRODUCTION The decellularized extracellular matrix (dECM) from ovarian tissue could be the best scaffold for the development of a transplantable artificial ovary. Typically, dECM from ovarian tissue has been obtained using sodium dodecyl sulfate (SDS), at a concentration of 1% for 24 h. However, SDS can leave residues in the tissue, which may be toxic to the seeded cells. This study aimed to obtain dECM from bovine ovarian tissue using SDS and NaOH at a minimum concentration in the shortest incubation time. METHODS The respective SDS and NaOH concentrations investigated were 1% and 0.2 m; 0.5% and 0.1 m; 0.1% and 0.02 m; and 0.05% and 0.01 m, with 24-, 12-, and 6-h incubation periods. After the incubation time, the tissue was washed in 50 mL of distilled water for 6 h. RESULTS Histological analysis confirmed decellularization and showed the conservation of collagen fibers in all samples following treatment. Furthermore, the lowest SDS and NaOH concentrations that showed no DNA remaining during electrophoresis analysis were 0.1% and 0.02 m when incubated for 24 and 12 h. DNA quantification resulted in <0.2 ng DNA/mg ovarian tissue using these protocols. Additionally, the coculture of dECM (obtained by 0.1% SDS and 0.02 m NaOH for 12 h) with ovarian cells showed that there was no toxic effect for the cells for up to 72 h. CONCLUSION The protocol involving 0.1% SDS and 0.02 m NaOH for 12-h incubation decellularizes bovine ovarian tissue, generating a dECM that preserves the native ECM morphology and is nontoxic to ovarian cells.
Collapse
Affiliation(s)
- Cecibel M León-Félix
- Department of Physiology, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil,
| | - Andrea Q Maranhão
- Department of Cellular Biology, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - Christiani A Amorim
- Department of Gynecology, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Carolina M Lucci
- Department of Physiology, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| |
Collapse
|
3
|
Albamonte MI, Vitullo AD. Preservation of fertility in female and male prepubertal patients diagnosed with cancer. J Assist Reprod Genet 2023; 40:2755-2767. [PMID: 37770817 PMCID: PMC10656407 DOI: 10.1007/s10815-023-02945-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/12/2023] [Indexed: 09/30/2023] Open
Abstract
Over the past two decades, the importance of fertility preservation has grown not only in the realm of medical and clinical patient care, but also in the field of basic and applied research in human reproduction. With advancements in cancer treatments resulting in higher rates of patient survival, it is crucial to consider the quality of life post-cure. Therefore, fertility preservation must be taken into account prior to antitumor treatments, as it can significantly impact a patient's future fertility. For postpubertal patients, gamete cryopreservation is the most commonly employed preservation strategy. However, for prepubertal patients, the situation is more intricate. Presently, ovarian tissue cryopreservation is the standard practice for prepubertal girls, but further scientific evidence is required in several aspects. Testicular tissue cryopreservation, on the other hand, is still experimental for prepubertal boys. The primary aim of this review is to address the strategies available for possible fertility preservation in prepubertal girls and boys, such as ovarian cryopreservation/transplantation, in vitro follicle culture and meiotic maturation, artificial ovary, transplantation of cryopreserved spermatogonia, and cryopreservation/grafting of immature testicular tissue and testicular organoids.
Collapse
Affiliation(s)
- María Itatí Albamonte
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Hidalgo 775, C1405BCK, Buenos Aires, Argentina
| | - Alfredo D Vitullo
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Hidalgo 775, C1405BCK, Buenos Aires, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
4
|
Khaleghi S, Eivazkhani F, Tavana S, Moini A, Novin MG, Stoyan P, Nazarian H, Fathi R. Follicular reconstruction and neo-oogenesis in xenotransplantation of human ovarian isolated cells derived from chemotherapy-induced POF patients. J Biol Eng 2023; 17:70. [PMID: 37986177 PMCID: PMC10662631 DOI: 10.1186/s13036-023-00384-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 10/17/2023] [Indexed: 11/22/2023] Open
Abstract
BACKGROUND Developing new strategies to restore fertility in patients with chemotherapy-induced Premature Ovarian Failure (Chemo-POF) is important. We aimed to construct an Artificial Ovary (AO) by seeding Human Ovarian Cortical Cells (HOCCs) into Human ovarian Decellularized Cortical Tissue (DCT). We assessed the AO's ability to produce new ovarian follicles following xenotransplantation to NMRI mice. MATERIAL AND METHODS The DCTs were prepared, and cell removal was confirmed through DNA content, MTT assay, DAPI and H&E staining. Next, HOCCs were isolated from both Chemo-POF and Trans (as a control group) ovarian patients. The HOCCs were characterized using immunostaining (FRAGILIS, Vimentin, and Inhibin α) and real time PCR (DDX4, STELLA, FRAGILIS, Vimentin, FSH-R, KI67) assays. The HOCCs were then seeded into the DCTs and cultured for one week to construct an AO, which was subsequently xenotransplanted into the mice. The existence of active follicles within the AO was studied with H&E and immunofluorescence (GDF9) staining, Real-time PCR (GDF9, ZP3) and hormone analysis (Estradiol, FSH and AMH). RESULTS The results of gene expression and immunostaining showed that 85-86% of the isolated cells from both Trans and Chemo-POF groups were positive for vimentin, while 2-5% were granulosa cells and OSCs were less than 3%. After xenotransplantation, histological study confirmed the presence of morphologically healthy reconstructed human ovarian follicles. Additionally, immunofluorescence staining of GDF9 and hormonal assay confirmed the presence of secretory-active follicles on the AO. CONCLUSION Our findings demonstrate that an artificial ovary produced by seeding HOCCs on DCT can support HOCCs proliferation as well as neo-oogenesis, and enable sex hormone secretion following xenotransplantation.
Collapse
Affiliation(s)
- Sara Khaleghi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farideh Eivazkhani
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Somayeh Tavana
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Ashraf Moini
- Department of Endocrinology and Female Infertility, Royan Institute of Reproductive Biomedicine, ACECR, Tehran, Iran
- Breast Disease Research Center (BDRC), Tehran University of Medical Science, Tehran, Iran
| | - Marefat Ghaffari Novin
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Petkov Stoyan
- Platform Degenerative Diseases, German Primate Center, GmbH, Leibniz Institute for Primate Research, Göttingen, 37077, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, 37077, Germany
| | - Hamid Nazarian
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Rouhollah Fathi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| |
Collapse
|
5
|
Canosa S, Revelli A, Gennarelli G, Cormio G, Loizzi V, Arezzo F, Petracca EA, Carosso AR, Cimadomo D, Rienzi L, Vaiarelli A, Ubaldi FM, Silvestris E. Innovative Strategies for Fertility Preservation in Female Cancer Survivors: New Hope from Artificial Ovary Construction and Stem Cell-Derived Neo-Folliculogenesis. Healthcare (Basel) 2023; 11:2748. [PMID: 37893822 PMCID: PMC10606281 DOI: 10.3390/healthcare11202748] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/05/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Recent advances in anticancer treatment have significantly improved the survival rate of young females; unfortunately, in about one third of cancer survivors the risk of ovarian insufficiency and infertility is still quite relevant. As the possibility of becoming a mother after recovery from a juvenile cancer is an important part of the quality of life, several procedures to preserve fertility have been developed: ovarian surgical transposition, induction of ovarian quiescence by gonadotropin-releasing hormone agonists (GnRH-a) treatment, and oocyte and/or ovarian cortical tissue cryopreservation. Ovarian tissue cryostorage and allografting is a valuable technique that applies even to prepubertal girls; however, some patients cannot benefit from it due to the high risk of reintroducing cancer cells during allograft in cases of ovary-metastasizing neoplasias, such as leukemias or NH lymphomas. Innovative techniques are now under investigation, as in the construction of an artificial ovary made of isolated follicles inserted into an artificial matrix scaffold, and the use of stem cells, including ovarian stem cells (OSCs), to obtain neo-folliculogenesis and the development of fertilizable oocytes from the exhausted ovarian tissue. This review synthesizes and discusses these innovative techniques, which potentially represent interesting strategies in oncofertility programs and a new hope for young female cancer survivors.
Collapse
Affiliation(s)
- Stefano Canosa
- IVIRMA, Global Research Alliance, LIVET, 10126 Turin, Italy; (A.R.); (G.G.)
| | - Alberto Revelli
- IVIRMA, Global Research Alliance, LIVET, 10126 Turin, Italy; (A.R.); (G.G.)
- Gynecology and Obstetrics 2U, Department of Surgical Sciences, S. Anna Hospital, University of Turin, 10126 Turin, Italy
| | - Gianluca Gennarelli
- IVIRMA, Global Research Alliance, LIVET, 10126 Turin, Italy; (A.R.); (G.G.)
- Gynecology and Obstetrics 1U, Physiopathology of Reproduction and IVF Unit, Department of Surgical Sciences, S. Anna Hospital, University of Turin, 10126 Turin, Italy;
| | - Gennaro Cormio
- Gynecologic Oncology Unit, IRCCS Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy; (G.C.); (V.L.); (E.A.P.); (E.S.)
- Department of Interdisciplinary Medicine (DIM), University of Bari “Aldo Moro”, 70121 Bari, Italy
| | - Vera Loizzi
- Gynecologic Oncology Unit, IRCCS Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy; (G.C.); (V.L.); (E.A.P.); (E.S.)
- Department of Interdisciplinary Medicine (DIM), University of Bari “Aldo Moro”, 70121 Bari, Italy
| | - Francesca Arezzo
- Obstetrics and Gynecology Unit, Department of Biomedical Sciences and Human Oncology, University of “Aldo Moro”, 70124 Bari, Italy
| | - Easter Anna Petracca
- Gynecologic Oncology Unit, IRCCS Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy; (G.C.); (V.L.); (E.A.P.); (E.S.)
| | - Andrea Roberto Carosso
- Gynecology and Obstetrics 1U, Physiopathology of Reproduction and IVF Unit, Department of Surgical Sciences, S. Anna Hospital, University of Turin, 10126 Turin, Italy;
| | - Danilo Cimadomo
- IVIRMA, Global Research Alliance, GENERA, Clinica Valle Giulia, 00197 Rome, Italy; (D.C.); (L.R.); (A.V.); (F.M.U.)
| | - Laura Rienzi
- IVIRMA, Global Research Alliance, GENERA, Clinica Valle Giulia, 00197 Rome, Italy; (D.C.); (L.R.); (A.V.); (F.M.U.)
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, 61029 Urbino, Italy
| | - Alberto Vaiarelli
- IVIRMA, Global Research Alliance, GENERA, Clinica Valle Giulia, 00197 Rome, Italy; (D.C.); (L.R.); (A.V.); (F.M.U.)
| | - Filippo Maria Ubaldi
- IVIRMA, Global Research Alliance, GENERA, Clinica Valle Giulia, 00197 Rome, Italy; (D.C.); (L.R.); (A.V.); (F.M.U.)
| | - Erica Silvestris
- Gynecologic Oncology Unit, IRCCS Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy; (G.C.); (V.L.); (E.A.P.); (E.S.)
| |
Collapse
|
6
|
Zand E, Rajablou E, Siadat SF, Beiki B, Akbarinejad V, Amorim CA, Rezazadeh Valojerdi M, Tahaei LA, Fathi R. Successful 3D culture and transplantation of mouse isolated preantral follicles in hydrogel of bioengineered Wharton's jelly. PLoS One 2023; 18:e0290095. [PMID: 37729236 PMCID: PMC10511077 DOI: 10.1371/journal.pone.0290095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/01/2023] [Indexed: 09/22/2023] Open
Abstract
MAIN OBJECTIVE Due to Human Wharton's Jelly (HWJ) could be applied in tissue engineering as a bio scaffold, the present study was conducted to investigate the effects of HWJ hydrogel on in vitro culture and auto-transplantation of mouse ovarian follicles. MATERIALS AND METHODS HWJ was isolated from umbilical cord and decellularized with SDS/Tris/EDTA. DNA, Collagen and Glycosaminoglycans (GAGs) were measured. Decellularized Wharton's Jelly (DWJ) was dissolved to make Wharton's Jelly Hydrogel (WJH), and composited with Alginate (ALG) (1.5%) in equal ratio (WJH+ALG). Then, mouse preantral follicles were isolated and encapsulated in 10μL droplets of WJH and randomly considered for both 14 days culture and auto-transplantation. RESULTS Collagen, GAGs and DNA evaluations showed majority of WJ cells have been removed and MTT approved no toxicity. Degradation rate and rheological analysis represented optimal hydrogel compatibility. The data from in vitro culture revealed significant antral formation in WJH+ALG (P≤0.05). In transplantation, follicles failed to survive in ALG; however, survived in WJH+ALG to antral stage (P<0.05). VEGF and CD34 had greater expression in WJH+ALG than ALG (P< 0.05). CONCLUSION Wharton's jelly hydrogel and Alginate compound is interesting composite for successful development of mouse preantral follicles in both 3D in vitro culture and transplantation.
Collapse
Affiliation(s)
- Elnaz Zand
- Department of Embryology, Royan Institute for Reproductive Biomedicine, Reproductive Biomedicine Research Center, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Elias Rajablou
- Department of Embryology, Royan Institute for Reproductive Biomedicine, Reproductive Biomedicine Research Center, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
- Faculty of Veterinary Medicine, Garmsar Branch, Islamic Azad University, Garmsar, Iran
| | | | - Bahare Beiki
- Skin and Stem Cell Research Center, Tehran University of Medical Science, Tehran, Iran
| | - Vahid Akbarinejad
- Faculty of Veterinary Medicine, Department of Theriogenology, University of Tehran, Tehran, Iran
| | - Christiani Andrade Amorim
- Institut de Recherche Expérimentale et Clinique, Pôle de Recherche en Physiopathologie de la Reproduction, Université Catholique de Louvain, Brussels, Belgium
| | | | - Leila Alsadat Tahaei
- Department of Embryology, Royan Institute for Reproductive Biomedicine, Reproductive Biomedicine Research Center, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Rouhollah Fathi
- Department of Embryology, Royan Institute for Reproductive Biomedicine, Reproductive Biomedicine Research Center, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| |
Collapse
|
7
|
Xiang D, Zhou E, Wang M, Wang K, Zhou S, Ma Q, Zhong Z, Ye Q, Chen Y, Fan X, Wang Y. Artificial ovaries constructed from biodegradable chitin-based hydrogels with the ability to restore ovarian endocrine function and alleviate osteoporosis in ovariectomized mice. Reprod Biol Endocrinol 2023; 21:49. [PMID: 37208699 DOI: 10.1186/s12958-023-01092-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/11/2023] [Indexed: 05/21/2023] Open
Abstract
BACKGROUND Artificial ovary (AO) is an alternative approach to provide physiological hormone to post-menopausal women. The therapeutic effects of AO constructed using alginate (ALG) hydrogels are limited by their low angiogenic potential, rigidity, and non-degradability. To address these limitations, biodegradable chitin-based (CTP) hydrogels that promote cell proliferation and vascularization were synthesized, as supportive matrix. METHODS In vitro, follicles isolated from 10-12-days-old mice were cultured in 2D, ALG hydrogels, and CTP hydrogels. After 12 days of culture, follicle growth, steroid hormone levels, oocyte meiotic competence, and expression of folliculogenesis-related genes were monitored. Additionally, follicles isolated from 10-12-days-old mice were encapsulated in CTP and ALG hydrogels and transplanted into the peritoneal pockets of ovariectomised (OVX) mice. After transplantation, steroid hormone levels, body weight, rectal temperature, and visceral fat of the mice were monitored every two weeks. At 6 and 10 weeks after transplantation, the uterus, vagina, and femur were collected for histological examination. RESULTS The follicles developed normally in CTP hydrogels under in vitro culture conditions. Additionally, follicular diametre and survival rate, oestrogen production, and expression of folliculogenesis-related genes were significantly higher than those in ALG hydrogels. After one week of transplantation, the numbers of CD34-positive vessels and Ki-67-positive cells in CTP hydrogels were significantly higher than those in ALG hydrogels (P < 0.05), and the follicle recovery rate was significantly higher in CTP hydrogels (28%) than in ALG hydrogels (17.2%) (P < 0.05). After two weeks of transplantation, OVX mice implanted with CTP grafts exhibited normal steroid hormone levels, which were maintained until week eight. After 10 weeks of transplantation, CTP grafts effectively ameliorated bone loss and atrophy of the reproductive organs, as well as prevented the increase in body weight and rectal temperature in OVX mice, which were superior to those elicited by ALG grafts. CONCLUSIONS Our study is the first to demonstrate that CTP hydrogels support follicles longer than ALG hydrogels in vitro and in vivo. The results highlight the clinical potential of AO constructed using CTP hydrogels in the treatment of menopausal symptoms.
Collapse
Affiliation(s)
- Du Xiang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University , Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, 430071, China
| | - Encheng Zhou
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University , Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, 430071, China
| | - Mei Wang
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Kan Wang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Shujun Zhou
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University , Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, 430071, China
| | - Qing Ma
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University , Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, 430071, China
| | - Zibiao Zhong
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University , Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, 430071, China
| | - Qifa Ye
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University , Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, 430071, China
| | - Yun Chen
- Department of Biomedical Engineering and Hubei Province Key Laboratory of Allergy and Immune Related Diseases, TaiKang Medical School (School of Basic Medical Sciences), Wuhan, 430071, China
| | - Xiaoli Fan
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University , Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, 430071, China.
| | - Yanfeng Wang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University , Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, 430071, China.
| |
Collapse
|
8
|
Brownell D, Chabaud S, Bolduc S. Tissue Engineering in Gynecology. Int J Mol Sci 2022; 23:12319. [PMID: 36293171 PMCID: PMC9603941 DOI: 10.3390/ijms232012319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/05/2022] [Accepted: 10/08/2022] [Indexed: 12/01/2022] Open
Abstract
Female gynecological organ dysfunction can cause infertility and psychological distress, decreasing the quality of life of affected women. Incidence is constantly increasing due to growing rates of cancer and increase of childbearing age in the developed world. Current treatments are often unable to restore organ function, and occasionally are the cause of female infertility. Alternative treatment options are currently being developed in order to face the inadequacy of current practices. In this review, pathologies and current treatments of gynecological organs (ovaries, uterus, and vagina) are described. State-of-the-art of tissue engineering alternatives to common practices are evaluated with a focus on in vivo models. Tissue engineering is an ever-expanding field, integrating various domains of modern science to create sophisticated tissue substitutes in the hope of repairing or replacing dysfunctional organs using autologous cells. Its application to gynecology has the potential of restoring female fertility and sexual wellbeing.
Collapse
Affiliation(s)
- David Brownell
- Centre de Recherche en Organogéneèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, QC G1J 1Z4, Canada
| | - Stéphane Chabaud
- Centre de Recherche en Organogéneèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, QC G1J 1Z4, Canada
| | - Stéphane Bolduc
- Centre de Recherche en Organogéneèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, QC G1J 1Z4, Canada
- Division of Urology, Department of Surgery, CHU de Québec-Université Laval, Québec, QC G1V 4G2, Canada
- Department of Surgery, Faculty of Medicine, Laval University, Québec, QC G1V 0A6, Canada
| |
Collapse
|
9
|
Wu M, Guo Y, Wei S, Xue L, Tang W, Chen D, Xiong J, Huang Y, Fu F, Wu C, Chen Y, Zhou S, Zhang J, Li Y, Wang W, Dai J, Wang S. Biomaterials and advanced technologies for the evaluation and treatment of ovarian aging. J Nanobiotechnology 2022; 20:374. [PMID: 35953871 PMCID: PMC9367160 DOI: 10.1186/s12951-022-01566-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/17/2022] [Indexed: 12/26/2022] Open
Abstract
Ovarian aging is characterized by a progressive decline in ovarian function. With the increase in life expectancy worldwide, ovarian aging has gradually become a key health problem among women. Over the years, various strategies have been developed to preserve fertility in women, while there are currently no clinical treatments to delay ovarian aging. Recently, advances in biomaterials and technologies, such as three-dimensional (3D) printing and microfluidics for the encapsulation of follicles and nanoparticles as delivery systems for drugs, have shown potential to be translational strategies for ovarian aging. This review introduces the research progress on the mechanisms underlying ovarian aging, and summarizes the current state of biomaterials in the evaluation and treatment of ovarian aging, including safety, potential applications, future directions and difficulties in translation.
Collapse
Affiliation(s)
- Meng Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Yican Guo
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Simin Wei
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Liru Xue
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Weicheng Tang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Dan Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Jiaqiang Xiong
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Yibao Huang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Fangfang Fu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Chuqing Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Ying Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Su Zhou
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Jinjin Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Yan Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Wenwen Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China. .,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China. .,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China.
| | - Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China. .,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China. .,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China.
| |
Collapse
|
10
|
Liu X, Wu K, Gao L, Wang L, Shi X. Biomaterial strategies for the application of reproductive tissue engineering. Bioact Mater 2022; 14:86-96. [PMID: 35310354 PMCID: PMC8892081 DOI: 10.1016/j.bioactmat.2021.11.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 11/13/2021] [Accepted: 11/22/2021] [Indexed: 02/06/2023] Open
Abstract
Human reproductive organs are of vital importance to the life of an individual and the reproduction of human populations. So far, traditional methods have a limited effect in recovering the function and fertility of reproductive organs and tissues. Thus, aim to replace and facilitate the regrowth of damaged or diseased tissue, various biomaterials are developed to offer hope to overcome these difficulties and help gain further research progress in reproductive tissue engineering. In this review, we focus on the biomaterials and their four main applications in reproductive tissue engineering: in vitro generation and culture of reproductive cells; development of reproductive organoids and models; in vivo transplantation of reproductive cells or tissues; and regeneration of reproductive tissue. In reproductive tissue engineering, designing biomaterials for different applications with different mechanical properties, structure, function, and microenvironment is challenging and important, and deserves more attention. Various biomaterials have been developed and used in reproductive tissue engineering. 3D culture systems can lead to better cell-cell interactions for in vitro production of reproductive cells. Reproductive organoids and models are formed by biomaterials to simulate the environment of natural reproductive organs. Biomaterials should promote vascular regeneration and resist inflammation for in-situ reproductive tissue regeneration.
Collapse
|
11
|
Zhang D, Ding C, Duan T, Zhou Q. Applications of Hydrogels in Premature Ovarian Failure and Intrauterine Adhesion. FRONTIERS IN MATERIALS 2022; 9. [DOI: 10.3389/fmats.2022.942957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Premature ovarian failure (POF) and intrauterine adhesion (IUA) that easily lead to reduced fertility in premenopausal women are two difficult diseases to treat in obstetrics and gynecology. Hormone therapy, in vitro fertilization and surgical treatments do not completely restore fertility. The advent of hydrogels offers new hope for the treatment of POF and IUA. Hydrogels are noncytotoxic and biodegradable, and do not cause immune rejection or inflammatory reactions. Drug delivery and stem cell delivery are the main application forms. Hydrogels are a local drug delivery reservoir, and the control of drug release is achieved by changing the physicochemical properties. The porous properties and stable three-dimensional structure of hydrogels support stem cell growth and functions. In addition, hydrogels are promising biomaterials for increasing the success rate of ovarian tissue transplantation. Hydrogel-based in vitro three-dimensional culture of follicles drives the development of artificial ovaries. Hydrogels form a barrier at the site of injury and have antibacterial, antiadhesive and antistenosis properties for IUA treatment. In this review, we evaluate the physicochemical properties of hydrogels, and focus on the latest applications of hydrogels in POF and IUA. We also found the limitations on clinical application of hydrogel and provide future prospects. Artificial ovary as the future of hydrogel in POF is worth studying, and 3D bioprinting may help the mass production of hydrogels.
Collapse
|
12
|
Chiti MC, Vanacker J, Ouni E, Tatic N, Viswanath A, des Rieux A, Dolmans MM, White LJ, Amorim CA. Ovarian extracellular matrix-based hydrogel for human ovarian follicle survival in vivo: A pilot work. J Biomed Mater Res B Appl Biomater 2021; 110:1012-1022. [PMID: 34825466 DOI: 10.1002/jbm.b.34974] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 10/11/2021] [Accepted: 11/13/2021] [Indexed: 12/13/2022]
Abstract
To successfully assemble a bio-engineered ovary, we need to create a three-dimensional matrix able to accommodate isolated follicles and cells. The goal of this study was to develop an extracellular matrix hydrogel (oECM) derived from decellularized bovine ovaries able to support, in combination with alginate, human ovarian follicle survival and growth in vitro. Two different hydrogels (oECM1, oECM2) were produced and compared in terms of decellularization efficiency (dsDNA), ECM preservation (collagen and glycosaminoglycan levels), ultrastructure, rigidity, and cytotoxicity. oECM2 showed significantly less dsDNA, greater retention of glycosaminoglycans and better rigidity than oECM1. Isolated human ovarian follicles were then encapsulated in four selected hydrogel combinations: (1) 100% oECM2, (2) 90% oECM2 + 10% alginate, (3) 75% oECM2 + 25% alginate, and (4) 100% alginate. After 1 week of in vitro culture, follicle recovery rate, viability, and growth were analyzed. On day 7 of in vitro culture, follicle recovery rates were 0%, 23%, 65%, 82% in groups 1-4, respectively, rising proportionally with increased alginate content. However, there was no difference in follicle viability or growth between groups 2 and 3 and controls (group 4). In conclusion, since pure alginate cannot be used to graft preantral follicles due to its poor revascularization and degradation after grafting, oECM2 hydrogel combined with alginate may provide a new and promising alternative to graft isolated human follicles in a bio-engineered ovary.
Collapse
Affiliation(s)
- Maria-Costanza Chiti
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Julie Vanacker
- Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials Unit, Université Catholique de Louvain, Brussels, Belgium
| | - Emna Ouni
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Natalija Tatic
- School of Pharmacy, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Aiswarya Viswanath
- Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials Unit, Université Catholique de Louvain, Brussels, Belgium
| | - Anne des Rieux
- Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials Unit, Université Catholique de Louvain, Brussels, Belgium
| | - Marie-Madeleine Dolmans
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium.,Gynecology Department, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Lisa Jane White
- School of Pharmacy, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Christiani Andrade Amorim
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
13
|
Dadashzadeh A, Moghassemi S, Shavandi A, Amorim CA. A review on biomaterials for ovarian tissue engineering. Acta Biomater 2021; 135:48-63. [PMID: 34454083 DOI: 10.1016/j.actbio.2021.08.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/26/2021] [Accepted: 08/18/2021] [Indexed: 12/19/2022]
Abstract
Considerable challenges in engineering the female reproductive tissue are the follicle's unique architecture, the need to recapitulate the extracellular matrix, and tissue vascularization. Over the years, various strategies have been developed for preserving fertility in women diagnosed with cancer, such as embryo, oocyte, or ovarian tissue cryopreservation. While autotransplantation of cryopreserved ovarian tissue is a viable choice to restore fertility in prepubertal girls and women who need to begin chemo- or radiotherapy soon after the cancer diagnosis, it is not suitable for all patients due to the risk of having malignant cells present in the ovarian fragments in some types of cancer. Advances in tissue engineering such as 3D printing and ovary-on-a-chip technologies have the potential to be a translational strategy for precisely recapitulating normal tissue in terms of physical structure, vascularization, and molecular and cellular spatial distribution. This review first introduces the ovarian tissue structure, describes suitable properties of biomaterials for ovarian tissue engineering, and highlights recent advances in tissue engineering for developing an artificial ovary. STATEMENT OF SIGNIFICANCE: The increase of survival rates in young cancer patients has been accompanied by a rise in infertility/sterility in cancer survivors caused by the gonadotoxic effect of some chemotherapy regimens or radiotherapy. Such side-effect has a negative impact on these patients' quality of life as one of their main concerns is generating biologically related children. To aid female cancer patients, several research groups have been resorting to tissue engineering strategies to develop an artificial ovary. In this review, we discuss the numerous biomaterials cited in the literature that have been tested to encapsulate and in vitro culture or transplant isolated preantral follicles from human and different animal models. We also summarize the recent advances in tissue engineering that can potentially be optimal strategies for developing an artificial ovary.
Collapse
|
14
|
Ovarian Decellularized Bioscaffolds Provide an Optimal Microenvironment for Cell Growth and Differentiation In Vitro. Cells 2021; 10:cells10082126. [PMID: 34440895 PMCID: PMC8393799 DOI: 10.3390/cells10082126] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 12/14/2022] Open
Abstract
Ovarian failure is the most common cause of infertility. Although numerous strategies have been proposed, a definitive solution for recovering ovarian functions and restoring fertility is currently unavailable. One innovative alternative may be represented by the development of an “artificial ovary” that could be transplanted in patients for re-establishing reproductive activities. Here, we describe a novel approach for successful repopulation of decellularized ovarian bioscaffolds in vitro. Porcine whole ovaries were subjected to a decellularization protocol that removed the cell compartment, while maintaining the macrostructure and microstructure of the original tissue. The obtained bioscaffolds were then repopulated with porcine ovarian cells or with epigenetically erased porcine and human dermal fibroblasts. The results obtained demonstrated that the decellularized extracellular matrix (ECM)-based scaffold may constitute a suitable niche for ex vivo culture of ovarian cells. Furthermore, it was able to properly drive epigenetically erased cell differentiation, fate, and viability. Overall, the method described represents a powerful tool for the in vitro creation of a bioengineered ovary that may constitute a promising solution for hormone and fertility restoration. In addition, it allows for the creation of a suitable 3D platform with useful applications both in toxicological and transplantation studies.
Collapse
|
15
|
Zhou Y, Zhou J, Xu X, Du F, Nie M, Hu L, Ma Y, Liu M, Yu S, Zhang J, Chen Y. Matrigel/Umbilical Cord-Derived Mesenchymal Stem Cells Promote Granulosa Cell Proliferation and Ovarian Vascularization in a Mouse Model of Premature Ovarian Failure. Stem Cells Dev 2021; 30:782-796. [PMID: 34030464 DOI: 10.1089/scd.2021.0005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In women of reproductive age, severe injuries to the ovary are often accompanied by premature ovarian failure (POF), which can result in amenorrhea or infertility. Hormone replacement therapy has been used to treat POF; however, it has limited therapeutic efficiency and may cause several side effects. In this study, we aimed to fabricate a Matrigel scaffold loaded with human umbilical cord-derived mesenchymal stem cells (MSCs) and explore its potential to restore ovarian function and repair ovarian structures in vitro and in vivo. POF mouse models were established by injecting mice with cyclophosphamide for 15 consecutive days. Then, MSC/Matrigel was transplanted into the ovaries of the mice. Five weeks later, the morphology of the ovaries and follicles was observed by hematoxylin/eosin staining, and the tissue fibrosis ratio was measured using Masson's trichrome staining. The number of blood vessels was evaluated by α-smooth muscle actin and CD31 immunofluorescence, and Ki67 expression was used to determine the proliferation of granulosa cells. The expression of vascular endothelial growth factor (VEGF)-A was assessed by western blotting. The Matrigel scaffold regulated the expression of VEGF-A in vitro. Moreover, it promoted MSC survival and proliferation and prevented MSC apoptosis in vivo. After the transplantation of the MSC/Matrigel, the number of follicles was significantly increased in the mice with POF, and the tissue fibrosis ratio was reduced. Furthermore, the MSC/Matrigel significantly improved the proliferation rate of granulosa cells, increased the number of blood vessels, and upregulated the expression of VEGF-A. These findings demonstrate that MSC/Matrigel may support follicular development and help restore ovarian structures in vivo.
Collapse
Affiliation(s)
- Yao Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China.,The Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Jinhua Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xi Xu
- The Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China.,School of Life Science and Technology, Changchun University of Science and Technology, Changchun, China
| | - Fangzhou Du
- The Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Mengting Nie
- The Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China.,School of Life Science and Technology, Changchun University of Science and Technology, Changchun, China
| | - Lvzhong Hu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China.,The Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Yuhao Ma
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China.,The Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Mengmeng Liu
- The Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Shuang Yu
- The Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China.,Zhengzhou Institute of Engineering and Technology Affiliated to SIBET, Zhengzhou, China.,Xuzhou Medical University, Xuzhou, China
| | - Jingzhong Zhang
- The Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China.,Zhengzhou Institute of Engineering and Technology Affiliated to SIBET, Zhengzhou, China.,Xuzhou Medical University, Xuzhou, China
| | - Youguo Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
16
|
Chen J, Todorov P, Isachenko E, Rahimi G, Mallmann P, Isachenko V. Construction and cryopreservation of an artificial ovary in cancer patients as an element of cancer therapy and a promising approach to fertility restoration. HUM FERTIL 2021; 25:651-661. [PMID: 33648431 DOI: 10.1080/14647273.2021.1885756] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The proportion of cancer patients that survive is increasing because of improvements in cancer therapy. However, some cancer treatments, such as chemo- and radio-therapies, can cause considerable damage to reproductive function. The issue of fertility is paramount for women of childbearing age once they are cured from cancer. For those patients with prepubertal or haematogenous cancer, the possibilities of conventional fertility treatments, such as oocyte or embryo cryopreservation and transplantation, are limited. Moreover, ovarian tissue cryopreservation as an alternative to fertility preservation has limitations, with a risk of re-implanting malignant cells in patients who have recovered from potentially fatal malignant disease. One possible way to restore fertility in these patients is to mimic artificially the function of the natural organ, the ovary, by grafting isolated follicles embedded in a biological scaffold to their native environment. Construction and cryopreservation of an artificial ovary might offer a safer alternative option to restore fertility for those who cannot benefit from traditional fertility preservation techniques. This review considers the protocols for constructing an artificial ovary, summarises advances in the field with potential clinical application, and discusses future trends for cryopreservation of these artificial constructions.
Collapse
Affiliation(s)
- Jing Chen
- University Maternal Hospital, Research Group for Reproductive Medicine and IVF-Laboratory, Department of Obstetrics and Gynaecology, Cologne University, Cologne, Germany
| | - Plamen Todorov
- Institute of Biology and Immunology of Reproduction, Sofia, Bulgaria
| | - Evgenia Isachenko
- University Maternal Hospital, Research Group for Reproductive Medicine and IVF-Laboratory, Department of Obstetrics and Gynaecology, Cologne University, Cologne, Germany
| | - Gohar Rahimi
- University Maternal Hospital, Research Group for Reproductive Medicine and IVF-Laboratory, Department of Obstetrics and Gynaecology, Cologne University, Cologne, Germany
| | - Peter Mallmann
- University Maternal Hospital, Research Group for Reproductive Medicine and IVF-Laboratory, Department of Obstetrics and Gynaecology, Cologne University, Cologne, Germany
| | - Vladimir Isachenko
- University Maternal Hospital, Research Group for Reproductive Medicine and IVF-Laboratory, Department of Obstetrics and Gynaecology, Cologne University, Cologne, Germany
| |
Collapse
|
17
|
Bus A, Szymanska K, Pintelon I, Leroy JLMR, Leybaert L, Bols PEJ. Preservation of connexin 43 and transzonal projections in isolated bovine pre-antral follicles before and following vitrification. J Assist Reprod Genet 2021; 38:479-492. [PMID: 33159276 PMCID: PMC7884540 DOI: 10.1007/s10815-020-01993-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023] Open
Abstract
PURPOSE Gap junctions and transzonal projections play a crucial role in intercellular communication between different follicular components and are necessary for follicle development. We aimed to demonstrate gap junction protein connexin 43 (Cx43) and transzonal projections (TZPs) in viable, category 1, isolated bovine pre-antral follicles (PAFs) during short-term culture and after vitrification and warming. METHODS This study involved four experimental groups: fresh control, 2-day culture, 4-day culture, and vitrified secondary PAFs. Isolated PAFs were vitrified using a simple and efficient cryopreservation method by means of mini cell strainers. RESULTS Cx43 and TZPs were detected in pre-antral follicles of all stages, as well as in every experimental group. The group fresh follicles showed a higher percentage of follicles that were positive for Cx43 (91.7%) than the follicles that were vitrified (77.4%). All follicles that were cultured for 2 days were Cx43-positive (100%). Follicles cultured for 4 days (65.8%) (P = 0.002) showed the lowest percentage of follicles that were Cx43-positive. The percentages of the presence or (partial) absence of the TZP network were shown to be very heterogeneous between follicles in different treatment groups. CONCLUSIONS These results suggest the maintenance of communication between the oocyte and the somatic companion cells after vitrification and warming. The varying percentages of the expression of the TZP network within groups suggests that it will be of interest to investigate whether this is truly due to variability in TZP integrity and follicle quality or due to methodological limitations.
Collapse
Affiliation(s)
- Anniek Bus
- Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Laboratory of Veterinary Physiology and Biochemistry, Gamete Research Centre, University of Antwerp, Universiteitsplein 1, U building, 2610 Wilrijk, Belgium
| | - Katarzyna Szymanska
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, 310 Cedar Street, New Haven, CT 06510 USA
- Faculty of Medicine and Health Sciences, Department of Basic and Applied Medical Sciences (BAMS), Physiology group, Ghent University, C. Heymanslaan 10, B-9000 Ghent, Belgium
| | - Isabel Pintelon
- Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Laboratory of Cell Biology and Histology, University of Antwerp, Universiteitsplein 1, T building, 2610 Wilrijk, Belgium
| | - Jo L. M. R. Leroy
- Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Laboratory of Veterinary Physiology and Biochemistry, Gamete Research Centre, University of Antwerp, Universiteitsplein 1, U building, 2610 Wilrijk, Belgium
| | - Luc Leybaert
- Faculty of Medicine and Health Sciences, Department of Basic and Applied Medical Sciences (BAMS), Physiology group, Ghent University, C. Heymanslaan 10, B-9000 Ghent, Belgium
| | - Peter E. J. Bols
- Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Laboratory of Veterinary Physiology and Biochemistry, Gamete Research Centre, University of Antwerp, Universiteitsplein 1, U building, 2610 Wilrijk, Belgium
| |
Collapse
|
18
|
Wang W, Todorov P, Isachenko E, Rahimi G, Mallmann P, Wang M, Isachenko V. In vitro activation of cryopreserved ovarian tissue: A single-arm meta-analysis and systematic review. Eur J Obstet Gynecol Reprod Biol 2021; 258:258-264. [PMID: 33485262 DOI: 10.1016/j.ejogrb.2021.01.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/22/2020] [Accepted: 01/10/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Primordial follicles in premature ovarian failure (POF) patients are very difficult to be activated spontaneously, so that mature oocytes are difficult to be obtained for in vitro fertilization. The aim of our review is to analyze and to systematize the published data regarding effectiveness of different strategies for in vitro activation of cryopreserved ovarian tissue. STUDY DESIGN According to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, a review of the literature was performed for all relevant full-text articles published in PubMed in English. Meta-analysis conducted using STATA 14.0. The random-effects model was used to combine 8 study results because the examination of heterogeneity was minimal. RESULTS One hundred and seventy seven patients after in vitro activation treatment (IVA) of ovarian tissue had accumulatively 26 pregnancies through IVF or natural pregnancy and then produced 18 live births. The random-effects model showed that the total clinical pregnancy and baby born rates reported in 8 studies evidence about effectiveness of IVA. CONCLUSION In vitro activation of primordial follicles as a new potential treatment for ovarian disorder patients, can be a promising option for fertility preservation. Drug-free activation of ovarian tissue in comparison with drug-included activation seemed to be more efficient.
Collapse
Affiliation(s)
- Wanxue Wang
- Research Group for Reproductive Medicine, University of Cologne, Kerpener Str. 34, 50931, Cologne, Germany.
| | - Plamen Todorov
- Institute of Biology and Immunology of Reproduction, Tzarigradsko Shosse 73, 1113, Sofia, Bulgaria.
| | - Evgenia Isachenko
- Research Group for Reproductive Medicine, University of Cologne, Kerpener Str. 34, 50931, Cologne, Germany.
| | - Gohar Rahimi
- Research Group for Reproductive Medicine, University of Cologne, Kerpener Str. 34, 50931, Cologne, Germany.
| | - Peter Mallmann
- Research Group for Reproductive Medicine, University of Cologne, Kerpener Str. 34, 50931, Cologne, Germany.
| | - Mengying Wang
- Research Group for Reproductive Medicine, University of Cologne, Kerpener Str. 34, 50931, Cologne, Germany.
| | - Vladimir Isachenko
- Research Group for Reproductive Medicine, University of Cologne, Kerpener Str. 34, 50931, Cologne, Germany.
| |
Collapse
|
19
|
Dolmans MM, Donnez J, Cacciottola L. Fertility Preservation: The Challenge of Freezing and Transplanting Ovarian Tissue. Trends Mol Med 2020; 27:777-791. [PMID: 33309205 DOI: 10.1016/j.molmed.2020.11.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/06/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023]
Abstract
Cancer treatments are increasingly effective, but can result in iatrogenic premature ovarian insufficiency. Ovarian tissue cryopreservation is the only option available to preserve fertility in prepubertal girls and young women who require immediate chemotherapy. Ovarian tissue transplantation has been shown to restore hormonal cycles and fertility, but a large proportion of the follicle reserve is lost as a consequence of exposure to hypoxia. Another crucial concern is the risk of reimplanting malignant cells together with the grafted tissue. In this review, the authors advance some challenging propositions, from prevention of chemotherapy-related gonadotoxicity to ovarian tissue cryopreservation and transplantation, including the artificial ovary approach.
Collapse
Affiliation(s)
- Marie-Madeleine Dolmans
- Gynecology Department, Cliniques universitaires St-Luc, Brussels, Belgium; Pôle de Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium.
| | - Jacques Donnez
- Prof. Em. Catholic University of Louvain, Brussels, Belgium; Société de Recherche pour l'Infertilité (SRI), Brussels, Belgium
| | - Luciana Cacciottola
- Pôle de Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
20
|
Pors SE, Ramløse M, Nikiforov D, Lundsgaard K, Cheng J, Andersen CY, Kristensen SG. Initial steps in reconstruction of the human ovary: survival of pre-antral stage follicles in a decellularized human ovarian scaffold. Hum Reprod 2020; 34:1523-1535. [PMID: 31286144 DOI: 10.1093/humrep/dez077] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/04/2019] [Accepted: 04/25/2019] [Indexed: 11/13/2022] Open
Abstract
STUDY QUESTION Can a reconstructed ovary using decellularized human ovarian tissue (DCT) support survival of pre-antral stage follicles? SUMMARY ANSWER We have demonstrated an effective protocol for decellularization of human ovarian tissues and successful recellularization with isolated human ovarian cells and pre-antral follicles. WHAT IS KNOWN ALREADY Survivors of leukemia or ovarian cancer run a risk of reintroducing malignancy when cryopreserved ovarian tissue is transplanted to restore fertility. A reconstructed ovary free of malignant cells could provide a safe alternative. Decellularization of ovarian tissue removes all cells from the extracellular matrix (ECM) including possible malignancies and leaves behind a physiological scaffold. The ECM offers the complex milieu that facilitates the necessary interaction between ovarian follicles and their surroundings to ensure their growth and development. Previous studies have shown that decellularized bovine ovarian scaffolds supported murine follicle growth and restoration of ovarian function in ovariectomized mice. STUDY DESIGN, SIZE, DURATION Optimizing a decellularization protocol for human ovarian tissues and testing biofunctionality of the decellularized scaffolds in vitro and in vivo by reseeding with both murine and human pre-antral follicles and ovarian cells. PARTICIPANTS/MATERIALS, SETTING, METHODS Donated human ovarian tissue and isolated pre-antral follicles were obtained from women undergoing ovarian tissue cryopreservation for fertility preservation. Ovarian cortical and medullary tissues were decellularized using 0.1% sodium dodecyl sulfate (SDS) for 3, 6, 18 and 24 hours followed by 24 hours of 1 mg/mL DNase treatment and washing. Decellularization of ovarian tissues and preservation of ECM were characterized by morphological evaluation using Periodic Acid-Schiff (PAS) staining, DNA quantification, histochemical quantification of collagen content and immunofluorescence analysis for collagen IA, laminin, fibronectin and DNA. Human ovarian stromal cells and isolated human pre-antral follicles were reseeded on the DCT and cultured in vitro. Isolated murine (N = 241) and human (N = 20) pre-antral follicles were reseeded on decellularized scaffolds and grafted subcutaneously to immunodeficient mice for 3 weeks. MAIN RESULTS AND THE ROLE OF CHANCE Incubation in 0.1% SDS for 18-24 hours adequately decellularized both human ovarian medullary and cortical tissue by eliminating all cells and leaving the ECM intact. DNA content in DCT was decreased by >90% compared to native tissue samples. Histological examination using PAS staining confirmed that the cortical and medullary tissues were completely decellularized, and no visible nuclear material was found within the decellularized sections. DCT also stained positive for collagen I and collagen quantities in DCT constituted 88-98% of the individual baselines for native samples. Human ovarian stroma cells were able to recellularize the DCT and isolated human pre-antral follicles remained viable in co-culture. Xenotransplantation of DCT reseeded with human or murine pre-antral follicles showed, that the DCT was able to support survival of human follicles and growth of murine follicles, of which 39% grew to antral stages. The follicular recovery rates after three weeks grafting were low but similar for both human (25%) and murine follicles (21%). LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION Further studies are needed to increase recovery and survival of the reseeded follicles. Longer grafting periods should be evaluated to determine the developmental potential of human follicles. Survival of the follicles might be impaired by the lack of stroma cells. WIDER IMPLICATIONS OF THE FINDINGS This is the first time that isolated human follicles have survived in a decellularized human scaffold. Therefore, this proof-of-concept could be a potential new strategy to eliminate the risk of malignant cell re-occurrence in former cancer patients having cryopreserved ovarian tissue transplanted for fertility restoration. STUDY FUNDING/COMPETING INTEREST(S) This study is part of the ReproUnion collaborative study, co-financed by the European Union, Interreg V ÖKS. Furthermore, Project ITN REP-BIOTECH 675526 funded by the European Union, European Joint Doctorate in Biology and Technology of the Reproductive Health, the Research Pools of Rigshospitalet, the Danish Cancer Foundation and Dagmar Marshalls Foundation are thanked for having funded this study. The funders had no role in the study design, data collection and interpretation, or in the decision to submit the work for publication.
Collapse
Affiliation(s)
- S E Pors
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, Faculty of Health Science, University of Copenhagen, Blegdamsvej, Copenhagen, Denmark
| | - M Ramløse
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, Faculty of Health Science, University of Copenhagen, Blegdamsvej, Copenhagen, Denmark
| | - D Nikiforov
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, Faculty of Health Science, University of Copenhagen, Blegdamsvej, Copenhagen, Denmark.,University of Teramo, Teramo, Via Renato Balzarini, Italy
| | - K Lundsgaard
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, Faculty of Health Science, University of Copenhagen, Blegdamsvej, Copenhagen, Denmark
| | - J Cheng
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, Faculty of Health Science, University of Copenhagen, Blegdamsvej, Copenhagen, Denmark.,People's Hospital of Guangxi Autonomous Region, 6 Taoyuan Rd, Qingxiu Qu, Nanning City, Guangxi province, China Via Renato Balzarini, Teramo
| | - C Yding Andersen
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, Faculty of Health Science, University of Copenhagen, Blegdamsvej, Copenhagen, Denmark
| | - S G Kristensen
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, Faculty of Health Science, University of Copenhagen, Blegdamsvej, Copenhagen, Denmark
| |
Collapse
|
21
|
Alshaikh AB, Padma AM, Dehlin M, Akouri R, Song MJ, Brännström M, Hellström M. Decellularization and recellularization of the ovary for bioengineering applications; studies in the mouse. Reprod Biol Endocrinol 2020; 18:75. [PMID: 32703228 PMCID: PMC7376865 DOI: 10.1186/s12958-020-00630-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 07/17/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Fertility preservation is particularly challenging in young women diagnosed with hematopoietic cancers, as transplantation of cryopreserved ovarian cortex in these women carries the risk for re-introducing cancer cells. Therefore, the construction of a bioengineered ovary that can accommodate isolated small follicles was proposed as an alternative to minimize the risk of malignancy transmission. Various options for viable bioengineered scaffolds have been reported in the literature. Previously, we reported three protocols for producing mouse ovarian scaffolds with the decellularization technique. The present study examined these scaffolds further, specifically with regards to their extracellular composition, biocompatibility and ability to support recellularization with mesenchymal stem cells. MATERIAL AND METHODS Three decellularization protocols based on 0.5% sodium dodecyl sulfate (Protocol 1; P1), or 2% sodium deoxycholate (P2), or a combination of the two detergents (P3) were applied to produce three types of scaffolds. The levels of collagen, elastin and sulfated glycosaminoglycans (sGAGs) were quantified in the remaining extracellular matrix. Detailed immunofluorescence and scanning electron microscopy imaging were conducted to assess the morphology and recellularization efficiency of the constructs after 14 days in vitro utilizing red fluorescent protein-labelled mesenchymal stem cells. RESULTS All protocols efficiently removed the DNA while the elastin content was not significantly reduced during the procedures. The SDS-protocol (P1) reduced the sGAG and the collagen content more than the SDC-protocol (P2). All scaffolds were biocompatible and recellularization was successful, particularly in several P2-derived scaffolds. The cells were extensively distributed throughout the constructs, with a denser distribution observed towards the ovarian cortex. The cell density was not significantly different (400 to 550 cells/mm2) between scaffold types. However, there was a tendency towards a higher cell density in the SDC-derived constructs. Scanning electron microscope images showed fibrous scaffolds with a dense repopulated surface structure. CONCLUSIONS While there were differences in the key structural macromolecules between protocols, all scaffolds were biocompatible and showed effective recellularization. The results indicate that our SDC-protocol might be better than our SDS-protocol. However, additional studies are necessary to determine their suitability for attachment of small follicles and folliculogenesis.
Collapse
Affiliation(s)
- Ahmed Baker Alshaikh
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Kvinnokliniken, Blå stråket 6, SE-413 45, Göteborg, Sweden
- Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Arvind Manikantan Padma
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Kvinnokliniken, Blå stråket 6, SE-413 45, Göteborg, Sweden
- Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Matilda Dehlin
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Kvinnokliniken, Blå stråket 6, SE-413 45, Göteborg, Sweden
- Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Randa Akouri
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Kvinnokliniken, Blå stråket 6, SE-413 45, Göteborg, Sweden
- Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Min Jong Song
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Kvinnokliniken, Blå stråket 6, SE-413 45, Göteborg, Sweden
- Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Obstetrics & Gynecology, Yeouido St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Mats Brännström
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Kvinnokliniken, Blå stråket 6, SE-413 45, Göteborg, Sweden
- Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Stockholm IVF-EUGIN, Stockholm, Sweden
| | - Mats Hellström
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Kvinnokliniken, Blå stråket 6, SE-413 45, Göteborg, Sweden.
- Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
22
|
Mancini V, Pensabene V. Organs-On-Chip Models of the Female Reproductive System. Bioengineering (Basel) 2019; 6:E103. [PMID: 31703369 PMCID: PMC6956296 DOI: 10.3390/bioengineering6040103] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 12/12/2022] Open
Abstract
Microfluidic-based technology attracts great interest in cell biology and medicine, in virtue of the ability to better mimic the in vivo cell microenvironment compared to conventional macroscale cell culture platforms. Recent Organs-on-chip (OoC) models allow to reproduce in vitro tissue and organ-level functions of living organs and systems. These models have been applied for the study of specific functions of the female reproductive tract, which is composed of several organs interconnected through intricate endocrine pathways and communication mechanisms. To date, a disease and toxicology study of this system has been difficult to perform. Thus, there is a compelling need to develop innovative platforms for the generation of disease model and for performing drug toxicity/screening in vitro studies. This review is focused on the analysis of recently published OoC models that recreate pathological and physiological characteristics of the female reproductive organs and tissues. These models aim to be used to assess changes in metabolic activity of the specific cell types and the effect of exposure to hormonal treatment or chemical substances on some aspects of reproduction and fertility. We examined these models in terms of device specifications, operating procedures, accuracy for studying the biochemical and functional activity of living tissues and the paracrine signalling that occurs within the different tissues. These models represent a powerful tool for understanding important diseases and syndromes affecting women all around the world. Immediate adoption of these models will allow to clarify diseases, causes and adverse events occurring during pregnancy such as pre-eclampsia, infertility or preterm birth, endometriosis and infertility.
Collapse
Affiliation(s)
- Vanessa Mancini
- School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT, UK;
| | - Virginia Pensabene
- School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT, UK;
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
23
|
Cho E, Kim YY, Noh K, Ku S. A new possibility in fertility preservation: The artificial ovary. J Tissue Eng Regen Med 2019; 13:1294-1315. [PMID: 31062444 DOI: 10.1002/term.2870] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/02/2019] [Accepted: 04/22/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Eun Cho
- College of MedicineSeoul National University Seoul South Korea
| | - Yoon Young Kim
- College of MedicineSeoul National University Seoul South Korea
- Department of Obstetrics and GynecologySeoul National University Hospital Seoul South Korea
| | - Kevin Noh
- College of Human EcologyCornell University Ithaca New York USA
| | - Seung‐Yup Ku
- College of MedicineSeoul National University Seoul South Korea
- Department of Obstetrics and GynecologySeoul National University Hospital Seoul South Korea
| |
Collapse
|
24
|
Alshaikh AB, Padma AM, Dehlin M, Akouri R, Song MJ, Brännström M, Hellström M. Decellularization of the mouse ovary: comparison of different scaffold generation protocols for future ovarian bioengineering. J Ovarian Res 2019; 12:58. [PMID: 31228949 PMCID: PMC6588934 DOI: 10.1186/s13048-019-0531-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 06/12/2019] [Indexed: 12/27/2022] Open
Abstract
Background In order to preserve fertility in young women with disseminated cancer, e.g. leukemia, an approach that has been suggested is to retransplant isolated small follicles within an ovarian matrix free from malignant cells and with no risk for contamination. The present study evaluates the first step to create a bioengineered ovarian construct that can act as growth-supporting tissue for isolated small follicles that are dependent on a stroma for normal follicular maturation. The present study used the intact mouse ovary to develop a mouse ovarian scaffold through various protocols of decellularization. Material and methods Potential Immunogenic DNA and intracellular components were removed from whole mouse ovaries by agitation in a 0.5% sodium dodecyl sulfate solution (Protocol 1; P1), or in a 2% sodium deoxycholate solution (P2) or by a combination of the two (P3). The remaining decelluralized ovarian extracellular matrix structure was then assessed based on the DNA- and protein content, and was further evaluated histologically by haematoxylin and eosin-, Verhoeff’s van gieson- (for elastin), Masson’s trichrome- (for collagens) and Alcian blue (for glycosaminoglycans) staining. We also evaluated the decellularization efficiency using the mild detergent Triton-X100 (1%). Results Sodium dodecyl sulfate efficiently removed DNA and intracellular components from the ovarian tissue but also significantly reduced the integrity of the remaining ovarian extracellular matrix. Sodium deoxycholate, a considerably milder detergent compared to sodium dodecyl sulfate, preserved the ovarian extracellular matrix better, evident by a more distinct staining for glycosaminoglycan, collagen and elastic fibres. Triton-X100 was found ineffective as a decellularization reagent for mouse ovaries in our settings. Conclusions The sodium dodecyl sulfate generated ovarian scaffolds contained minute amounts of DNA that may be an advantage to evade a detrimental immune response following engraftment. The sodium deoxycholate generated ovarian scaffolds had higher donor DNA content, yet, retained the extracellular composition better and may therefore have improved recellularization and other downstream bioengineering applications. These two novel types of mouse ovarian scaffolds serve as promising scaffold-candidates for future ovarian bioengineering experiments.
Collapse
Affiliation(s)
- Ahmed Baker Alshaikh
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden.,Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Arvind Manikantan Padma
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden.,Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Matilda Dehlin
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden.,Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Randa Akouri
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden.,Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Min Jong Song
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden.,Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden.,Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Daejeon St. Mary's Hospital, The Catholic University of Korea, Daejeon, South Korea
| | - Mats Brännström
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden.,Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden.,Stockholm IVF-EUGIN, Stockholm, Sweden
| | - Mats Hellström
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden. .,Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden. .,Kvinnokliniken, Blå stråket 6, SE-413 45, Göteborg, Sweden.
| |
Collapse
|
25
|
Is the pre-antral ovarian follicle the 'holy grail'for female fertility preservation? Anim Reprod Sci 2019; 207:119-130. [PMID: 31208845 DOI: 10.1016/j.anireprosci.2019.05.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/28/2019] [Accepted: 05/31/2019] [Indexed: 01/18/2023]
Abstract
Fertility preservation is not only a concern for humans with compromised fertility after cancer treatment. The preservation of genetic material from endangered animal species or animals with important genetic traits will also greatly benefit from the development of alternative fertility preservation strategies. In humans, embryo cryopreservation and mature-oocyte cryopreservation are currently the only approved methods for fertility preservation. Ovarian tissue cryopreservation is specifically indicated for prepubertal girls and women whose cancer treatment cannot be postponed. The cryopreservation of pre-antral follicles (PAFs) is a safer alternative for cancer patients who are at risk of the reintroduction of malignant cells. As PAFs account for the vast majority of follicles in the ovarian cortex, they represent an untapped potential, which could be cultivated for reproduction, preservation, or research purposes. Vitrification is being used more and more as it seems to yield better results compared to slow freezing, although protocols still need to be optimized for each specific cell type and species. Several methods can be used to assess follicle quality, ranging from simple viability stains to more complex xenografting procedures. In vitro development of PAFs to the pre-ovulatory stage has not yet been achieved in humans and larger animals. However, in vitro culture systems for PAFs are under development and are expected to become available in the near future. This review will focus on recent developments in (human) fertility preservation strategies, which are often accomplished by the use of in vitro animal models due to ethical considerations and the scarcity of human research material.
Collapse
|
26
|
Rios PD, Kniazeva E, Lee HC, Xiao S, Oakes RS, Saito E, Jeruss JS, Shikanov A, Woodruff TK, Shea LD. Retrievable hydrogels for ovarian follicle transplantation and oocyte collection. Biotechnol Bioeng 2018; 115:2075-2086. [PMID: 29704433 PMCID: PMC6045426 DOI: 10.1002/bit.26721] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 04/03/2018] [Accepted: 04/25/2018] [Indexed: 01/17/2023]
Abstract
Cancer survivorship rates have drastically increased due to improved efficacy of oncologic treatments. Consequently, clinical concerns have shifted from solely focusing on survival to quality of life, with fertility preservation as an important consideration. Among fertility preservation strategies for female patients, ovarian tissue cryopreservation and subsequent reimplantation has been the only clinical option available to cancer survivors with cryopreserved tissue. However, follicle atresia after transplantation and risk of reintroducing malignant cells have prevented this procedure from becoming widely adopted in clinics. Herein, we investigated the encapsulation of ovarian follicles in alginate hydrogels that isolate the graft from the host, yet allows for maturation after transplantation at a heterotopic (i.e., subcutaneous) site, a process we termed in vivo follicle maturation. Survival of multiple follicle populations was confirmed via histology, with the notable development of the antral follicles. Collected oocytes (63%) exhibited polar body extrusion and were fertilized by intracytoplasmic sperm injection and standard in vitro fertilization procedures. Successfully fertilized oocytes developed to the pronucleus (14%), two-cell (36%), and four-cell (7%) stages. Furthermore, ovarian follicles cotransplanted with metastatic breast cancer cells within the hydrogels allowed for retrieval of the follicles, and no mice developed tumors after removal of the implant, confirming that the hydrogel prevented seeding of disease within the host. Collectively, these findings demonstrate a viable option for safe use of potentially cancer-laden ovarian donor tissue for in vivo follicle maturation within a retrievable hydrogel and subsequent oocyte collection. Ultimately, this technology may provide novel options to preserve fertility for young female patients with cancer.
Collapse
Affiliation(s)
- Peter D. Rios
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611
- Department of Obstetrics and Gynecology, Northwestern University, Chicago, IL 60611
| | - Ekaterina Kniazeva
- Department of Obstetrics and Gynecology, Northwestern University, Chicago, IL 60611
| | - Hoi Chang Lee
- Department of Obstetrics and Gynecology, Northwestern University, Chicago, IL 60611
| | - Shuo Xiao
- Department of Obstetrics and Gynecology, Northwestern University, Chicago, IL 60611
| | - Robert S. Oakes
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
| | - Eiji Saito
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
| | - Jacqueline S. Jeruss
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
- Department of Surgery, University of Michigan, Ann Arbor, MI 48105
- University of Michigan Comprehensive Cancer Center, Ann Arbor, MI 48109
| | - Ariella Shikanov
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
- University of Michigan Comprehensive Cancer Center, Ann Arbor, MI 48109
| | - Teresa K. Woodruff
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611
- Department of Obstetrics and Gynecology, Northwestern University, Chicago, IL 60611
| | - Lonnie D. Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
- University of Michigan Comprehensive Cancer Center, Ann Arbor, MI 48109
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
27
|
Pinelli S, Basile S. Fertility Preservation: Current and Future Perspectives for Oncologic Patients at Risk for Iatrogenic Premature Ovarian Insufficiency. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6465903. [PMID: 30112413 PMCID: PMC6077410 DOI: 10.1155/2018/6465903] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 05/29/2018] [Accepted: 06/12/2018] [Indexed: 11/18/2022]
Abstract
Progress in recent years in the efficacy of oncologic treatment and early diagnosis of cancer has determined an increase in life expectance in cancer patients. About 10% of all cancer cases affect women younger than 45 years; therefore nowadays approximately 5-6% of the population in childbearing age consists in cancer survivors. A crucial issue is the high risk of premature ovarian insufficiency due to possible gonadotoxic effects of oncologic treatments. Considering combined chemotherapy, radiation therapy, and bone marrow transplantation, this risk can reach 92-100%, depending on the age and ovarian reserve of the patient, as well as the schedule and type of therapy. International guidelines recommend addressing all the patients diagnosed with a neoplasia treatable with potentially gonadotoxic therapies to fertility preservation. Moreover, fertility preservation also seems to reserve fascinating implications for women who want to delay childbearing for social reasons or women affected with endometriosis, who could receive unexpected opportunities. At present, the most widespread techniques to preserve fertility in adult women are embryo or oocyte cryopreservation, depending on the presence of a partner or according to legislative issues, but these procedures require time for ovarian stimulation. In prepubertal patients or when there is no possibility of delaying chemotherapy, ovarian tissue cryopreservation and subsequent transplantation represent the main strategy.
Collapse
Affiliation(s)
- Sara Pinelli
- Maternal and Child Health Department, Division of Obstetrics and Gynecology 2, Pisa University Hospital, Pisa, Italy
| | - Stefano Basile
- Maternal and Child Health Department, Division of Obstetrics and Gynecology 2, Pisa University Hospital, Pisa, Italy
| |
Collapse
|
28
|
Fisch B, Abir R. Female fertility preservation: past, present and future. Reproduction 2018; 156:F11-F27. [DOI: 10.1530/rep-17-0483] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 03/23/2018] [Indexed: 12/19/2022]
Abstract
Anti-cancer therapy, particularly chemotherapy, damages ovarian follicles and promotes ovarian failure. The only pharmacological means for protecting the ovaries from chemotherapy-induced injury is gonadotrophin-releasing hormone agonist, but its efficiency remains controversial; ovarian transposition is used to shield the ovary from radiation when indicated. Until the late 1990s, the only option for fertility preservation and restoration in women with cancer was embryo cryopreservation. The development of other assisted reproductive technologies such as mature oocyte cryopreservation andin vitromaturation of oocytes has contributed to fertility preservation. Treatment regimens to obtain mature oocytes/embryos have been modified to overcome various limitations of conventional ovarian stimulation protocols. In the last decades, several centres have begun cryopreserving ovarian samples containing primordial follicles from young patients before anti-cancer therapy. The first live birth following implantation of cryopreserved-thawed ovarian tissue was reported in 2004; since then, the number has risen to more than 130. Nowadays, ovarian tissue cryopreservation can be combined within vitromaturation and vitrification of oocytes. The use of cryopreserved oocytes eliminates the risk posed by ovarian implantation of reseeding the cancer. Novel methods for enhancing follicular survival after implantation are presently being studied. In addition, researchers are currently investigating agents for ovarian protection. It is expected that the risk of reimplantation of malignant cells with ovarian grafts will be overcome with the putative development of an artificial ovary and an efficient follicle class- and species-dependentin vitrosystem for culturing primordial follicles.
Collapse
|
29
|
Martinez F. Update on fertility preservation from the Barcelona International Society for Fertility Preservation-ESHRE-ASRM 2015 expert meeting: indications, results and future perspectives. Hum Reprod 2018; 32:1802-1811. [PMID: 29117320 PMCID: PMC5850800 DOI: 10.1093/humrep/dex218] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/19/2017] [Indexed: 12/11/2022] Open
Abstract
STUDY QUESTION What progress has been made in fertility preservation (FP) over the last decade? SUMMARY ANSWER FP techniques have been widely adopted over the last decade and therefore the establishment of international registries on their short- and long-term outcomes is strongly recommended. WHAT IS KNOWN ALREADY FP is a fundamental issue for both males and females whose future fertility may be compromised. Reproductive capacity may be seriously affected by age, different medical conditions and also by treatments, especially those with gonadal toxicity. There is general consensus on the need to provide counselling about currently available FP options to all individuals wishing to preserve their fertility. STUDY DESIGN, SIZE, DURATION An international meeting with representatives from expert scientific societies involved in FP was held in Barcelona, Spain, in June 2015. PARTICIPANTS/MATERIALS, SETTING, METHODS Twenty international FP experts belonging to the American Society of Reproductive Medicine, ESHRE and the International Society of Fertility Preservation reviewed the literature up to June 2015 to be discussed at the meeting, and approved the final manuscript. At the time this manuscript was being written, new evidence considered relevant for the debated topics was published, and was consequently included. MAIN RESULTS AND THE ROLE OF CHANCE Several oncological and non-oncological diseases may affect current or future fertility, either caused by the disease itself or the gonadotoxic treatment, and need an adequate FP approach. Women wishing to postpone maternity and transgender individuals before starting hormone therapy or undergoing surgery to remove/alter their reproductive organs should also be counselled accordingly. Embryo and oocyte cryopreservation are first-line FP methods in post-pubertal women. Metaphase II oocyte cryopreservation (vitrification) is the preferred option. Cumulative evidence of restoration of ovarian function and spontaneous pregnancies after ART following orthotopic transplantation of cryopreserved ovarian tissue supports its future consideration as an open clinical application. Semen cryopreservation is the only established method for FP in men. Testicular tissue cryopreservation should be recommended in pre-pubertal boys even though fertility restoration strategies by autotransplantation of cryopreserved testicular tissue have not yet been tested for safe clinical use in humans. The establishment of international registries on the short- and long-term outcomes of FP techniques is strongly recommended. LIMITATIONS, REASONS FOR CAUTION Given the lack of studies in large cohorts or with a randomized design, the level of evidence for most of the evidence reviewed was three or below. WIDER IMPLICATIONS OF THE FINDINGS Further high quality studies are needed to study the long-term outcomes of FP techniques. STUDY FUNDING/COMPETING INTEREST(S) None. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Francisca Martinez
- Hospital Universitario Dexeus, Gran Via Carlos III, 71-75, 08208 Barcelona, Spain
| |
Collapse
|
30
|
Chiti MC, Dolmans MM, Lucci CM, Paulini F, Donnez J, Amorim CA. Further insights into the impact of mouse follicle stage on graft outcome in an artificial ovary environment. Mol Hum Reprod 2018; 23:381-392. [PMID: 28333304 DOI: 10.1093/molehr/gax016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/13/2017] [Indexed: 12/13/2022] Open
Abstract
STUDY QUESTION Are mouse preantral follicles differently affected by isolation, encapsulation and/or grafting procedures according to stage? SUMMARY ANSWER Isolated secondary follicles showed superior ability to survive and grow after transplantation, which was not related to a particular effect of the isolation and/or grafting procedure, but rather to their own ability to induce neoangiogenesis. WHAT IS KNOWN ALREADY Isolated and encapsulated mouse preantral follicles can survive (6-27%) and grow (80-100%) in a fibrin matrix with a low concentration of fibrinogen and thrombin (F12.5/T1) after short-term transplantation. STUDY DESIGN, SIZE, DURATION An in vivo experimental model using 20 donor Naval Medical Research Institute (NMRI) mice (6-25 weeks of age) and 14 recipient severe combined immunodeficient (SCID) mice (11-39 weeks of age) was applied. Each NMRI mouse underwent mechanical disruption of both ovaries and isolation of primordial-primary and secondary follicles with ovarian stromal cells, in order to encapsulate them in an F12.5/T1 matrix. Twelve out of 40 fibrin clots were immediately fixed as controls (D0) (10 for histology and 2 for scanning electron microscopy [SEM]) and the others (n = 28) were grafted to the inner part of the peritoneum for 2 (16 fibrin clots) or 7 (12 fibrin clots) days (D2 and D7). PARTICIPANTS/MATERIALS, SETTING, METHODS This study involved the participation of the Gynecology Research Unit (Universitè Catholique de Louvain) and the Physiological Sciences Department (University of Brasília). Specific techniques were used to analyze the follicle recovery rate (hematoxylin-eosin staining), vascularization (CD34) and follicle ultrastructure (transmission electron microscopy [TEM] and SEM). MAIN RESULTS AND THE ROLE OF CHANCE After follicle isolation and encapsulation, a statistically higher percentage of normal follicles was observed in the secondary group (62%) than in the primordial-primary group (47%). Follicle recovery rates were 34% and 62% for primordial-primary and secondary follicles on D2, respectively, and 12% and 42% on D7, confirming that secondary follicles survive better than primordial-primary follicles after grafting. Concerning vascularization, both follicle stages exhibited similar vascularization to that seen in control mouse ovary on D7, but a significantly higher number of vessels and greater vessel surface area were detected in the secondary follicle group. Despite structural differences in fiber density between fibrin clots and ovarian tissue observed by SEM and TEM, preantral follicles appeared to be well encapsulated in the matrix, also showing a normal ultrastructure after grafting. LARGE SCALE DATA Not applicable. LIMITATIONS, REASONS FOR CAUTION As demonstrated by our results during the isolation procedure, we encapsulated a significantly higher number of round structures in the primordial-primary group than in the secondary group, which could partially explain the lower recovery rate of early-stage follicles in our previous study. However, it is not excluded that the physical and mechanical properties of the fibrin matrix may also play a role in follicle survival and growth, so further investigations are needed. WIDER IMPLICATIONS OF THE FINDINGS This research represents one more key step in the creation of the artificial ovary. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by grants from the Fonds National de la Recherche Scientifique de Belgique (FNRS) to C.A. Amorim as a research associate at FRS-FNRS and (grant 5/4/150/5 awarded to M.M. Dolmans), Fonds Spéciaux de Recherche, Fondation St Luc, Foundation Against Cancer, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES-Brazil) (grant #013/14 CAPES/WBI awarded to C.M. Lucci, with F. Paulini receiving a post-doctoral fellowship), and Wallonie-Bruxelles International, and donations from the Ferrero family. None of the authors have any competing interests to declare in relation to the topic.
Collapse
Affiliation(s)
- M C Chiti
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Avenue Mounier 52, bte. B1.52.02, 1200 Brussels, Belgium
| | - M M Dolmans
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Avenue Mounier 52, bte. B1.52.02, 1200 Brussels, Belgium.,Gynecology Department, Cliniques Universitaires Saint-Luc, 1200, Brussels, Belgium
| | - C M Lucci
- Physiological Sciences Department, Institute of Biological Sciences, University of Brasília, Brasília, DFBrazil
| | - F Paulini
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Avenue Mounier 52, bte. B1.52.02, 1200 Brussels, Belgium
| | - J Donnez
- Society for Research into Infertility, 1200 Brussels, Belgium
| | - C A Amorim
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Avenue Mounier 52, bte. B1.52.02, 1200 Brussels, Belgium
| |
Collapse
|
31
|
Chiti MC, Dolmans MM, Mortiaux L, Zhuge F, Ouni E, Shahri PAK, Van Ruymbeke E, Champagne SD, Donnez J, Amorim CA. A novel fibrin-based artificial ovary prototype resembling human ovarian tissue in terms of architecture and rigidity. J Assist Reprod Genet 2018; 35:41-48. [PMID: 29236205 PMCID: PMC5758477 DOI: 10.1007/s10815-017-1091-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 11/14/2017] [Indexed: 01/23/2023] Open
Abstract
PURPOSE The aim of this study is to optimize fibrin matrix composition in order to mimic human ovarian tissue architecture for human ovarian follicle encapsulation and grafting. METHODS Ultrastructure of fresh human ovarian cortex in age-related women (n = 3) and different fibrin formulations (F12.5/T1, F30/T50, F50/T50, F75/T75), rheology of fibrin matrices and histology of isolated and encapsulated human ovarian follicles in these matrices. RESULTS Fresh human ovarian cortex showed a highly fibrous and structurally inhomogeneous architecture in three age-related patients, but the mean ± SD of fiber thickness (61.3 to 72.4 nm) was comparable between patients. When the fiber thickness of four different fibrin formulations was compared with human ovarian cortex, F50/T50 and F75/T75 showed similar fiber diameters to native tissue, while F12.5/T1 was significantly different (p value < 0.01). In addition, increased concentrations of fibrin exhibited enhanced storage modulus with F50/T50, resembling physiological ovarian rigidity. Excluding F12.5/T1 from further analysis, only three remaining fibrin matrices (F30/T50, F50/T50, F75/T75) were histologically investigated. For this, frozen-thawed fragments of human ovarian tissue collected from 22 patients were used to isolate ovarian follicles and encapsulate them in the three fibrin formulations. All three yielded similar follicle recovery and loss rates soon after encapsulation. Therefore, based on fiber thickness, porosity, and rigidity, we selected F50/T50 as the fibrin formulation that best mimics native tissue. CONCLUSIONS Of all the different fibrin matrix concentrations tested, F50/T50 emerged as the combination of choice in terms of ultrastructure and rigidity, most closely resembling human ovarian cortex.
Collapse
Affiliation(s)
- Maria Costanza Chiti
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Avenue Mounier 52, bte. B1.52.02, 1200 Brussels, Belgium
| | - Marie-Madeleine Dolmans
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Avenue Mounier 52, bte. B1.52.02, 1200 Brussels, Belgium
- Gynecology Department, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| | - Lucie Mortiaux
- Institute of Condensed Matter and Nanosciences, Bio and Soft Matter, Université Catholique de Louvain, Croix du Sud 1, 1348 Louvain-la-Neuve, Belgium
| | - Flanco Zhuge
- Institute of Condensed Matter and Nanosciences, Bio and Soft Matter, Université Catholique de Louvain, Croix du Sud 1, 1348 Louvain-la-Neuve, Belgium
| | - Emna Ouni
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Avenue Mounier 52, bte. B1.52.02, 1200 Brussels, Belgium
| | - Parinaz Asiabi Kohneh Shahri
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Avenue Mounier 52, bte. B1.52.02, 1200 Brussels, Belgium
| | - Evelyne Van Ruymbeke
- Institute of Condensed Matter and Nanosciences, Bio and Soft Matter, Université Catholique de Louvain, Croix du Sud 1, 1348 Louvain-la-Neuve, Belgium
| | - Sophie-Demoustier Champagne
- Institute of Condensed Matter and Nanosciences, Bio and Soft Matter, Université Catholique de Louvain, Croix du Sud 1, 1348 Louvain-la-Neuve, Belgium
| | - Jacques Donnez
- Society for Research into Infertility, Brussels, Belgium
| | - Christiani Andrade Amorim
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Avenue Mounier 52, bte. B1.52.02, 1200 Brussels, Belgium
| |
Collapse
|
32
|
von Wolff M, Germeyer A, Liebenthron J, Korell M, Nawroth F. Practical recommendations for fertility preservation in women by the FertiPROTEKT network. Part II: fertility preservation techniques. Arch Gynecol Obstet 2017; 297:257-267. [PMID: 29181578 PMCID: PMC5762782 DOI: 10.1007/s00404-017-4595-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 11/10/2017] [Indexed: 12/24/2022]
Abstract
Purpose In addition to guidelines focusing on scientific evidence, practical recommendations on fertility preservation are also needed. Methods A selective literature search was performed based on the clinical and scientific experience of the authors. This article (Part II) focuses on fertility preservation techniques. Part I, also published in this journal, provides information on disease prognosis, disease-specific therapy, and risks for loss of fertility. Results Ovarian stimulation including double stimulation and freezing of oocytes is the best-established therapy providing live birth chances in women < 35 years with high ovarian reserve of around 30–40%. Ovarian tissue freezing is especially useful in young women with good ovarian, if spontaneous conception is favoured and if < 1 week until chemotherapy is provided. Data on success rates are still limited, but this further evolving technique will possibly reach similar success rates as ovarian stimulation. GnRH agonists seem to reduce the risk of premature ovarian failure up to 50%; however, the effect is possibly not long-lasting. Ovarian transposition can easily be combined with freezing of ovarian tissue and is the preferred technique before pelvic radiotherapy. Other techniques, such as in vitro maturation, are limited to women with high ovarian reserve and remain less effective. In addition, procedures such as in vitro growth of follicles, etc. are still experimental. Conclusions Fertility preservation in women provides realistic chances of becoming pregnant. The choice of technique needs to be based on the time required, the woman’s age, its risks and efficacy, and the individual preference of the patient.
Collapse
Affiliation(s)
- Michael von Wolff
- Division of Gynaecological Endocrinology and Reproductive Medicine, Medical University of Berne, Berne, Switzerland.
- Division of Gynaecological Endocrinology and Reproductive Medicine, University Women's hospital, Inselspital Bern, Effingerstrasse 102, 3010, Bern, Switzerland.
| | - A Germeyer
- Department of Gynaecological Endocrinology and Fertility Disorders, Medical University of Heidelberg, Heidelberg, Germany
| | - J Liebenthron
- Department of Gynaecological Endocrinology and Reproductive Medicine, Medical University of Bonn, Bonn, Germany
| | - M Korell
- Department of Obstetrics and Gynaecology, Johanna Etienne Hospital of Neuss, Neuss, Germany
| | - F Nawroth
- Centre for Infertility, Prenatal Medicine, Endocrinology and Osteology, Amedes Hamburg, Hamburg, Germany
| |
Collapse
|
33
|
Martinez F. Update on fertility preservation from the Barcelona International Society for Fertility Preservation-ESHRE-ASRM 2015 expert meeting: indications, results and future perspectives. Fertil Steril 2017; 108:407-415.e11. [PMID: 28739117 DOI: 10.1016/j.fertnstert.2017.05.024] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/19/2017] [Indexed: 12/21/2022]
Abstract
STUDY QUESTION What progress has been made in fertility preservation (FP) over the last decade? SUMMARY ANSWER FP techniques have been widely adopted over the last decade and therefore the establishment of international registries on their short- and long-term outcomes is strongly recommended. WHAT IS KNOWN ALREADY FP is a fundamental issue for both males and females whose future fertility may be compromised. Reproductive capacity may be seriously affected by age, different medical conditions and also by treatments, especially those with gonadal toxicity. There is general consensus on the need to provide counselling about currently available FP options to all individuals wishing to preserve their fertility. STUDY DESIGN, SIZE, DURATION An international meeting with representatives from expert scientific societies involved in FP was held in Barcelona, Spain, in June 2015. PARTICIPANTS/MATERIALS, SETTING, METHODS Twenty international FP experts belonging to the American Society of Reproductive Medicine, ESHRE and the International Society of Fertility Preservation reviewed the literature up to June 2015 to be discussed at the meeting, and approved the final manuscript. At the time this manuscript was being written, new evidence considered relevant for the debated topics was published, and was consequently included. MAIN RESULTS AND THE ROLE OF CHANCE Several oncological and non-oncological diseases may affect current or future fertility, either caused by the disease itself or the gonadotoxic treatment, and need an adequate FP approach. Women wishing to postpone maternity and transgender individuals before starting hormone therapy or undergoing surgery to remove/alter their reproductive organs should also be counselled accordingly. Embryo and oocyte cryopreservation are first-line FP methods in postpubertal women. Metaphase II oocyte cryopreservation (vitrification) is the preferred option. Cumulative evidence of restoration of ovarian function and spontaneous pregnancies after ART following orthotopic transplantation of cryopreserved ovarian tissue supports its future consideration as an open clinical application. Semen cryopreservation is the only established method for FP in men. Testicular tissue cryopreservation should be recommended in pre-pubertal boys even though fertility restoration strategies by autotransplantation of cryopreserved testicular tissue have not yet been tested for safe clinical use in humans. The establishment of international registries on the short- and long-term outcomes of FP techniques is strongly recommended. LIMITATIONS, REASONS FOR CAUTION Given the lack of studies in large cohorts or with a randomized design, the level of evidence for most of the evidence reviewed was 3 or below. WIDER IMPLICATIONS OF THE FINDINGS Further high quality studies are needed to study the long-term outcomes of FP techniques. STUDY FUNDING/COMPETING INTEREST(S) None. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Francisca Martinez
- Hospital Universitario Dexeus, Gran Via Carlos III, 71-75, 08208, Barcelona, Spain.
| |
Collapse
|
34
|
Soares M, Saussoy P, Maskens M, Reul H, Amorim CA, Donnez J, Dolmans MM. Eliminating malignant cells from cryopreserved ovarian tissue is possible in leukaemia patients. Br J Haematol 2017; 178:231-239. [DOI: 10.1111/bjh.14657] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 01/06/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Michelle Soares
- Pôle de Recherche en Gynécologie; Institut de Recherche Expérimentale et Clinique; Université Catholique de Louvain; Brussels Belgium
- Département de Gynécologie; Cliniques Universitaires St. Luc; Brussels Belgium
| | - Pascale Saussoy
- Département de Biologie Clinique; Cliniques Universitaires St. Luc; Université Catholique de Louvain; Brussels Belgium
| | - Mathilde Maskens
- Pôle de Recherche en Gynécologie; Institut de Recherche Expérimentale et Clinique; Université Catholique de Louvain; Brussels Belgium
| | - Hélène Reul
- Pôle de Recherche en Gynécologie; Institut de Recherche Expérimentale et Clinique; Université Catholique de Louvain; Brussels Belgium
| | - Christiani A. Amorim
- Pôle de Recherche en Gynécologie; Institut de Recherche Expérimentale et Clinique; Université Catholique de Louvain; Brussels Belgium
| | - Jacques Donnez
- Société de Recherche pour l'Infertilité; Brussels Belgium
| | - Marie-Madeleine Dolmans
- Pôle de Recherche en Gynécologie; Institut de Recherche Expérimentale et Clinique; Université Catholique de Louvain; Brussels Belgium
- Département de Gynécologie; Cliniques Universitaires St. Luc; Brussels Belgium
| |
Collapse
|
35
|
Fibrin in Reproductive Tissue Engineering: A Review on Its Application as a Biomaterial for Fertility Preservation. Ann Biomed Eng 2017; 45:1650-1663. [PMID: 28271306 DOI: 10.1007/s10439-017-1817-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 02/25/2017] [Indexed: 12/18/2022]
Abstract
In recent years, reproductive medicine has made good use of tissue engineering and regenerative medicine techniques to develop alternatives to restore fertility in cancer patients. For young female cancer patients who cannot undergo any of the currently applied strategies due to the possible presence of malignant cells in their ovaries, the challenge is creating an in vitro or in vivo artificial ovary using carefully selected biomaterials. Thanks to its numerous qualities, fibrin has been widely used as a scaffold material for fertility preservation applications. The goal of this review is to examine and discuss the applications and advantages of this biopolymer for fertility restoration in cancer patients, and consider the main results achieved so far.
Collapse
|
36
|
Alginate: A Versatile Biomaterial to Encapsulate Isolated Ovarian Follicles. Ann Biomed Eng 2017; 45:1633-1649. [DOI: 10.1007/s10439-017-1816-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 02/22/2017] [Indexed: 12/19/2022]
|
37
|
Vermeulen M, Poels J, de Michele F, des Rieux A, Wyns C. Restoring Fertility with Cryopreserved Prepubertal Testicular Tissue: Perspectives with Hydrogel Encapsulation, Nanotechnology, and Bioengineered Scaffolds. Ann Biomed Eng 2017; 45:1770-1781. [PMID: 28070774 DOI: 10.1007/s10439-017-1789-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/03/2017] [Indexed: 10/20/2022]
Abstract
New and improved oncological therapies are now able to cure more than 80% of cancer-affected children in Europe. However, such treatments are gonadotoxic and result in fertility issues, especially in boys who are not able to provide a sperm sample before starting chemo/radiotherapy because of their prepubertal state. For these boys, cryopreservation of immature testicular tissue (ITT) is the only available option, aiming to preserve spermatogonial stem cells (SSCs). Both slow-freezing and vitrification have been investigated to this end and are now applied in a clinical setting for SSC cryopreservation. Research now has to focus on methods that will allow fertility restoration. This review discusses different studies that have been conducted on ITT transplantation, including those using growth factor supplementation like free molecules, or tissue encapsulation with or without nanoparticles, as well as the possibility of developing a bioartificial testis that can be used for in vitro gamete production or in vivo transplantation.
Collapse
Affiliation(s)
- Maxime Vermeulen
- Gynecology-Andrology Research Unit, Medical School, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200, Brussels, Belgium
| | - Jonathan Poels
- Gynecology-Andrology Research Unit, Medical School, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200, Brussels, Belgium.,Department of Gynecology-Andrology, Université Catholique de Louvain, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200, Brussels, Belgium
| | - Francesca de Michele
- Gynecology-Andrology Research Unit, Medical School, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200, Brussels, Belgium.,Department of Gynecology-Andrology, Université Catholique de Louvain, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200, Brussels, Belgium
| | - Anne des Rieux
- Advanced Drug Delivery and Biomaterials Unit, Louvain Drug Research Institute, Université Catholique de Louvain, 1200, Brussels, Belgium.,Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain, 1348, Louvain-la-Neuve, Belgium
| | - Christine Wyns
- Gynecology-Andrology Research Unit, Medical School, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200, Brussels, Belgium. .,Department of Gynecology-Andrology, Université Catholique de Louvain, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200, Brussels, Belgium.
| |
Collapse
|
38
|
David A, Day JR, Cichon AL, Lefferts A, Cascalho M, Shikanov A. Restoring Ovarian Endocrine Function with Encapsulated Ovarian Allograft in Immune Competent Mice. Ann Biomed Eng 2016; 45:1685-1696. [PMID: 28028710 DOI: 10.1007/s10439-016-1780-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 12/16/2016] [Indexed: 11/28/2022]
Abstract
Premature ovarian insufficiency (POI) is a major complication of cytotoxic treatments due to extreme ovarian sensitivity to chemotherapy and radiation. In pediatric cancer patients modern therapy has improved the long-term survival to over 80% in the United States. However, these cancer survivors face long-term health problems related to treatment toxicity. In female cancer survivors POI leads to sterility, along with the consequences of estrogen deficiency such as premature osteopenia, muscle wasting, accelerated cardiovascular diseases and a vast array of other health and developmental problems. These long-lasting effects are particularly significant for young girls reaching puberty. As such, restoring ovarian endocrine function is paramount in this population. In the present study, we evaluated the feasibility of restoring ovarian endocrine function in ovariectomized mice by transplanting syngeneic and allogeneic ovarian tissue encapsulated in alginate capsules or TheraCyte®. Histological analysis of the implants retrieved after 7 and 30 days' post implantation showed follicular development up to the secondary and antral stages in both syngeneic and allogeneic implants. Implantation of syngeneic and allogeneic ovarian grafts encapsulated in TheraCyte devices restored ovarian endocrine function, which was confirmed by decreased serum FSH levels from 60 to 70 ng/mL in ovariectomized mice to 30-40 ng/mL 30 days after implantation. Absence of allo-MHC-specific IgG and IgM antibodies in the sera of implanted mice with allogeneic ovarian tissue encapsulated in TheraCyte indicate that the implants did not evoke an allo-immune response, while the allogeneic controls were rejected 21 days after implantation. Our results show that TheraCyte effectively isolates the graft from immune recognition but also supports follicular growth.
Collapse
Affiliation(s)
- Anu David
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - James Ronald Day
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Alexa Leigh Cichon
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Adam Lefferts
- Department of Surgery Transplantation Biology, Medical Science Research Building I, 1150 West Medical Center Drive, A520B, Ann Arbor, MI, 48109, USA
| | - Marilia Cascalho
- Department of Surgery Transplantation Biology, Medical Science Research Building I, 1150 West Medical Center Drive, A520B, Ann Arbor, MI, 48109, USA.,Department of Microbiology and Immunology, Medical Science Research Building I, 1150 West Medical Center Drive, A520B, Ann Arbor, MI, 48109, USA
| | - Ariella Shikanov
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA. .,Department of Macromolecular Sciences and Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
39
|
Hellström M, Bandstein S, Brännström M. Uterine Tissue Engineering and the Future of Uterus Transplantation. Ann Biomed Eng 2016; 45:1718-1730. [PMID: 27995397 PMCID: PMC5489617 DOI: 10.1007/s10439-016-1776-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 12/07/2016] [Indexed: 12/11/2022]
Abstract
The recent successful births following live donor uterus transplantation are proof-of-concept that absolute uterine factor infertility is a treatable condition which affects several hundred thousand infertile women world-wide due to a dysfunctional uterus. This strategy also provides an alternative to gestational surrogate motherhood which is not practiced in most countries due to ethical, religious or legal reasons. The live donor surgery involved in uterus transplantation takes more than 10 h and is then followed by years of immunosuppressive medication to prevent uterine rejection. Immunosuppression is associated with significant adverse side effects, including nephrotoxicity, increased risk of serious infections, and diabetes. Thus, the development of alternative approaches to treat absolute uterine factor infertility would be desirable. This review discusses tissue engineering principles in general, but also details strategies on how to create a bioengineered uterus that could be used for transplantation, without risky donor surgery and any need for immunosuppression. We discuss scaffolds derived from decellularized organs/tissues which may be recellularized using various types of autologous somatic/stem cells, in particular for uterine tissue engineering. It further highlights the hurdles that lay ahead in developing an alternative to an allogeneic source for uterus transplantation.
Collapse
Affiliation(s)
- Mats Hellström
- Laboratory for Transplantation and Regenerative Medicine, Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden. .,, Kvinnokliniken, Blå stråket 6, 413 45, Göteborg, Sweden.
| | - Sara Bandstein
- Laboratory for Transplantation and Regenerative Medicine, Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,, Kvinnokliniken, Blå stråket 6, 413 45, Göteborg, Sweden
| | - Mats Brännström
- Laboratory for Transplantation and Regenerative Medicine, Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,, Kvinnokliniken, Blå stråket 6, 413 45, Göteborg, Sweden
| |
Collapse
|
40
|
Amorim CA, Shikanov A. The artificial ovary: current status and future perspectives. Future Oncol 2016; 12:2323-32. [DOI: 10.2217/fon-2016-0202] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cryopreservation and transplantation of ovarian tissue has proved to be a promising technique to safeguard fertility in cancer patients. However, with some types of cancer, there is a risk of transmitting malignant cells present in the cryopreserved tissue, so transplantation after disease remission is not advisable. To restore fertility in these patients, some research teams have been developing a transplantable artificial ovary, whose main goal is to mimic the natural organ. It should be composed of a matrix that encapsulates and protects follicles, as well as ovarian cells, which are necessary for follicle survival and development. This article reviews progress made in the creation of a transplantable artificial ovary and discusses future trends for its development.
Collapse
Affiliation(s)
- Christiani A Amorim
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Avenue Mounier 52, bte. B1.52.02, 1200 Brussels, Belgium
| | - Ariella Shikanov
- Department of Macromolecular Science & Engineering, University of Michigan, 1101 Beal Avenue, Room 2126 LBME, Ann Arbor, MI 48109-2110, USA
| |
Collapse
|
41
|
Paulini F, Vilela JM, Chiti MC, Donnez J, Jadoul P, Dolmans MM, Amorim CA. Survival and growth of human preantral follicles after cryopreservation of ovarian tissue, follicle isolation and short-term xenografting. Reprod Biomed Online 2016; 33:425-32. [DOI: 10.1016/j.rbmo.2016.05.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 04/29/2016] [Accepted: 05/03/2016] [Indexed: 12/22/2022]
|
42
|
Abstract
Many prepubertal girls and young women suffer from premature ovarian insufficiency induced by chemotherapy given for treatment of cancer and autoimmune diseases. Autotransplantation of cryopreserved ovarian tissue could restore the lost ovarian endocrine function and fertility. Unfortunately, tissue ischemia, inconsistent graft quality and the risk of reintroducing malignant cells may stand in the way of the clinical translation of this approach. To address these risks and limitations, we engineered an artificial ovarian tissue from immature follicles using a synthetic hydrogel, poly(ethylene glycol) vinyl sulfone (PEG-VS), as a supportive matrix. Enzymatically isolated follicles from 6–7-day-old mice ovaries were encapsulated in 7% PEG-VS hydrogels modified with 0.5 mmol/l RGD and crosslinked with a trifunctional matrix metalloproteinase-sensitive peptide. PEG hydrogels with the encapsulated follicles were orthotopically implanted into ovariectomised mice to investigate whether PEG hydrogel supports folliculogenesis and steroidogenesis in vivo. After 30 days, grafts revealed multiple fully developed antral follicles and corpora lutea, which corresponded with regular ovulation cycles and follicle-stimulating hormone (FSH) levels. The elevated levels of FSH, caused by bilateral ovariectomy, were reversed by the implanted follicles and maintained at physiological levels for 60 days. Importantly, primordial and primary follicles still represented 60% of the follicular pool, demonstrating selective recruitment of primordial follicles into the growing pool. Functioning blood vessels in the grafts 30 and 60 days after implantation proved the capability of PEG hydrogels to undergo graft remodelling and revascularisation. Our results demonstrate that PEG hydrogels with encapsulated immature ovarian follicles successfully functioned as an artificial ovarian tissue for 60 days in vivo.
Collapse
|
43
|
Green LJ, Shikanov A. In vitro culture methods of preantral follicles. Theriogenology 2016; 86:229-38. [DOI: 10.1016/j.theriogenology.2016.04.036] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/25/2016] [Accepted: 03/14/2016] [Indexed: 10/21/2022]
|
44
|
Chiti MC, Dolmans MM, Orellana R, Soares M, Paulini F, Donnez J, Amorim CA. Influence of follicle stage on artificial ovary outcome using fibrin as a matrix. Hum Reprod 2015; 31:427-35. [PMID: 26628641 DOI: 10.1093/humrep/dev299] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 11/06/2015] [Indexed: 01/01/2023] Open
Abstract
STUDY QUESTION Do primordial-primary versus secondary follicles embedded inside a fibrin matrix have different capabilities to survive and grow after isolation and transplantation? SUMMARY ANSWER Mouse primordial-primary follicles showed a lower recovery rate than secondary follicles, but both were able to grow. WHAT IS KNOWN ALREADY Fresh isolated mouse follicles and ovarian stromal cells embedded in a fibrin matrix are capable of surviving and developing after short-term autografting. STUDY DESIGN, SIZE, DURATION In vivo experimental model using 11 donor Naval Medical Research Institute (NMRI) mice and 11 recipient severe combined immunodeficiency (SCID) mice. Both ovaries from all NMRI mice were mechanically disrupted and primordial-primary and secondary follicles were isolated with ovarian stromal cells. They were then encapsulated in a fibrin matrix composed of 12.5 mg/ml of fibrinogen (F12.5) and 1 IU/ml of thrombin (T1) (F12.5/T1), and grafted to the inner part of the peritoneum of SCID mice for 2 and 7 days. PARTICIPANTS/MATERIALS, SETTING, METHODS This study was conducted at the Gynecology Research Unit, Université Catholique de Louvain. All materials were used to conduct histological (H-E staining) and immunohistochemical (Ki67, TUNEL) analyses. MAIN RESULTS AND THE ROLE OF CHANCE Although all grafted fibrin clots were recovered, the follicle recovery rate on day 2 was 16 and 40% for primordial-primary and secondary follicles respectively, while on day 7, it was 6 and 28%. The secondary group showed a significantly higher recovery rate than the primordial-primary group (23%, P-value <0.001). Follicles found in both groups were viable, as demonstrated by live/dead assays, and no difference was observed in the apoptosis rate between groups, as evidenced by TUNEL. Their growth to further stages was confirmed by Ki67 immunostaining. LIMITATIONS, REASONS FOR CAUTION As demonstrated by our results, secondary follicles appear to be more likely to survive and develop than primordial-primary follicles in a fibrin matrix after both periods of grafting. These findings may also be attributed to the specific features of the fibrin matrix, which could benefit larger follicles, but not smaller follicles. WIDER IMPLICATIONS OF THE FINDINGS This study is essential to understanding possible impairment caused by factors such as the isolation procedure or fibrin matrix composition to the survival and development of different follicle stages. It therefore provides the basis for further investigations with longer periods of grafting. STUDY FUNDING/COMPETING INTERESTS This study was supported by grants from the Fonds National de la Recherche Scientifique de Belgique (grant Télévie No. 7.4578.14 and 7.4627.13, grant 5/4/150/5 awarded to Marie-Madeleine Dolmans), Fonds Spéciaux de Recherche, Fondation St Luc, the Foundation Against Cancer, and the Region Wallone (Convention N°6519-OVART) and donations from Mr Pietro Ferrero, Baron Frère and Viscount Philippe de Spoelberch. None of the authors have any competing interests to declare.
Collapse
Affiliation(s)
- M C Chiti
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Avenue Mounier 52, bte. B1.52.02, 1200 Brussels, Belgium
| | - M M Dolmans
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Avenue Mounier 52, bte. B1.52.02, 1200 Brussels, Belgium Gynecology Department, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| | - R Orellana
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Avenue Mounier 52, bte. B1.52.02, 1200 Brussels, Belgium
| | - M Soares
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Avenue Mounier 52, bte. B1.52.02, 1200 Brussels, Belgium Gynecology Department, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| | - F Paulini
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Avenue Mounier 52, bte. B1.52.02, 1200 Brussels, Belgium
| | - J Donnez
- Society for Research into Infertility, Brussels, Belgium
| | - C A Amorim
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Avenue Mounier 52, bte. B1.52.02, 1200 Brussels, Belgium
| |
Collapse
|