1
|
Csiszar A, Balasubramanian P, Tarantini S, Yabluchanskiy A, Zhang XA, Springo Z, Benbrook D, Sonntag WE, Ungvari Z. Chemically induced carcinogenesis in rodent models of aging: assessing organismal resilience to genotoxic stressors in geroscience research. GeroScience 2019; 41:209-227. [PMID: 31037472 DOI: 10.1007/s11357-019-00064-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/04/2019] [Indexed: 02/07/2023] Open
Abstract
There is significant overlap between the cellular and molecular mechanisms of aging and pathways contributing to carcinogenesis, including the role of genome maintenance pathways. In the field of geroscience analysis of novel genetic mouse models with either a shortened, or an extended, lifespan provides a unique opportunity to evaluate the synergistic roles of longevity assurance pathways in cancer resistance and regulation of lifespan and to develop novel targets for interventions that both delay aging and prevent carcinogenesis. There is a growing need for robust assays to assess the susceptibility of cancer in these models. The present review focuses on a well-characterized method frequently used in cancer research, which can be adapted to study resilience to genotoxic stress and susceptibility to genotoxic stress-induced carcinogenesis in geroscience research namely, chemical carcinogenesis induced by treatment with 7,12-dimethylbenz(a)anthracene (DMBA). Recent progress in understanding how longer-living mice may achieve resistance to chemical carcinogenesis and how these pathways are modulated by anti-aging interventions is reviewed. Strain-specific differences in sensitivity to DMBA-induced carcinogenesis are also explored and contrasted with mouse lifespan. The clinical relevance of inhibition of DMBA-induced carcinogenesis for the pathogenesis of mammary adenocarcinomas in older human subjects is discussed. Finally, the potential role of insulin-like growth factor-1 (IGF-1) in the regulation of pathways responsible for cellular resilience to DMBA-induced mutagenesis is discussed.
Collapse
Affiliation(s)
- Anna Csiszar
- Department of Geriatric Medicine Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA.,Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Priya Balasubramanian
- Department of Geriatric Medicine Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
| | - Stefano Tarantini
- Department of Geriatric Medicine Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
| | - Andriy Yabluchanskiy
- Department of Geriatric Medicine Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA.,Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Xin A Zhang
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Zsolt Springo
- Department of Geriatric Medicine Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA.,Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary
| | - Doris Benbrook
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - William E Sonntag
- Department of Geriatric Medicine Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA.,Department of Biochemistry, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Zoltan Ungvari
- Department of Geriatric Medicine Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA. .,Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA. .,Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary. .,Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary. .,Department of Public Health, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
2
|
Podlutsky A, Valcarcel-Ares MN, Yancey K, Podlutskaya V, Nagykaldi E, Gautam T, Miller RA, Sonntag WE, Csiszar A, Ungvari Z. The GH/IGF-1 axis in a critical period early in life determines cellular DNA repair capacity by altering transcriptional regulation of DNA repair-related genes: implications for the developmental origins of cancer. GeroScience 2017; 39:147-160. [PMID: 28233247 DOI: 10.1007/s11357-017-9966-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 02/14/2017] [Indexed: 12/31/2022] Open
Abstract
Experimental, clinical, and epidemiological findings support the concept of developmental origins of health and disease (DOHAD), suggesting that early-life hormonal influences during a sensitive period around adolescence have a powerful impact on cancer morbidity later in life. The endocrine changes that occur during puberty are highly conserved across mammalian species and include dramatic increases in circulating GH and IGF-1 levels. Importantly, patients with developmental IGF-1 deficiency due to GH insensitivity (Laron syndrome) do not develop cancer during aging. Rodents with developmental GH/IGF-1 deficiency also exhibit significantly decreased cancer incidence at old age, marked resistance to chemically induced carcinogenesis, and cellular resistance to genotoxic stressors. Early-life treatment of GH/IGF-1-deficient mice and rats with GH reverses the cancer resistance phenotype; however, the underlying molecular mechanisms remain elusive. The present study was designed to test the hypothesis that developmental GH/IGF-1 status impacts cellular DNA repair mechanisms. To achieve that goal, we assessed repair of γ-irradiation-induced DNA damage (single-cell gel electrophoresis/comet assay) and basal and post-irradiation expression of DNA repair-related genes (qPCR) in primary fibroblasts derived from control rats, Lewis dwarf rats (a model of developmental GH/IGF-1 deficiency), and GH-replete dwarf rats (GH administered beginning at 5 weeks of age, for 30 days). We found that developmental GH/IGF-1 deficiency resulted in persisting increases in cellular DNA repair capacity and upregulation of several DNA repair-related genes (e.g., Gadd45a, Bbc3). Peripubertal GH treatment reversed the radiation resistance phenotype. Fibroblasts of GH/IGF-1-deficient Snell dwarf mice also exhibited improved DNA repair capacity, showing that the persisting influence of peripubertal GH/IGF-1 status is not species-dependent. Collectively, GH/IGF-1 levels during a critical period during early life determine cellular DNA repair capacity in rodents, presumably by transcriptional control of genes involved in DNA repair. Because lifestyle factors (e.g., nutrition and childhood obesity) cause huge variation in peripubertal GH/IGF-1 levels in children, further studies are warranted to determine their persisting influence on cellular cancer resistance pathways.
Collapse
Affiliation(s)
- Andrej Podlutsky
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, 975 N. E. 10th Street-BRC 1303, Oklahoma City, OK, 73104, USA
- Department of Biology and Wildlife, Center for Alaska Native Health Research, University of Alaska Fairbanks, 902 N. Koyukuk, Fairbanks, AK, 99775, USA
| | - Marta Noa Valcarcel-Ares
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, 975 N. E. 10th Street-BRC 1303, Oklahoma City, OK, 73104, USA
| | - Krysta Yancey
- Department of Biology and Wildlife, Center for Alaska Native Health Research, University of Alaska Fairbanks, 902 N. Koyukuk, Fairbanks, AK, 99775, USA
| | - Viktorija Podlutskaya
- Department of Biology and Wildlife, Center for Alaska Native Health Research, University of Alaska Fairbanks, 902 N. Koyukuk, Fairbanks, AK, 99775, USA
| | - Eszter Nagykaldi
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, 975 N. E. 10th Street-BRC 1303, Oklahoma City, OK, 73104, USA
| | - Tripti Gautam
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, 975 N. E. 10th Street-BRC 1303, Oklahoma City, OK, 73104, USA
| | - Richard A Miller
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- University of Michigan Geriatrics Center, Ann Arbor, MI, USA
| | - William E Sonntag
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, 975 N. E. 10th Street-BRC 1303, Oklahoma City, OK, 73104, USA
| | - Anna Csiszar
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, 975 N. E. 10th Street-BRC 1303, Oklahoma City, OK, 73104, USA
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
| | - Zoltan Ungvari
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, 975 N. E. 10th Street-BRC 1303, Oklahoma City, OK, 73104, USA.
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary.
| |
Collapse
|
3
|
Qin Y, Sundaram S, Essaid L, Chen X, Miller SM, Yan F, Darr DB, Galanko JA, Montgomery SA, Major MB, Johnson GL, Troester MA, Makowski L. Weight loss reduces basal-like breast cancer through kinome reprogramming. Cancer Cell Int 2016; 16:26. [PMID: 27042159 PMCID: PMC4818517 DOI: 10.1186/s12935-016-0300-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 03/22/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Obesity is associated with an aggressive subtype of breast cancer called basal-like breast cancer (BBC). BBC has no targeted therapies, making the need for mechanistic insight urgent. Reducing adiposity in adulthood can lower incidence of BBC in humans. Thus, this study investigated whether a dietary intervention to reduce adiposity prior to tumor onset would reverse HFD-induced BBC. METHODS Adult C3(1)-Tag mice were fed a low or high fat diet (LFD, HFD), and an obese group initially exposed to HFD was then switched to LFD to induce weight loss. A subset of mice was sacrificed prior to average tumor latency to examine unaffected mammary gland. Latency, tumor burden and progression was evaluated for effect of diet exposure. Physiologic, histology and proteomic analysis was undertaken to determine mechanisms regulating obesity and weight loss in BBC risk. Statistical analysis included Kaplan-Meier and log rank analysis to investigate latency. Student's t tests or ANOVA compared variables. RESULTS Mice that lost weight displayed significantly delayed latency compared to mice fed HFD, with latency matching those on LFD. Plasma leptin concentrations significantly increased with adiposity, were reduced to control levels with weight loss, and negatively correlated with tumor latency. HFD increased atypical ductal hyperplasia and ductal carcinoma in situ in mammary gland isolated prior to mean latency-a phenomenon that was lost in mice induced to lose weight. Importantly, kinome analysis revealed that weight loss reversed HFD-upregulated activity of PKC-α, PKD1, PKA, and MEK3 and increased AMPKα activity in unaffected mammary glands isolated prior to tumor latency. CONCLUSIONS Weight loss prior to tumor onset protected against the effects of HFD on latency and pre-neoplastic lesions including atypical ductal hyperplasia and DCIS. Using innovative kinomics, multiple kinases upstream of MAPK/P38α were demonstrated to be activated by HFD-induced weight gain and reversed with weight loss, providing novel targets in obesity-associated BBC. Thus, the HFD-exposed microenvironment that promoted early tumor onset was reprogrammed by weight loss and the restoration of a lean phenotype. Our work contributes to an understanding of underlying mechanisms associated with tumor and normal mammary changes that occur with weight loss.
Collapse
Affiliation(s)
- Yuanyuan Qin
- />CB 7461, Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 2203 McGavran Greenberg Hall, Chapel Hill, NC 27599-7461 USA
| | - Sneha Sundaram
- />CB 7461, Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 2203 McGavran Greenberg Hall, Chapel Hill, NC 27599-7461 USA
| | - Luma Essaid
- />CB 7461, Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 2203 McGavran Greenberg Hall, Chapel Hill, NC 27599-7461 USA
| | - Xin Chen
- />Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Samantha M. Miller
- />Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Feng Yan
- />Department of Cell and Developmental Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - David B. Darr
- />Mouse Phase I Unit, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Joseph A. Galanko
- />Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Stephanie A. Montgomery
- />Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Michael B. Major
- />Department of Cell and Developmental Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Gary L. Johnson
- />Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
- />Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Melissa A. Troester
- />Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
- />Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Liza Makowski
- />CB 7461, Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 2203 McGavran Greenberg Hall, Chapel Hill, NC 27599-7461 USA
- />Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| |
Collapse
|
4
|
Sundaram S, Johnson AR, Makowski L. Obesity, metabolism and the microenvironment: Links to cancer. J Carcinog 2013; 12:19. [PMID: 24227994 PMCID: PMC3816318 DOI: 10.4103/1477-3163.119606] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 08/06/2013] [Indexed: 02/06/2023] Open
Abstract
Historically, cancer research has focused on identifying mutations or amplification of genes within the tumor, which informed the development of targeted therapies against affected pathways. This work often considers tumor cells in isolation; however, it is becoming increasingly apparent that the microenvironment surrounding tumor cells strongly influences tumor onset and progression. This is the so-called “seed and soil” hypothesis wherein the seed (cancer cell) is fed and molded by the metabolites, growth factors, modifications of the extracellular matrix or angiogenic factors provided by the soil (or stroma). Currently, 65% of the US population is obese or overweight; similarly staggering figures are reported in US children and globally. Obesity mediates and can exacerbate, both normal and tumor microenvironment dysfunction. Many obesity-associated endocrine, metabolic and inflammatory mediators are suspected to play a role in oncogenesis by modifying systemic nutrient metabolism and the nutrient substrates available locally in the stroma. It is vitally important to understand the biological processes linking obesity and cancer to develop better intervention strategies aimed at curbing the carcinogenic events associated with obesity. In this review, obesity-driven changes in both the normal and tumor microenvironment, alterations in metabolism, and release of signaling molecules such as endocrine, growth, and inflammatory mediators will be highlighted. In addition, we will discuss the effects of the timing of obesity onset or particular “windows of susceptibility,” with a focus on breast cancer etiology.
Collapse
Affiliation(s)
- Sneha Sundaram
- Department of Nutrition, Nutrition Obesity Research Center, and Lineberger Comprehensive Cancer Center, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 135 Dauer Drive, CB #7461, Chapel Hill, NC, 27599, USA
| | | | | |
Collapse
|
5
|
Puberty dysregulation and increased risk of disease in adult life: possible modes of action. Reprod Toxicol 2013; 44:15-22. [PMID: 23791931 DOI: 10.1016/j.reprotox.2013.06.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Revised: 03/12/2013] [Accepted: 06/05/2013] [Indexed: 11/22/2022]
Abstract
Puberty is the developmental window when the final maturation of body systems is orchestrated by hormones; lifelong sex-related differences and capacity to interact with the environment are defined during this life stage. Increased incidence in a number of chronic, multifactorial diseases could be related to environmental exposures during puberty: however, insight on the susceptibility of the peripubertal period is still limited. The estrogen/androgen balance is a crucial axis in harmonizing the whole pubertal development, pointing out the significance of exposures to endocrine disruptors. Besides the reproductive system, endocrine-related perturbations may affect the maturation of skeleton, adipose tissues, brain, immune system, as well as cancer predisposition. Thus, risk assessment of environmental stressors should duly consider specific aspects of the pubertal window. Besides endocrine-related mechanisms, suggested research priorities include signaling molecules (e.g., kisspeptins, dopamine) as xenobiotic targets and disturbances of specific pubertal methylation processes potentially involved in neurobehavioral disorders and cancer risk in adulthood.
Collapse
|
6
|
Fredslund SO, Bonefeld-Jørgensen EC. Breast cancer in the Arctic--changes over the past decades. Int J Circumpolar Health 2012; 71:19155. [PMID: 22901290 PMCID: PMC3422501 DOI: 10.3402/ijch.v71i0.19155] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 04/13/2012] [Accepted: 06/21/2012] [Indexed: 12/19/2022] Open
Abstract
The purpose of this study is to review the current literatures on breast cancer (BC) in the Arctic, especially the trends in incidence during the last decades and the possible explanations. The design of this study is a literature review. The scientific literature concerning BC were reviewed, especially focusing on the Arctic and the special conditions that exist in this region. Breast cancer incidence is increasing all over the world, including in the Arctic. The enormous transition in health conditions and lifestyle in the Arctic might be contributing to the known risk factors. In Greenland, the age at menarche has diminished by 3 years during the course of 100 years, and the number of children per women as well as the duration of breastfeeding is decreasing. Obesity and intake of saturated fat is increasing and the intake of traditional food rich in unsaturated fat and vitamin D decreasing. Smoking and alcohol consumption in the Arctic has been relatively high but is now decreasing. More focus on genetic susceptibility in relation to BC has identified the specific BRCA1 founder mutation in the Greenlandic population, which might appear to be an important risk factor. However, the known established risk factors alone cannot account for the increasing trend observed. Studies suggest that environmental contaminants such as persistent organic pollutants (POPs) including perfluorinated compounds increase the risk of BC possibly in conjunction with certain genetic polymorphisms involved in carcinogen activation. The lipophilic POPs such as polychlorinated biphenyls and organochlorine pesticides are found at very high levels in the Arctic population. Several factors can explain the increasing incidence of BC in the Arctic. The transition in lifestyle and health conditions unfortunately increases the known risk factors of BC. Moreover, the population of the Arctic might show up to be especially vulnerable because of the contemporary high burden of POPs and genetic susceptibility.
Collapse
Affiliation(s)
- Stine Overvad Fredslund
- Department of Public Health, Centre of Arctic Health & Unit of Cellular and Molecular Toxicology, University of Aarhus, Aarhus, Denmark
| | | |
Collapse
|