1
|
Gagaoua M, Prieto N, Hopkins DL, Baldassini W, Zhang Y, López-Campos O, Albenzio M, Della Malva A. Electrical stimulation to improve meat quality: Factors at interplay, underlying biochemical mechanisms and a second look into the molecular pathways using proteomics. Meat Sci 2025; 219:109663. [PMID: 39303345 DOI: 10.1016/j.meatsci.2024.109663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
Ensuring consistent beef eating quality is paramount for meeting consumer demands and sustaining the meat industry. Electrical stimulation (ES) is a post-slaughter intervention used to accelerate post-mortem glycolysis, to avoid cold shortening, to control the tenderization rate of meat through sophisticated physical, chemical and biochemical mechanisms including proteolysis, to improve beef tenderness and to achieve normal pHu that might lead to positive impact on color. This review comprehensively examines the multifaceted effects of ES on beef quality, encompassing factors and settings influencing its efficacy and the underlying biochemical mechanisms revealed using traditional biochemistry methods. It then delves into the molecular pathways modulated by ES, as unveiled by muscle proteomics, aiming to provide a second look and an unprecedented understanding of the underlying biochemical mechanisms through an integrative proteomics analysis of low-voltage ES (LVES) proteomics studies. The proteins changing as a result of ES were gathered in a compendium of 67 proteins, from which 14 were commonly identified across studies. In-depth bioinformatics of this compendium allowed a comprehensive overview of the molecular signatures and interacting biochemical pathways behind electrically stimulated beef muscles. The proteins belong to interconnected molecular pathways including the ATP metabolic process and glycolysis, muscle structure and contraction, heat shock proteins, oxidative stress, proteolysis and apoptosis. Understanding the intricate interplay of molecular pathways behind ES could improve the efficiency of beef production, ensuring consistent meat quality and meeting consumer expectations. The integrative analysis approach performed in this study holds promise for the meat industry's sustainability and competitiveness.
Collapse
Affiliation(s)
| | - Nuria Prieto
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, AB T4L 1W1, Canada
| | | | - Welder Baldassini
- School of Veterinary Medicine and Animal Science, São Paulo State University, Botucatu, Brazil
| | - Yimin Zhang
- Laboratory of Meat Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Oscar López-Campos
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, AB T4L 1W1, Canada
| | - Marzia Albenzio
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, 71121 Foggia, Italy
| | - Antonella Della Malva
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, 71121 Foggia, Italy
| |
Collapse
|
2
|
Xu B, Luo X, Yang X, Zhang Y, Sebranek JG, Liang R. Comparative proteomic analyses to investigate premature browning in high‑oxygen modified atmosphere packaged beef patties. Food Chem 2024; 456:140022. [PMID: 38876067 DOI: 10.1016/j.foodchem.2024.140022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/23/2024] [Accepted: 06/06/2024] [Indexed: 06/16/2024]
Abstract
This study compared the proteomics of beef patties under high‑oxygen modified atmosphere packaging (HiOx-MAP) and vacuum packaging (VP) during heating. The color and oxidation stability of fresh patties, and myoglobin denaturation of cooked patties were also measured. The results suggested that HiOx-MAP patties contained more oxymyoglobin in fresh meat and had higher myoglobin denaturation during heating than VP patties, resulting in premature browning (PMB) during cooking. Proteomic analysis found that the overabundance of proteasome subunit beta type-2 (PSMB2) and peroxiredoxin-2 (PRDX2) in HiOx-55 °C, which can remove the damaged proteins and inhibit oxidation respectively, are of benefit to meat color stability during storage, however, this was still insufficient to inhibit the occurrence of PMB during cooking. The high abundance of lamin B1 (LMNB1) in VP-55 °C can maintain the stability of meat color. This research provides greater understanding, based on proteomic perspectives, of the molecular mechanism of PMB.
Collapse
Affiliation(s)
- Baochen Xu
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China
| | - Xin Luo
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China.
| | - Xiaoyin Yang
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China.
| | - Yimin Zhang
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China.
| | - Joseph G Sebranek
- Department of Animal Science, Iowa State University, Ames, IA 50011-3150, USA; Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011-3150, USA.
| | - Rongrong Liang
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong 271018, PR China.
| |
Collapse
|
3
|
Agregán R, Pateiro M, Kumar M, Franco D, Capanoglu E, Dhama K, Lorenzo JM. The potential of proteomics in the study of processed meat products. J Proteomics 2023; 270:104744. [PMID: 36220542 DOI: 10.1016/j.jprot.2022.104744] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022]
Abstract
Proteomics is a field that has grown rapidly since its emergence in the mid-1990s, reaching many disciplines such as food technology. The application of proteomic techniques in the study of complex biological samples such as foods, specifically meat products, allows scientists to decipher the underlying cellular mechanisms behind different quality traits. Lately, much emphasis has been placed on the discovery of biomarkers that facilitate the prediction of biochemical transformations of the product and provide key information on parameters associated with traceability and food safety. This review study focuses on the contribution of proteomics in the improvement of processed meat products. Different techniques and strategies have recently been successfully carried out in the study of the proteome of these products that can help the development of foods with a higher sensory quality, while ensuring consumer safety through early detection of microbiological contamination and fraud. SIGNIFICANCE: The food industry and the academic world work together with the aim of responding to market demands, always seeking excellence. In particular, the meat industry has to face a series of challenges such as, achieving sensory attributes in accordance with the standards required by the consumer and maintaining a high level of safety and transparency, avoiding deliver adulterated and/or contaminated products. This review work exposes how the aforementioned challenges are attempted to be solved through proteomic technology, discussing the latest and most outstanding research in this regard, which undoubtedly contribute to improving the quality, in all the extension of the word, of meat products, providing relevant knowledge in the field of proteomic research.
Collapse
Affiliation(s)
- Rubén Agregán
- Centro Tecnológico de la Carne de Galicia, Adva. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Adva. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai 400019, India
| | - Daniel Franco
- Centro Tecnológico de la Carne de Galicia, Adva. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; Department of Chemical Engineering, Universidade de Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, Spain.
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, 243122 Bareilly, Uttar Pradesh, India
| | - José M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Adva. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; Universidade de Vigo, Área de Tecnoloxía dos Alimentos, Facultade de Ciencias de Ourense, 32004 Ourense, Spain.
| |
Collapse
|
4
|
Ractopamine-induced remodeling in the mitochondrial proteome of postmortem longissimus lumborum muscle from feedlot steers. Livest Sci 2022. [DOI: 10.1016/j.livsci.2022.104923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
5
|
Hasan MDM, Rashid MU, Suman SP, Perreault H, Paliwal J, Rodas-González A. Tandem Mass Tag Labeling-Based Analysis to Characterize Muscle-Specific Proteome Changes during Postmortem Aging of Bison Longissimus Lumborum and Psoas Major Muscles. MEAT AND MUSCLE BIOLOGY 2021. [DOI: 10.22175/mmb.13055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The objective of the study was to examine the variations in sarcoplasmic proteomes of bison longissimus lumborum (LL) and psoas major (PM) muscles during postmortem aging utilizing tandem mass tag (TMT) isobaric labeling coupled with liquid chromatography mass-spectrometry (LC-MS/MS) for the categorization of muscles with muscle-specific inherent color stability. A total of 576 proteins were identified (P < 0.05) in both bison LL and PM muscles, where 97 proteins were identified as differentially abundant (fold change > 1.5, P < 0.05) from the three comparisons between muscles during postmortem aging periods (PM vs LL at 2 d, 7 d and 14 d). Among those proteins, the most important protein groups based on functions are related to electron transport chain (ETC) or oxidative phosphorylation, tricarboxylic acid cycle (TCA), ATP transport, carbohydrate metabolism, fatty acid oxidation, chaperones, oxygen transport, muscle contraction, calcium signaling, and protein synthesis. In PM, most of the proteins from ETC, TCA cycle, fatty acid oxidation, ATP and oxygen transport, and muscle contraction were more abundant or exhibited increased expression during aging compared to LL. On the other hand, the proteins involved in carbohydrate metabolism, chaperone function and protein synthesis mostly exhibited decreased expression in PM muscle relative to LL. These results clearly demonstrate that the proteins associated with oxidative metabolism showed increased expression in PM muscles. This indicates that oxidative damage or subsequent color deterioration resulted in bison PM muscles being attacked by the reactive oxygen species produced during those metabolic process. In contrast, proteins involved in glycolysis and chaperone activity exhibited a decrease in expression in bison PM muscles, resulting decline in color stability compared with LL. Because glycolytic enzymes and chaperones maintain oxidative and/or color stability by producing reducing equivalents in glycolytic pathway and with the protein folding ability of chaperones, respectively in LL muscles.
Collapse
|