1
|
Pyrimethamine exerts significant antitumor effects on human ovarian cancer cells both in vitro and in vivo. Anticancer Drugs 2020; 30:571-578. [PMID: 30614834 DOI: 10.1097/cad.0000000000000740] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Pyrimethamine has been used principally to treat infections from protozoan parasites. Although previous studies have shown that pyrimethamine exhibited anticancer activity by inducing cellular apoptosis, there are none that show that pyrimethamine possesses anticancer activity with respect to ovarian cancer. We examined the roles of pyrimethamine on apoptosis and proliferation, DNA damage, and cell cycle distribution of human ovarian cancer cell lines in vitro. To investigate the antitumor efficacy of pyrimethamine in vivo, we established two intraperitoneal ovarian carcinoma models in nude mice. Pyrimethamine significantly induced apoptosis of ovarian cancer cells via growth inhibition, cell cycle arrest, and nuclear DNA damage in vitro and manifested antitumor activity by inhibiting tumor growth, thereby prolonging the survival time of tumor-bearing mice. We also demonstrated that pyrimethamine increased the expression of caspase-9 and decreased the expression of X-linked inhibitor of apoptosis protein. In conclusion, the antitumor effects of pyrimethamine were associated with enhanced apoptosis of tumor cells and inhibition of the growth of intratumoral microvessels. Our results indicate that pyrimethamine may provide an effective approach toward inhibiting the growth of ovarian cancer with minimal adverse effects.
Collapse
|
2
|
Liu S, Cai X, Xia L, Jiang C, Chen P, Wang X, Zhang B, Zhao HY. Chloroquine exerts antitumor effects on NB4 acute promyelocytic leukemia cells and functions synergistically with arsenic trioxide. Oncol Lett 2017; 15:2024-2030. [PMID: 29434902 DOI: 10.3892/ol.2017.7488] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 10/26/2017] [Indexed: 01/17/2023] Open
Abstract
Chloroquine (CQ) has been confirmed to exhibit antitumor effects on different types of cancer cell, but whether it exerts the same effect on acute promyelocytic leukemia (APL) cells remains to be confirmed. In the present study, the effects of various concentrations of CQ on the growth, apoptosis and cell cycle distribution of NB4 cells, as well as the potential mechanisms underlying these effects, were examined. The combined effect of CQ and arsenic trioxide (ATO) on the growth of NB4 cells was also determined. The results of the present study demonstrated that CQ treatment inhibited cell proliferation, and induced mitochondrial pathway apoptosis and S phase arrest in a dose-dependent manner by regulating apoptosis- and cell cycle-related proteins. CQ and ATO had a synergistic effect on the growth inhibition of NB4 cells, which may have been induced through the inhibition of autophagy. In conclusion, the results of the present study indicated that CQ exhibits a cytotoxic effect on NB4 cells and has a synergistic effect when combined with ATO, which thereby improves the curative effect of ATO on APL.
Collapse
Affiliation(s)
- Shousheng Liu
- Department of General Medicine, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P.R. China
| | - Xiuyu Cai
- Department of General Medicine, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P.R. China
| | - Liangping Xia
- Department of General Medicine, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P.R. China
| | - Chang Jiang
- Department of General Medicine, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P.R. China
| | - Ping Chen
- Department of General Medicine, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P.R. China
| | - Xiaopai Wang
- Department of Pathology, Guangzhou First People's Hospital, Guangzhou, Guangdong 510080, P.R. China
| | - Bei Zhang
- Department of General Medicine, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P.R. China
| | - Hong Yun Zhao
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P.R. China
| |
Collapse
|
3
|
Gray KA, Gresty KJ, Chen N, Zhang V, Gutteridge CE, Peatey CL, Chavchich M, Waters NC, Cheng Q. Correlation between Cyclin Dependent Kinases and Artemisinin-Induced Dormancy in Plasmodium falciparum In Vitro. PLoS One 2016; 11:e0157906. [PMID: 27326764 PMCID: PMC4915707 DOI: 10.1371/journal.pone.0157906] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 06/07/2016] [Indexed: 12/02/2022] Open
Abstract
Background Artemisinin-induced dormancy provides a plausible explanation for recrudescence following artemisinin monotherapy. This phenomenon shares similarities with cell cycle arrest where cyclin dependent kinases (CDKs) and cyclins play an important role. Methods Transcription profiles of Plasmodium falciparum CDKs and cyclins before and after dihydroartemisinin (DHA) treatment in three parasite lines, and the effect of CDK inhibitors on parasite recovery from DHA-induced dormancy were investigated. Results After DHA treatment, parasites enter a dormancy phase followed by a recovery phase. During the dormancy phase parasites up-regulate pfcrk1, pfcrk4, pfcyc2 and pfcyc4, and down-regulate pfmrk, pfpk5, pfpk6, pfcrk3, pfcyc1 and pfcyc3. When entering the recovery phase parasites immediately up-regulate all CDK and cyclin genes. Three CDK inhibitors, olomoucine, WR636638 and roscovitine, produced distinct effects on different phases of DHA-induced dormancy, blocking parasites recovery. Conclusions The up-regulation of PfCRK1 and PfCRK4, and down regulation of other CDKs and cyclins correlate with parasite survival in the dormant state. Changes in CDK expression are likely to negatively regulate parasite progression from G1 to S phase. These findings provide new insights into the mechanism of artemisinin-induced dormancy and cell cycle regulation of P. falciparum, opening new opportunities for preventing recrudescence following artemisinin treatment.
Collapse
Affiliation(s)
- Karen-Ann Gray
- Drug Resistance and Diagnostics, Australian Army Malaria Institute, Brisbane, Australia
- Clinical Tropical Medicine, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Karryn J. Gresty
- Drug Resistance and Diagnostics, Australian Army Malaria Institute, Brisbane, Australia
- Clinical Tropical Medicine, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Nanhua Chen
- Drug Resistance and Diagnostics, Australian Army Malaria Institute, Brisbane, Australia
| | - Veronica Zhang
- Drug Resistance and Diagnostics, Australian Army Malaria Institute, Brisbane, Australia
- School of Biochemistry, University of Queensland, Brisbane, Australia
| | | | - Christopher L. Peatey
- Drug Resistance and Diagnostics, Australian Army Malaria Institute, Brisbane, Australia
- Clinical Tropical Medicine, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Marina Chavchich
- Drug Resistance and Diagnostics, Australian Army Malaria Institute, Brisbane, Australia
| | - Norman C. Waters
- Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- * E-mail: (QC); (NW)
| | - Qin Cheng
- Drug Resistance and Diagnostics, Australian Army Malaria Institute, Brisbane, Australia
- Clinical Tropical Medicine, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- * E-mail: (QC); (NW)
| |
Collapse
|
4
|
Posobiec LM, Clark RL, Bushdid PB, Laffan SB, Wang KF, White TEK. Dihydroartemisinin (DHA) Treatment Causes an Arrest of Cell Division and Apoptosis in Rat Embryonic Erythroblasts in Whole Embryo Culture. ACTA ACUST UNITED AC 2014; 98:445-58. [DOI: 10.1002/bdrb.21088] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 11/14/2013] [Indexed: 12/25/2022]
Affiliation(s)
| | | | - Paul B. Bushdid
- Safety Assessment; GlaxoSmithKline; King of Prussia Pennsylvania
| | - Susan B. Laffan
- Safety Assessment; GlaxoSmithKline; King of Prussia Pennsylvania
| | - Kai-Fen Wang
- Safety Assessment; GlaxoSmithKline; King of Prussia Pennsylvania
| | | |
Collapse
|
5
|
Ding D, Wei–dong Q, Dong–zhen Y, Hai–yan J, Salvi R. Ototoxic effects of mefloquine in cochlear organotypic cultures. J Otol 2009. [DOI: 10.1016/s1672-2930(09)50018-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
6
|
Totino PRR, Daniel-Ribeiro CT, Ferreira-da-Cruz MDF. Pro-apoptotic effects of antimalarial drugs do not affect mature human erythrocytes. Acta Trop 2009; 112:236-8. [PMID: 19665984 DOI: 10.1016/j.actatropica.2009.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 07/31/2009] [Accepted: 08/03/2009] [Indexed: 10/20/2022]
Abstract
Malaria is an important public health problem worldwide, representing also an obstacle for the development of the countries, mainly in the African continent. Since no effective vaccine has been developed yet, early diagnosis and prompt treatment are the main strategy to control malaria transmission. Many of the drugs used for malaria treatment have the ability to induce apoptosis in different cell types. In addition, apoptosis has also been identified in enucleated cells. The present work is aimed, therefore, to evaluate the pro-apoptotic aptness of chloroquine, quinine, artemisinin and mefloquine on mature erythrocytes by flow cytometry through the detection of cell shrinkage and phosphatidylserine exposure at the cell surface-hallmarks of apoptosis. Although we observed that known apoptosis inducer, such as ionomycin, had led to erythrocyte apoptosis, we were not able to detect any pro-apoptotic effect of the studied antimalarial drugs on these cells. We conclude that chloroquine, quinine, artemisinin and mefloquine may not be able to induce apoptosis in erythrocytes and, therefore, do not seem to contribute to malaria associated erythrocyte destruction and anemia.
Collapse
|
7
|
Morozkin ES, Babochkina TI, Vlassov VV, Laktionov PP. The Effect of Protein Transport Inhibitors on the Production of Extracellular DNA. Ann N Y Acad Sci 2008; 1137:31-5. [DOI: 10.1196/annals.1448.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
8
|
Cao DY, Yang JY, Dou KF, Ma LY, Teng ZH. alpha-fetoprotein and interleukin-18 gene-modified dendritic cells effectively stimulate specific type-1 CD4- and CD8-mediated T-Cell response from hepatocellular carcinoma patients in Vitro. Hum Immunol 2007; 68:334-41. [PMID: 17462500 DOI: 10.1016/j.humimm.2007.01.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2006] [Revised: 01/13/2007] [Accepted: 01/17/2007] [Indexed: 01/11/2023]
Abstract
The T-helper 1 (Th1) immune reaction is most important in dendritic cell (DC)-based immunotherapy. Interleukin (IL)-18, a Th1-biasing cytokine, plays a pivotal role in inducing cytotoxic T lymphocyte (CTL) responses. In this study, we analyzed whether dendritic cells (DCs) from patients with hepatocellular carcinoma (HCC) can be transduced with the IL-18 gene and/or alpha-fetoprotein (AFP) gene, and we examined whether vaccinations using these genetically engineered DC can induce stronger therapeutic antitumor immunity. The results showed that DC transfected with AdIL-18/AFP can expressed IL-18 and AFP by reverse transcriptase-polymerase chain reaction and enzyme-linked immunoassay. Compared with those before transfection, the expressions of membrane molecules were increased dramatically. Specific T cells generated by DC transfected with AdIL-18/AFP recognized HLA-matched HepG2 cell lines specifically. Most importantly, The cytotoxic activity of CTLs against HepG2 with DC expressing AFP(AFP-DC) was significantly augmented by co-transduction with the IL-18 gene. Administration with such vaccine also significantly increased the production of interleukin-12p70 and interferon-gamma. These results indicate that a vaccination therapy using DC co-transduced with the TAA gene and IL-18 genes is effective strategy for immunotherapy in terms of the activation of DCs, CD4+ T, cells and CD8+ T cells, and may be useful in the clinical application of a cancer vaccine therapy.
Collapse
Affiliation(s)
- Da-Yong Cao
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Shaanxi Province, China
| | | | | | | | | |
Collapse
|