1
|
Tabuchi Y, Kuroda K, Furusawa Y, Hirano T, Nagaoka R, Omura M, Hasegawa H, Hirayama J, Suzuki N. Genes involved in osteogenic differentiation induced by low‑intensity pulsed ultrasound in goldfish scales. Biomed Rep 2025; 22:18. [PMID: 39651404 PMCID: PMC11621920 DOI: 10.3892/br.2024.1896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/09/2024] [Indexed: 12/11/2024] Open
Abstract
The teleost scale is a unique calcified tissue that contains osteoclasts, osteoblasts, osteocytes and the bone matrix, similar to mammalian bone. Here, the effects of low-intensity pulsed ultrasound (LIPUS) on osteoblasts and osteoclasts in goldfish scales were investigated. Scales were treated with LIPUS, which is equivalent to use under clinical conditions (30 mW/cm2 for 20 min), then cultured at 15˚C. Alkaline phosphatase activity, a marker of osteoblasts, or tartrate-resistant acid phosphatase (TRAP) activity, a marker of osteoclasts was measured. The gene expression profile was examined using RNA-sequencing. Gene network and biological function analyses were performed using the Ingenuity® Pathways Knowledge Base. A single exposure of LIPUS significantly increased ALP activity but did not affect TRAP activity. These data indicated that LIPUS induced osteoblastic activation in goldfish scales. Using RNA-sequencing, numerous genes that were significantly and differentially expressed 3, 6, and 24 h after LIPUS exposure were observed. Ingenuity® pathway analysis demonstrated that three gene networks, GN-3h, GN-6h, and GN-24h, were obtained from upregulated genes at 3, 6 and 24 h culture, respectively, and included several genes associated with osteoblast differentiation, such as protein kinase D1, prostaglandin-endoperoxide synthase 2, TNFRSF11B (tumor necrosis factor receptor superfamily, member 11b) and WNT3A (Wnt family member 3A). A significant upregulation of expression levels of these genes in scales treated with LIPUS was confirmed by reverse transcription-quantitative polymerase chain reaction. These results contribute to elucidating the molecular mechanisms of osteoblast activation induced by LIPUS.
Collapse
Affiliation(s)
- Yoshiaki Tabuchi
- Division of Molecular Genetics Research, Life Science Research Center, University of Toyama, Toyama 930-0194, Japan
| | - Kouhei Kuroda
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Ishikawa 927-0553, Japan
| | - Yukihiro Furusawa
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, Toyama 939-0398, Japan
| | - Tetsushi Hirano
- Division of Molecular Genetics Research, Life Science Research Center, University of Toyama, Toyama 930-0194, Japan
| | - Ryo Nagaoka
- Laboratory of Medical Information Sensing, Faculty of Engineering, University of Toyama, Toyama 930-8555, Japan
| | - Masaaki Omura
- Laboratory of Medical Information Sensing, Faculty of Engineering, University of Toyama, Toyama 930-8555, Japan
| | - Hideyuki Hasegawa
- Laboratory of Medical Information Sensing, Faculty of Engineering, University of Toyama, Toyama 930-8555, Japan
| | - Jun Hirayama
- Department of Clinical Engineering, Faculty of Health Sciences, Komatsu University, Ishikawa 923-0961, Japan
| | - Nobuo Suzuki
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Ishikawa 927-0553, Japan
| |
Collapse
|
2
|
Yamamoto T, Ikegame M, Furusawa Y, Tabuchi Y, Hatano K, Watanabe K, Kawago U, Hirayama J, Yano S, Sekiguchi T, Kitamura KI, Endo M, Nagami A, Matsubara H, Maruyama Y, Hattori A, Suzuki N. Osteoclastic and Osteoblastic Responses to Hypergravity and Microgravity: Analysis Using Goldfish Scales as a Bone Model. Zoolog Sci 2022; 39. [DOI: 10.2108/zs210107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/13/2022] [Indexed: 11/17/2022]
Affiliation(s)
- Tatsuki Yamamoto
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Housu-gun, Ishikawa 927-0553, Japan
| | - Mika Ikegame
- Department of Oral Morphology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Okayama 700-8525, Japan
| | - Yukihiro Furusawa
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, Kurokawa, Toyama 939-0398, Japan
| | - Yoshiaki Tabuchi
- Life Science Research Center, University of Toyama, Sugitani, Toyama 930-0194, Japan
| | - Kaito Hatano
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Housu-gun, Ishikawa 927-0553, Japan
| | - Kazuki Watanabe
- Department of Biology, College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Ichikawa, Chiba 272-0827, Japan
| | - Umi Kawago
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Housu-gun, Ishikawa 927-0553, Japan
| | - Jun Hirayama
- Department of Clinical Engineering, Faculty of Health Sciences, Komatsu University, Komatsu, Ishikawa 923-0961, Japan
| | - Sachiko Yano
- Japan Aerospace Exploration Agency, Tsukuba, Ibaraki 305-8505, Japan
| | - Toshio Sekiguchi
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Housu-gun, Ishikawa 927-0553, Japan
| | - Kei-ichiro Kitamura
- Department of Clinical Laboratory Science, Division of Health Sciences, Graduate School of Medical Science, Kanazawa University, Kodatsuno, Ishikawa 920-0942, Japan
| | - Masato Endo
- Laboratory of Fish Culture, Tokyo University of Marine Science and Technology, Minato-ku, Tokyo 108-8477, Japan
| | - Arata Nagami
- Noto Center for Fisheries Science and Technology, Kanazawa University, Ossaka, Noto-cho, Ishikawa 927-0552, Japan
| | - Hajime Matsubara
- Noto Center for Fisheries Science and Technology, Kanazawa University, Ossaka, Noto-cho, Ishikawa 927-0552, Japan
| | - Yusuke Maruyama
- Department of Biology, College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Ichikawa, Chiba 272-0827, Japan
| | - Atsuhiko Hattori
- Department of Biology, College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Ichikawa, Chiba 272-0827, Japan
| | - Nobuo Suzuki
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Housu-gun, Ishikawa 927-0553, Japan
| |
Collapse
|
3
|
Jin TC, Lu JF, Luo S, Wang LC, Lu XJ, Chen J. Characterization of large yellow croaker (Larimichthys crocea) osteoprotegerin and its role in the innate immune response against to Vibrio alginolyticus. Comp Biochem Physiol B Biochem Mol Biol 2021; 258:110680. [PMID: 34688907 DOI: 10.1016/j.cbpb.2021.110680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 10/17/2021] [Accepted: 10/18/2021] [Indexed: 12/25/2022]
Abstract
Osteoprotegerin (OPG) is a member of the tumor necrosis factor receptor superfamily, contributing to inflammation, apoptosis, and differentiation. However, the function of OPG in the host immune system of teleosts remains unclear. Here, we cloned the cDNA of the LcOPG gene from large yellow croaker. LcOPG mRNA was expressed in all analyzed tissues and was upregulated by Vibrio alginolyticus infection in immune tissues and monocytes/macrophages (MO/MФ). Subsequently, the LcOPG protein was expressed and purified using a prokaryotic expression system. Recombinant LcOPG protein (rLcOPG) treatment suppressed V. alginolyticus-induced pro-inflammatory cytokine and enhanced V. alginolyticus-induced anti-inflammatory cytokine mRNA expression. Furthermore, rLcOPG decreased V. alginolyticus-induced MO/MФ apoptosis. Therefore, the results indicate that LcOPG might play a role in the immune response of V. alginolyticus-infected large yellow croaker.
Collapse
Affiliation(s)
- Tian-Cheng Jin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Jian-Fei Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Sheng Luo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Li-Cong Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Xin-Jiang Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
4
|
Chen J, Li S, Jiao Y, Li J, Li Y, Hao YL, Zuo Y. In Vitro Study on the Piezodynamic Therapy with a BaTiO 3-Coating Titanium Scaffold under Low-Intensity Pulsed Ultrasound Stimulation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:49542-49555. [PMID: 34610736 DOI: 10.1021/acsami.1c15611] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
To solve the poor sustainability of electroactive stimulation in clinical therapy, a strategy of combining a piezoelectric BaTiO3-coated Ti6Al4V scaffold and low-intensity pulsed ultrasound (LIPUS) was unveiled and named here as piezodynamic therapy. Thus, cell behavior could be regulated phenomenally by force and electricity simultaneously. First, BaTiO3 was deposited uniformly on the surface of the three-dimensional (3D) printed porous Ti6Al4V scaffold, which endowed the scaffold with excellent force-electricity responsiveness under pulsed ultrasound exposure. The results of live/dead staining, cell scanning electron microscopy, and F-actin staining showed that cells had better viability, better pseudo-foot adhesion, and more muscular actin bundles when they underwent the piezodynamic effect of ultrasound and piezoelectric coating. This piezodynamic therapy activated more mitochondria at the initial stage that intervened in the cell cycle by promoting cells' proliferation and weakened the apoptotic damage. The quantitative real-time polymerase chain reaction data further confirmed that the costimulation of the ultrasound and the piezoelectric scaffolds could trigger adequate current to upregulated the expression of osteogenic-related genes. The continuous electric cues could be generated by the BaTiO3-coated scaffold and intermittent LIPUS stimulation; thereon, more efficient bone healing would be promoted by piezodynamic therapy in future treatment.
Collapse
Affiliation(s)
- Jie Chen
- Research Center for Nano Biomaterials, and Analytical & Testing Center, Sichuan University, Chengdu 610064, People's Republic of China
| | - Shujun Li
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, People's Republic of China
| | - Yilai Jiao
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, People's Republic of China
| | - Jidong Li
- Research Center for Nano Biomaterials, and Analytical & Testing Center, Sichuan University, Chengdu 610064, People's Republic of China
| | - Yubao Li
- Research Center for Nano Biomaterials, and Analytical & Testing Center, Sichuan University, Chengdu 610064, People's Republic of China
| | - Yu-Lin Hao
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, People's Republic of China
| | - Yi Zuo
- Research Center for Nano Biomaterials, and Analytical & Testing Center, Sichuan University, Chengdu 610064, People's Republic of China
| |
Collapse
|
5
|
Yamamoto T, Ikegame M, Hirayama J, Kitamura KI, Tabuchi Y, Furusawa Y, Sekiguchi T, Endo M, Mishima H, Seki A, Yano S, Matsubara H, Hattori A, Suzuki N. Expression of sclerostin in the regenerating scales of goldfish and its increase under microgravity during space flight. Biomed Res 2021; 41:279-288. [PMID: 33268672 DOI: 10.2220/biomedres.41.279] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Osteocytes, osteoblasts (bone-forming cells), and osteoclasts (bone-resorbing cells) are the primary types of cells that regulate bone metabolism in mammals. Sclerostin produced in bone cells activates osteoclasts, inhibiting bone formation; excess production of sclerostin, therefore, leads to the loss of bone mass. Fish scales have been reported to have morphological and functional similarities to mammalian bones, making them a useful experimental system for analyzing vertebrate bone metabolism in vitro. However, whether fish scales contain cells producing sclerostin and/or osteocytes has not been determined. The current study demonstrated, for the first time, that sclerostin-containing cells exist in goldfish scales. Analysis of the distribution and shape of sclerostin-expressing cells provided evidence that osteoblasts produce sclerostin in goldfish scales. Furthermore, our results found that osteocyte-like cells exist in goldfish scales, which also produce sclerostin. Finally, we demonstrated that microgravity in outer space increased the level of sclerostin in the scales of goldfish, a finding suggesting that the induction of sclerostin is the mechanism underlying the activation of osteoclasts under microgravity.
Collapse
Affiliation(s)
- Tatsuki Yamamoto
- Noto Marine Laboratory, Division of Marine Environmental Studies, Institute of Nature and Environmental Technology, Kanazawa University
| | - Mika Ikegame
- Department of Oral Morphology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
| | - Jun Hirayama
- Department of Clinical Engineering, Faculty of Health Sciences, Komatsu University
| | - Kei-Ichiro Kitamura
- Department of Clinical Laboratory Science, Division of Health Sciences, Graduate School of Medical Science, Kanazawa University
| | | | - Yukihiro Furusawa
- Department of Liberal Arts and Sciences, Toyama Prefectural University
| | - Toshio Sekiguchi
- Noto Marine Laboratory, Division of Marine Environmental Studies, Institute of Nature and Environmental Technology, Kanazawa University
| | - Masato Endo
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology
| | - Hiroyuki Mishima
- Department of Dental Engineering, Tsurumi University School of Dental Medicine
| | | | | | - Hajime Matsubara
- Noto Center for Fisheries Science and Technology, Kanazawa University
| | - Atsuhiko Hattori
- Department of Biology, College of Liberal Arts and Sciences, Tokyo Medical and Dental University
| | - Nobuo Suzuki
- Noto Marine Laboratory, Division of Marine Environmental Studies, Institute of Nature and Environmental Technology, Kanazawa University
| |
Collapse
|
6
|
Yi X, Wu L, Liu J, Qin YX, Li B, Zhou Q. Low-intensity pulsed ultrasound protects subchondral bone in rabbit temporomandibular joint osteoarthritis by suppressing TGF-β1/Smad3 pathway. J Orthop Res 2020; 38:2505-2512. [PMID: 32060941 DOI: 10.1002/jor.24628] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/28/2019] [Accepted: 02/11/2020] [Indexed: 02/04/2023]
Abstract
Transforming growth factor β1(TGF-β1)/Smad3 pathway promotes the pathological progression of subchondral bone in osteoarthritis. The aim of this study is to determine the effect of low-intensity pulsed ultrasound (LIPUS) on the pathological progression and TGF-β1/Smad3 pathway of subchondral bone in temporomandibular joint osteoarthritis (TMJOA). Rabbit TMJOA model was established by type II collagenase induction. The left joint in this model was continuously stimulated with LIPUS for 3 and 6 weeks (1 MHz; 30 mW/cm2 ) for 20 min/day. The morphological and histological features of subchondral bone were respectively examined by microcomputed tomography and Safranin-O staining. The number of osteoclasts was quantitatively assessed by tartrate-resistant acid phosphatase staining. Immunohistochemistry and Western blot analysis were conducted to evaluate the protein expression of Cathepsin K and TGF-β1/Smad3 pathway. The results indicated that LIPUS could improve the trabecular microstructure and histological characteristics of subchondral bone in rabbit TMJOA. It also suppressed abnormal subchondral bone resorption and activation of TGF-β1/Smad3 pathway, characterized by the number of osteoclasts, protein expression levels of Cathepsin K, TGF-β1, type II TGFβ receptor, and phosphorylated Smad3 (pSmad3) were decreased. In conclusion, LIPUS promoted the quality of subchondral bone by suppressing osteoclast activity and TGF-β1/Smad3 pathway in rabbit TMJOA.
Collapse
Affiliation(s)
- Xin Yi
- Department of Oral Anatomy and Physiology, School of Stomatology, China Medical University, Shenyang, China
| | - Lin Wu
- Department of Prosthodontics, School of Stomatology, China Medical University, Shenyang, China
| | - Jie Liu
- Department of Science Experiment Center, China Medical University, Shenyang, China
| | - Yi-Xian Qin
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York
| | - Bo Li
- Department of Oral Anatomy and Physiology, School of Stomatology, China Medical University, Shenyang, China
| | - Qing Zhou
- Department of Oral and Maxillofacial Surgery, School of Stomatology, China Medical University, Shenyang, China
| |
Collapse
|
7
|
Jiang YX, Gong P, Zhang L. [A review of mechanisms by which low-intensity pulsed ultrasound affects bone regeneration]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2020; 38:571-575. [PMID: 33085244 DOI: 10.7518/hxkq.2020.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Low-intensity pulsed ultrasound (LIPUS) is a common physical therapy to accelerate the healing of bone fracture and treat delayed union of bone fracture. Vessels, nerves, and bone tissue are essential constituents of bone system. Recently, increasing evidence has been revealed that LIPUS can not only promote bone regeneration by directly regulating osteoblasts, osteoblasts, mesenchymal stem cells, but also have a positive impact on the repair of bone healing through vessels and nerves. Thus, we reviewed and summarized the latest published literature about the molecular mechanism for the effects of LIPUS on bone regeneration, which might offer a promising therapy for bone-related diseases.
Collapse
Affiliation(s)
- Yi-Xuan Jiang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ping Gong
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Liang Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
8
|
Jiang Y, Yuan Y, Xiong Y, Wang B, Guo Y, Gong P, Zhang L. Low-intensity pulsed ultrasound improves osseointegration of dental implant in mice by inducing local neuronal production of αCGRP. Arch Oral Biol 2020; 115:104736. [PMID: 32371135 DOI: 10.1016/j.archoralbio.2020.104736] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 04/04/2020] [Accepted: 04/21/2020] [Indexed: 02/05/2023]
Abstract
OBJECTIVE This study aimed to explore the effect of Low-intensity pulsed ultrasound (LIPUS) on implant osseointegration and elucidate the role of α-calcitonin gene-related peptide (αCGRP) in this process. DESIGN In vivo, αCGRP+/+ (Wild-type model) mice and αCGRP-/- (Knock-out model) mice with implants immediately placed in the maxillary first molars extraction sockets were treated with LIPUS. We detected details of peri-implant bone tissues by micro-CT, real-time PCR and histological analysis. In vitro, αCGRP+/+ and αCGRP-/- dorsal root ganglia (DRG) neurons were cultured and exposed to LIPUS. Then conditioned media from these neurons were collected and added to osteoblasts to analyze cell differentiation, mineralization and proliferation by real-time PCR, alkaline phosphatase (ALP) and cell counting kit-8 (CCK-8) assay. Besides, ELISA was performed to determine the effect of LIPUS on the αCGRP secretion in neurons. RESULTS In vivo tests revealed that αCGRP-/- mice displayed worse osseointegration when compared to αCGRP+/+ mice. LIPUS could enhance implant osseointegration in αCGRP+/+ mice but had little effect on αCGRP-/- mice. Meanwhile, αCGRP was elevated during the osseointegration with LIPUS treatment. In vitro, LIPUS promoted αCGRP secretion in DRG neurons, thereby enhanced osteogenic differentiation and mineralization of osteoblasts. Also we proved that the effects of LIPUS was duty cycle-related and LIPUS of 80% duty cycle had the strongest impacts. CONCLUSIONS Our findings demonstrated that LIPUS could enhance osseointegration of dental implant by inducing local neuronal production of αCGRP, providing a new idea to promote peri-implant osseointegration and bone regeneration.
Collapse
Affiliation(s)
- Yixuan Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ying Yuan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yi Xiong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bin Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yanjun Guo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ping Gong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Liang Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
9
|
Tabuchi Y, Hasegawa H, Suzuki N, Furusawa Y, Hirano T, Nagaoka R, Takeuchi SI, Shiiba M, Mochizuki T. Low-intensity pulsed ultrasound promotes the expression of immediate-early genes in mouse ST2 bone marrow stromal cells. J Med Ultrason (2001) 2020; 47:193-201. [PMID: 32026128 DOI: 10.1007/s10396-020-01007-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 12/26/2019] [Indexed: 10/25/2022]
Abstract
PURPOSE The effects of low-intensity pulsed ultrasound (LIPUS) on the expression of immediate-early genes (IEGs) in bone marrow stromal cells (BMSCs) were evaluated to elucidate the early cellular response to LIPUS. METHODS Mouse ST2 BMSCs were treated with LIPUS (ISATA, 12-34 mW/cm2 for 20 min), then cultured at 37 °C. The expression levels of four IEGs (Fos, Egr1, Jun, and Ptgs2) and ERK1/2, a mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK), were assessed using real-time quantitative PCR and Western blot analyses, respectively. RESULTS A single exposure of LIPUS at an intensity of 25 mW/cm2 significantly and transiently increased the expression levels of all four IEGs, and the peak expression was detected at 30-60 min after LIPUS stimulation. LIPUS exposure also significantly increased the phosphorylation level of ERK1/2. U0126, an inhibitor of MAPK/ERK, significantly prevented LIPUS-induced expression of Fos and Egr1, but not that of Jun and Ptgs2. On the other hand, treatment of the cells with LIPUS did not affect cell growth or alkaline phosphatase activity, a marker of osteoblast differentiation. CONCLUSION These results suggest that LIPUS exposure significantly induces expression of IEGs such as Fos and Egr1 via the MAPK/ERK pathway in ST2 BMSCs.
Collapse
Affiliation(s)
- Yoshiaki Tabuchi
- Division of Molecular Genetics Research, Life Science Research Center, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan. .,Graduate School of Innovative Life Science, University of Toyama, Toyama, Japan.
| | - Hideyuki Hasegawa
- Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
| | - Nobuo Suzuki
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Ishikawa, Japan
| | - Yukihiro Furusawa
- Department of Liberal Arts and Sciences, Toyama Prefectural University, Toyama, Japan
| | - Tetsushi Hirano
- Division of Molecular Genetics Research, Life Science Research Center, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Ryo Nagaoka
- Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
| | - Shin-Ichi Takeuchi
- Graduate School of Biomedical Engineering, Toin University of Yokohama, Yokohama, Japan
| | - Michihisa Shiiba
- Faculty of Health Sciences, Nihon Institute of Medical Science, Saitama, Japan
| | | |
Collapse
|