1
|
Zhou D, Tian JM, Li Z, Huang J. Cbx4 SUMOylates BRD4 to regulate the expression of inflammatory cytokines in post-traumatic osteoarthritis. Exp Mol Med 2024; 56:2184-2201. [PMID: 39349832 PMCID: PMC11541578 DOI: 10.1038/s12276-024-01315-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 10/03/2024] Open
Abstract
Brominated domain protein 4 (BRD4) is a chromatin reader known to exacerbate the inflammatory response in post-traumatic osteoarthritis (PTOA) by controlling the expression of inflammatory cytokines. However, the extent to which this regulatory effect is altered after BRD4 translation remains largely unknown. In this study, we showed that the E3 SUMO protein ligase CBX4 (Cbx4) is involved in the SUMO modification of BRD4 to affect its ability to control the expression of the proinflammatory genes IL-1β, TNF-α, and IL-6 in synovial fibroblasts. Specifically, Cbx4-mediated SUMOylation of K1111 lysine residues prevents the degradation of BRD4, thereby activating the transcriptional activities of the IL-1β, TNF-α and IL-6 genes, which depend on BRD4. SUMOylated BRD4 also recruits the multifunctional methyltransferase subunit TRM112-like protein (TRMT112) to further promote the processing of proinflammatory gene transcripts to eventually increase their expression. In vivo, treatment of PTOA with a Cbx4 inhibitor in rats was comparable to treatment with BRD4 inhibitors, indicating the importance of SUMOylation in controlling BRD4 to alleviate PTOA. Overall, this study is the first to identify Cbx4 as the enzyme responsible for the SUMO modification of BRD4 and highlights the central role of the Cbx4-BRD4 axis in exacerbating PTOA from the perspective of inflammation.
Collapse
Affiliation(s)
- Ding Zhou
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jia-Ming Tian
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zi Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jun Huang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
2
|
Gu L, Li C, Peng X, Lin H, Niu Y, Zheng H, Zhao G, Lin J. Flavopiridol Protects against Fungal Keratitis due to Aspergillus fumigatus by Alleviating Inflammation through the Promotion of Autophagy. ACS Infect Dis 2022; 8:2362-2373. [PMID: 36283079 DOI: 10.1021/acsinfecdis.2c00427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Fungal keratitis is a serious infectious keratopathy related to fungal virulence and excessive inflammatory responses. Autophagy exhibits a potent ability to resolve inflammation during fungal infection. This study aimed to investigate the protective function of flavopiridol in Aspergillus fumigatus keratitis and explore its effects on autophagy. In our study, the corneas of the fungal keratitis mouse model were treated with 5 μM flavopiridol. In vitro, RAW 264.7 cells were pretreated with 200 nM flavopiridol before fungal stimulation. A. fumigatus was incubated with flavopiridol, and the antifungal activity of flavopiridol was detected. Our results indicated that flavopiridol treatment notably reduced clinical scores as well as cytokines expression of infected corneas. In infected RAW 264.7 cells, flavopiridol treatment inhibited IL-1β, IL-6, and TNF-α expression but promoted IL-10 expression. Transmission electron microscopy (TEM) images showed that more autolysosomes were present in infected corneas and RAW 264.7 cells after flavopiridol treatment. Flavopiridol treatment notably upregulated the protein expression of LC3, Beclin-1, and Atg-7. 3-Methyladenine (3-MA, an inhibitor of autophagy) pretreatment counteracted the cytokine regulation induced by flavopiridol. Moreover, flavopiridol promoted the phagocytosis of RAW 264.7 cells. Flavopiridol also exhibited antifungal activity by restricting fungal growth and limiting fungal biofilm formation and conidial adhesion. In conclusion, flavopiridol significantly alleviated the inflammation of fungal keratitis by activating autophagy. In addition, flavopiridol promoted the phagocytosis of RAW 264.7 cells and exhibited antifungal function, indicating the potential therapeutic role of flavopiridol in fungal keratitis.
Collapse
Affiliation(s)
- Lingwen Gu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Cui Li
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Xudong Peng
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Hao Lin
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Yawen Niu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Hengrui Zheng
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Guiqiu Zhao
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Jing Lin
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| |
Collapse
|
3
|
Owen MJ, Celik U, Chaudhary SK, Yik JHN, Patton JS, Kuo MC, Haudenschild DR, Liu GY. Production of Inhalable Ultra-Small Particles for Delivery of Anti-Inflammation Medicine via a Table-Top Microdevice. MICROMACHINES 2022; 13:1382. [PMID: 36144005 PMCID: PMC9501338 DOI: 10.3390/mi13091382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 06/16/2023]
Abstract
A table-top microdevice was introduced in this work to produce ultrasmall particles for drug delivery via inhalation. The design and operation are similar to that of spray-drying equipment used in industry, but the device itself is much smaller and more portable in size, simpler to operate and more economical. More importantly, the device enables more accurate control over particle size. Using Flavopiridol, an anti-inflammation medication, formulations have been developed to produce inhalable particles for pulmonary delivery. A solution containing the desired components forms droplets by passing through an array of micro-apertures that vibrate via a piezo-electrical driver. High-purity nitrogen gas was introduced and flew through the designed path, which included the funnel collection and cyclone chamber, and finally was pumped away. The gas carried and dried the micronized liquid droplets along the pathway, leading to the precipitation of dry solid microparticles. The formation of the cyclone was essential to assure the sufficient travel path length of the liquid droplets to allow drying. Synthesis parameters were optimized to produce microparticles, whose morphology, size, physio-chemical properties, and release profiles met the criteria for inhalation. Bioactivity assays have revealed a high degree of anti-inflammation. The above-mentioned approach enabled the production of inhalable particles in research laboratories in general, using the simple table-top microdevice. The microparticles enable the inhalable delivery of anti-inflammation medicine to the lungs, thus providing treatment for diseases such as pulmonary fibrosis and COVID-19.
Collapse
Affiliation(s)
- Matthew J. Owen
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | - Umit Celik
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | | | - Jasper H. N. Yik
- Tesio Pharmaceuticals, Inc., Davis, CA 95616, USA
- Department of Orthopedic Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
| | | | | | - Dominik R. Haudenschild
- Department of Orthopedic Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Gang-yu Liu
- Department of Chemistry, University of California, Davis, CA 95616, USA
| |
Collapse
|
4
|
Intra-articular injection of flavopiridol-loaded microparticles for treatment of post-traumatic osteoarthritis. Acta Biomater 2022; 149:347-358. [PMID: 35779774 DOI: 10.1016/j.actbio.2022.06.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 11/23/2022]
Abstract
Rapid joint clearance of small molecule drugs is the major limitation of current clinical approaches to osteoarthritis and its subtypes, including post-traumatic osteoarthritis (PTOA). Particulate systems such as nano/microtechnology could provide a potential avenue for improved joint retention of small molecule drugs. One drug of interest for PTOA treatment is flavopiridol, which inhibits cyclin-dependent kinase 9 (CDK9). Herein, polylactide-co-glycolide microparticles encapsulating flavopiridol were formulated, characterized, and evaluated as a strategy to mitigate PTOA-associated inflammation through the inhibition of CDK9. Characterization of the microparticles, including the drug loading, hydrodynamic diameter, stability, and release profile was performed. The mean hydrodynamic diameter of flavopiridol particles was ∼15 µm, indicating good syringeability and low potential for phagocytosis. The microparticles showed no cytotoxicity in-vitro, and drug activity was maintained after encapsulation, even after prolonged exposure to high temperatures (60 °C). Flavopiridol-loaded microparticles or blank (unloaded) microparticles were administered by intraarticular injection in a rat knee injury model of PTOA. We observed significant joint retention of flavopiridol microparticles compared to the soluble flavopiridol, confirming the sustained release behavior of the particles. Matrix metalloprotease (MMP) activity, an indicator of joint inflammation, was significantly reduced by flavopiridol microparticles 3 days post-injury. Histopathological analysis showed that flavopiridol microparticles reduced PTOA severity 28 days post-injury. Taken altogether, this work demonstrates a promising biomaterial platform for sustained small molecule drug delivery to the joint space as a therapeutic measure for post-traumatic osteoarthritis. STATEMENT OF SIGNIFICANCE: Post-traumatic osteoarthritis (PTOA) begins with the deterioration of subchondral bone and cartilage after acute injuries. In spite of the prevalence of PTOA and its associated financial and psychological burdens, therapeutic measures remain elusive. A number of small molecule drugs are now under investigation to replace FDA-approved palliative measures, including cyclin-dependent kinase 9 (CDK9) inhibitors which work by targeting early inflammatory programming after injury. However, the short half-life of these drugs is a major hurdle to their success. Here, we show that biomaterial encapsulation of Flavopiridol (CDK9 inhibitor) in poly (lactic-co-glycolic acid) microparticles is a promising route for direct delivery and improved drug retention time in the knee joint. Moreover, administration of the flavopiridol microparticles reduced the severity of PTOA.
Collapse
|
5
|
Zhu J, Guo Y. Circ_0020093 Overexpression Alleviates Interleukin-1 Beta-induced Inflammation, Apoptosis and Extracellular Matrix Degradation in Human Chondrocytes by Targeting the miR-181a-5p/ERG Pathway. Immunol Invest 2022; 51:1660-1677. [PMID: 35012421 DOI: 10.1080/08820139.2021.2021938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Osteoarthritis (OA) is a well-known chronic degenerative joint disease, with multiple changes in the phenotype of chondrocytes. Circular RNAs (circRNAs) have been shown to be involved in various human diseases, including OA. The purpose of this study was to determine the role of circ_0020093 in OA pathological changes in vitro. C28/I2 cells were treated with interleukin-1 beta (IL-1β) to mimic OA pathological conditions. The expression levels of circ_0020093, miR-181a-5p and ETS-related gene (ERG) mRNA were measured by quantitative real-time PCR (qRT-PCR). For functional analyses, cell proliferative capacity was detected using EdU assay and CCK-8 assay. Inflammatory response was assessed by determining the release of pro-inflammatory factors using ELISA kits. Cell apoptosis was examined by flow cytometry assay. The levels of apoptosis-related proteins and extracellular matrix (ECM)-associated proteins were assessed by Western blot. The binding relationship between miR-181a-5p and circ_0020093 or ERG was confirmed by RNA pull-down assay, dual-luciferase reporter assay or RIP assay. The expression level of circ_0020093 was decreased in IL-1β-treated C28/I2 cells. Circ_0020093 overexpression relieved inflammatory responses, cell apoptosis and ECM degradation in IL-1β-induced C28/I2 cells. Circ_0020093 directly targeted miR-181a-5p, and miR-181a-5p bound to the 3' -untranslated region (3'UTR) of ERG to regulate ERG expression. Circ_0020093 overexpression promoted the expression of ERG by sponging miR-181a-5p. Rescue experiments showed that miR-181a-5p overexpression or ERG knockdown could reverse the inhibitory effects of circ_0020093 overexpression on the pathological changes in IL-1β-induced C28/I2 cells. Circ_0020093 overexpression alleviated IL-1β-induced human chondrocyte inflammatory injury, apoptosis and ECM degradation by targeting miR-181a-5p/ERG pathway.
Collapse
Affiliation(s)
- Jun Zhu
- Department of Orthopedics, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang City, Hubei Province, China
| | - Yongchun Guo
- Department of Orthopedics, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang City, Hubei Province, China
| |
Collapse
|
6
|
A Green Approach to Producing Polymer Microparticles for Local Sustained Release of Flavopiridol. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-1262-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Fukui T, Yik JHN, Doyran B, Davis J, Haudenschild AK, Adamopoulos IE, Han L, Haudenschild DR. Bromodomain-containing-protein-4 and cyclin-dependent-kinase-9 inhibitors interact synergistically in vitro and combined treatment reduces post-traumatic osteoarthritis severity in mice. Osteoarthritis Cartilage 2021; 29:68-77. [PMID: 33164842 PMCID: PMC7785706 DOI: 10.1016/j.joca.2020.07.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 06/30/2020] [Accepted: 07/20/2020] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Joint injury rapidly induces expression of primary response genes (PRGs), which activate a cascade of secondary genes that destroy joint tissues and initiate post-traumatic osteoarthritis (PTOA). Bromodomain-containing-protein-4 (Brd4) and cyclin-dependent-kinase-9 (CDK9) cooperatively control the rate-limiting step of PRG transactivation, including pro-inflammatory genes. This study investigated whether Brd4 and CDK9 inhibitors suppress inflammation and prevent PTOA development in vitro and in a mouse PTOA model. METHODS The effects of Brd4 and CDK9 inhibitors (JQ1 and Flavopiridol) on PRG and associated secondary damage were rigorously tested in different settings. Short-term effects of inflammatory stimuli (IL-1β, IL-6, TNF) on human chondrocyte PRG expression were assessed by RT-PCR and microarray after 5-h. We quantified glycosaminoglycan release from IL-1β-treated bovine cartilage explants after 3-6 days, and osteoarthritic changes in mice after ACL-rupture using RT-PCR (2-24hrs), in vivo imaging of MMP activity (24hrs), AFM-nanoindentation (3-7days), and histology (3days-4wks). RESULTS Flavopiridol and JQ1 inhibitors act synergistically, and a combination of both almost completely prevented the activation of most IL-1β-induced PRGs in vitro by microarray analysis, and prevented IL-1β-induced glycosaminoglycan release from cartilage explants. Mice given the drug combination showed reduced IL-1β and IL-6 expression, less in vivo MMP activity, and lower synovitis (1.5 vs 4.9) and OARSI scores (2.8 vs 6.0) than untreated mice with ACL-rupture. CONCLUSIONS JQ1 and Flavopiridol work synergistically to reduce injury response after joint trauma, suggesting that targeting Brd4 and/or CDK9 could be a viable strategy for PTOA prevention and treatment of early OA.
Collapse
Affiliation(s)
- Tomoaki Fukui
- Department of Orthopaedic Surgery, University of California Davis School of Medicine, 4635 Second Avenue, Sacramento, CA 95817 USA Tel:916-734-5015 Fax:916-734-5750
| | - Jasper H. N. Yik
- Department of Orthopaedic Surgery, University of California Davis School of Medicine, 4635 Second Avenue, Sacramento, CA 95817 USA Tel:916-734-5015 Fax:916-734-5750
| | - Basak Doyran
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, USA
| | - Jack Davis
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children-Northern California, Sacramento, CA, USA
| | - Anne K. Haudenschild
- Department of Biomedical Engineering, University of California Davis, Davis, CA USA
| | - Iannis E. Adamopoulos
- Department of Internal Medicine, Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, CA, USA,Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children-Northern California, Sacramento, CA, USA
| | - Lin Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, USA
| | - Dominik R. Haudenschild
- Department of Orthopaedic Surgery, University of California Davis School of Medicine, 4635 Second Avenue, Sacramento, CA 95817 USA Tel:916-734-5015 Fax:916-734-5750
| |
Collapse
|
8
|
Rai MF. Nip it in the bud: potential for the early treatment of osteoarthritis. Osteoarthritis Cartilage 2021; 29:6-7. [PMID: 33075482 DOI: 10.1016/j.joca.2020.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/05/2020] [Accepted: 09/27/2020] [Indexed: 02/02/2023]
Affiliation(s)
- M F Rai
- Department of Orthopedic Surgery, Washington University School of Medicine, St Louis, MO, USA; Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
9
|
Transcriptional cyclin-dependent kinases as the mediators of inflammation-a review. Gene 2020; 769:145200. [PMID: 33031895 DOI: 10.1016/j.gene.2020.145200] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/18/2020] [Accepted: 09/29/2020] [Indexed: 12/19/2022]
Abstract
Cyclin-dependent kinases (CDKs) belong to the serine/threonine kinase family, and their unique interactions with a variety of cyclin complexes influence its catalytic activity to ensure unimpaired cell cycle progression. In addition to their cell cycle regulatory roles, it is becoming increasingly clear that the CDKs can have multiple functional roles like transcription, epigenetic regulation, metabolism, stem cell self-renewal, neuronal functions, and in spermatogenesis. Further in addition, recent reports suggest that CDKs have a remarkable regulatory role in influencing the pro-inflammatory functions of various cytokines during the clinical inflammatory responses. CDKs initiate the inflammatory responses by triggering the activity of prominent pro-inflammatory transcription factors such as nuclear factor kappa B (NF-kB), signal transducer and activator of transcription 3 (STAT3), and activator protein 1 (AP-1). The transcriptional CDKs (tCDKs) is crucial for organizing various transcription events and associated processes such as RNA capping, splicing, 3' end formation, and chromatin remodeling. Although the in-depth mechanism of certain mammalian CDKs is explored with respect to inflammation, the role of other tCDKs or any synergistic play among the members still remains unexplored. Until today, there is only supportive and palliative care available most of the inflammatory disorders, and thus it is the right time to explore novel pharmacological targets. In this regard, we focus on the pathophysiological role of CDK7, CDK8 and CDK9 and their impact on the development of inflammatory disorders within the mammals. Additionally, we discuss the potential trends of having tCDKs as a therapeutic target for fine-tuning inflammatory disorders.
Collapse
|
10
|
P-TEFb as A Promising Therapeutic Target. Molecules 2020; 25:molecules25040838. [PMID: 32075058 PMCID: PMC7070488 DOI: 10.3390/molecules25040838] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 01/19/2023] Open
Abstract
The positive transcription elongation factor b (P-TEFb) was first identified as a general factor that stimulates transcription elongation by RNA polymerase II (RNAPII), but soon afterwards it turned out to be an essential cellular co-factor of human immunodeficiency virus (HIV) transcription mediated by viral Tat proteins. Studies on the mechanisms of Tat-dependent HIV transcription have led to radical advances in our knowledge regarding the mechanism of eukaryotic transcription, including the discoveries that P-TEFb-mediated elongation control of cellular transcription is a main regulatory step of gene expression in eukaryotes, and deregulation of P-TEFb activity plays critical roles in many human diseases and conditions in addition to HIV/AIDS. P-TEFb is now recognized as an attractive and promising therapeutic target for inflammation/autoimmune diseases, cardiac hypertrophy, cancer, infectious diseases, etc. In this review article, I will summarize our knowledge about basic P-TEFb functions, the regulatory mechanism of P-TEFb-dependent transcription, P-TEFb’s involvement in biological processes and diseases, and current approaches to manipulating P-TEFb functions for the treatment of these diseases.
Collapse
|
11
|
CDK9 attenuation exerts protective effects on catabolism and hypertrophy in chondrocytes and ameliorates osteoarthritis development. Biochem Biophys Res Commun 2019; 517:132-139. [DOI: 10.1016/j.bbrc.2019.07.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 07/10/2019] [Indexed: 02/06/2023]
|
12
|
Wijnen AJ, Westendorf JJ. Epigenetics as a New Frontier in Orthopedic Regenerative Medicine and Oncology. J Orthop Res 2019; 37:1465-1474. [PMID: 30977555 PMCID: PMC6588446 DOI: 10.1002/jor.24305] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/24/2019] [Accepted: 03/27/2019] [Indexed: 02/04/2023]
Abstract
Skeletal regenerative medicine aims to repair or regenerate skeletal tissues using pharmacotherapies, cell-based treatments, and/or surgical interventions. The field is guided by biological principles active during development, wound healing, aging, and carcinogenesis. Skeletal development and tissue maintenance in adults represent highly intricate biological processes that require continuous adjustments in the expression of cell type-specific genes that generate, remodel, and repair the skeletal extracellular matrix. Errors in these processes can facilitate musculoskeletal disease including cancers or injury. The fundamental molecular mechanisms by which cell type-specific patterns in gene expression are established and retained during successive mitotic divisions require epigenetic control, which we review here. We focus on epigenetic regulatory proteins that control the mammalian epigenome at the level of chromatin with emphasis on proteins that are amenable to drug intervention to mitigate skeletal tissue degeneration (e.g., osteoarthritis and osteoporosis). We highlight recent findings on a number of druggable epigenetic regulators, including DNA methyltransferases (e.g., DNMT1, DNMT3A, and DNMT3B) and hydroxylases (e.g., TET1, TET2, and TET3), histone methyltransferases (e.g., EZH1, EZH2, and DOT1L) as well as histone deacetylases (e.g., HDAC3, HDAC4, and HDAC7) and histone acetyl readers (e.g., BRD4) in relation to the development of bone or cartilage regenerative drug therapies. We also review how histone mutations lead to epigenomic catastrophe and cause musculoskeletal tumors. The combined body of molecular and genetic studies focusing on epigenetic regulators indicates that these proteins are critical for normal skeletogenesis and viable candidate drug targets for short-term local pharmacological strategies to mitigate musculoskeletal tissue degeneration. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:1465-1474, 2019.
Collapse
Affiliation(s)
- Andre J. Wijnen
- Department of Orthopedic SurgeryMayo Clinic200 First Street SW Rochester Minnesota
| | | |
Collapse
|
13
|
Liu YX, Wang GD, Wang X, Zhang YL, Zhang TL. Effects of TLR-2/NF-κB signaling pathway on the occurrence of degenerative knee osteoarthritis: an in vivo and in vitro study. Oncotarget 2018; 8:38602-38617. [PMID: 28418842 PMCID: PMC5503557 DOI: 10.18632/oncotarget.16199] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 02/06/2017] [Indexed: 11/25/2022] Open
Abstract
The study aims to explore the effects of TLR-2/NF-κB signaling pathway on the occurrence of degenerative knee osteoarthritis (OA). Degenerative knee OA and normal cartilage samples were collected from patients with degenerative knee OA receiving total knee arthroplasty and amputation. Expressions of TLR-2, NF-κB and MMP-13 were determined by qRT-PCR and immunochemistry. The chondrocytes were divided into control, IL-1β, IL-1β + anti-TLR-2 and IL-1β + PDTC groups. MTT assay and flow cytometry were performed to determine proliferation and apoptosis of the chondrocytes. Expressions of TLR-2, NF-κB and MMP-13 were measured by Western blotting. ELISA was conducted to detect the expressions of related inflammatory factors. The positive expressions of TLR, NF-κB and MMP13 were associated with body mass index (BMI), family history, exercise, and WOMAC scores of OA patients. Logistic regression analysis showed that OA influencing factors were TLR, NF-κB, MMP13, BMI, family history and exercise. Compared with normal chondrocytes, the expressions of TLR-2, NF-κB, MMP-13 and related inflammatory factors increased in degenerative knee OA. The chondrocytes in the IL-1β + anti-TLR-2 and IL-1β + PDTC groups showed lower apoptosis rates than those in the IL-1β group. Compared with the control group, increased expressions of TLR-2, NF-κB, phosphorylated-NF-κB (p-NF-κB), MMP-13, IL-1, IL-6 and TNF-α were found in the IL-1β group. In the IL-1β + anti-TLR-2 and IL-1β + PDTC groups, decreased expressions of NF-κB, p-NF-κB, MMP-13, IL-1, IL-6 and TNF-α were found compared with those in the IL-1β group. TLR-2/NF-κB signaling pathway contributes to the occurrence of degenerative knee OA.
Collapse
Affiliation(s)
- Yi-Xun Liu
- Department of Orthopedic, Huaihe Hospital of Henan University, Kaifeng, China
| | - Guo-Dong Wang
- Department of Orthopedic, Huaihe Hospital of Henan University, Kaifeng, China
| | - Xiao Wang
- Department of Orthopedic, Huaihe Hospital of Henan University, Kaifeng, China
| | - Yong-Le Zhang
- Department of Orthopedic, Huaihe Hospital of Henan University, Kaifeng, China
| | - Tian-Lun Zhang
- School of Aerospace Engineering, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
14
|
Hu Z, Chen Y, Song L, Yik JHN, Haudenschild DR, Fan S. Flavopiridol Protects Bone Tissue by Attenuating RANKL Induced Osteoclast Formation. Front Pharmacol 2018; 9:174. [PMID: 29773986 PMCID: PMC5944179 DOI: 10.3389/fphar.2018.00174] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 02/15/2018] [Indexed: 01/23/2023] Open
Abstract
Bone resorption and homeostasis is carried out by osteoclasts, whose differentiation and activity are regulated by the RANK/RANKL axis. Our previous studies using a mouse model of joint injury show that joint trauma induces local inflammation followed by bone remodeling. The transcription factor cyclin-dependent kinase 9 (CDK9) is the major regulator of inflammation, as CDK9 inhibitor flavopiridol effectively suppress injury-induced inflammatory response. The objective of this study was to investigate the underlying mechanism through which flavopiridol regulates bone resorption. The effects of CDK9 inhibition, by the specific-inhibitor flavopiridol, on bone resorption were determined in vivo using two distinct and clinically relevant bone remodeling models. The first model involved titanium particle-induced acute osteolysis, and the second model was ovariectomy-induced chronic osteoporosis. The effects and mechanism of CDK9 inhibition on osteoclastogenesis were examined using in vitro culture of bone marrow macrophages (BMMs). Our results indicated that flavopiridol potently suppressed bone resorption in both in vivo bone-remodeling models. In addition, CDK9 inhibition suppressed in vitro osteoclastogenesis of BMM and reduced their expression of osteoclast-specific genes. Finally, we determined that flavopiridol suppressed RANKL signaling pathway via inhibition of p65 phosphorylation and nuclear translocation of NF-κB. Summary, CDK9 is a potential therapeutic target to prevent osteolysis and osteoporosis by flavopiridol treatment.
Collapse
Affiliation(s)
- Zi'ang Hu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yilei Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lijiang Song
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jasper H N Yik
- Lawrence J. Ellison Musculoskeletal Research Center, Department of Orthopaedic Surgery, University of California, Davis, Davis, CA, United States
| | - Dominik R Haudenschild
- Lawrence J. Ellison Musculoskeletal Research Center, Department of Orthopaedic Surgery, University of California, Davis, Davis, CA, United States
| | - Shunwu Fan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
15
|
Abstract
Osteoarthritis is characterized by a chronic, progressive and irreversible degradation of the articular cartilage associated with joint inflammation and a reparative bone response. More than 100 million people are affected by this condition worldwide with significant health and welfare costs. Our available treatment options in osteoarthritis are extremely limited. Chondral or osteochondral grafts have shown some promising results but joint replacement surgery is by far the most common therapeutic approach. The difficulty lies on the limited regeneration capacity of the articular cartilage, poor blood supply and the paucity of resident progenitor stem cells. In addition, our poor understanding of the molecular signalling pathways involved in the senescence and apoptosis of chondrocytes is a major factor restricting further progress in the area. This review focuses on molecules and approaches that can be implemented to delay or even rescue chondrocyte apoptosis. Ways of modulating the physiologic response to trauma preventing chondrocyte death are proposed. The use of several cytokines, growth factors and advances made in altering several of the degenerative genetic pathways involved in chondrocyte apoptosis and degradation are also presented. The suggested approaches can help clinicians to improve cartilage tissue regeneration.
Collapse
Affiliation(s)
- Ippokratis Pountos
- Academic Department of Trauma & Orthopaedics, School of Medicine, University of Leeds, UK.
| | - Peter V Giannoudis
- Academic Department of Trauma & Orthopaedics, School of Medicine, University of Leeds, UK; NIHR Leeds Biomedical Research Center, Chapel Allerton Hospital, Leeds, UK.
| |
Collapse
|
16
|
Nguyen QT, Jacobsen TD, Chahine NO. Effects of Inflammation on Multiscale Biomechanical Properties of Cartilaginous Cells and Tissues. ACS Biomater Sci Eng 2017; 3:2644-2656. [PMID: 29152560 PMCID: PMC5686563 DOI: 10.1021/acsbiomaterials.6b00671] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/24/2017] [Indexed: 12/20/2022]
Abstract
![]()
Cells
within cartilaginous tissues are mechanosensitive and thus
require mechanical loading for regulation of tissue homeostasis and
metabolism. Mechanical loading plays critical roles in cell differentiation,
proliferation, biosynthesis, and homeostasis. Inflammation is an important
event occurring during multiple processes, such as aging, injury,
and disease. Inflammation has significant effects on biological processes
as well as mechanical function of cells and tissues. These effects
are highly dependent on cell/tissue type, timing, and magnitude. In
this review, we summarize key findings pertaining to effects of inflammation
on multiscale mechanical properties at subcellular, cellular, and
tissue level in cartilaginous tissues, including alterations in mechanotransduction
and mechanosensitivity. The emphasis is on articular cartilage and
the intervertebral disc, which are impacted by inflammatory insults
during degenerative conditions such as osteoarthritis, joint pain,
and back pain. To recapitulate the pro-inflammatory cascades that
occur in vivo, different inflammatory stimuli have been used for in
vitro and in situ studies, including tumor necrosis factor (TNF),
various interleukins (IL), and lipopolysaccharide (LPS). Therefore,
this review will focus on the effects of these stimuli because they
are the best studied pro-inflammatory cytokines in cartilaginous tissues.
Understanding the current state of the field of inflammation and cell/tissue
biomechanics may potentially identify future directions for novel
and translational therapeutics with multiscale biomechanical considerations.
Collapse
Affiliation(s)
- Q T Nguyen
- Bioengineering-Biomechanics Laboratory The Feinstein Institute for Medical Research, Northwell Health System, Manhasset, New York 11030, United States
| | - T D Jacobsen
- Bioengineering-Biomechanics Laboratory The Feinstein Institute for Medical Research, Northwell Health System, Manhasset, New York 11030, United States.,Hofstra Northwell School of Medicine, Hempstead, New York 11549, United States
| | - N O Chahine
- Bioengineering-Biomechanics Laboratory The Feinstein Institute for Medical Research, Northwell Health System, Manhasset, New York 11030, United States.,Hofstra Northwell School of Medicine, Hempstead, New York 11549, United States
| |
Collapse
|