1
|
Kleuskens MWA, Crispim JF, van Donkelaar CC, Janssen RPA, Ito K. Evaluating Initial Integration of Cell-Based Chondrogenic Constructs in Human Osteochondral Explants. Tissue Eng Part C Methods 2022; 28:34-44. [PMID: 35018813 DOI: 10.1089/ten.tec.2021.0196] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Integration of an implant with the surrounding tissue is a major challenge in cartilage regeneration. It is usually assessed with in vivo animal studies at the end-stage of implant development. To reduce animal experimentation and at the same time increase screening throughput and speed up implant development, this study examined whether integration of allogeneic cell-based implants with the surrounding native cartilage could be demonstrated in an ex vivo human osteochondral culture model. Chondrocytes were isolated from smooth cartilage tissue of fresh human tibial plateaus and condyles. They were expanded for 12 days either in three-dimensional spinner flask cultures to generate organoids, or in two-dimensional culture flasks for standard cell expansion. Three implant groups were created (fibrin+organoids, fibrin+cells, and fibrin only) and used to fill a Ø 6 mm full-depth chondral defect created in human osteochondral explants (Ø 10 mm, bone length cut to 4 mm) harvested from a second set of fresh human tibial plateaus. Explants were cultured for 1 or 28 days in a double-chamber culture platform. Histology showed that after 28 days the organoids on the interface of the defect remodeled and merged, and cells migrated through the fibrin glue bridging the space between the organoids and between the organoids and the native cartilage. For both conditions, newly formed tissue rich in proteoglycans and collagen type II was present mainly on the edges and in the corners of the defect. In these matrix-rich areas, cells resided in lacunae and the newly formed tissue integrated with the surrounding native cartilage. Biochemical analysis revealed a statistically significant effect of culture time on glycosaminoglycan (GAG) content, and showed a higher hydroxyproline (HYP) content for organoid-filled implants compared with cell-filled implants at both timepoints. This ex vivo human osteochondral culture system provides possibilities for exploration and identification of promising implant strategies based on evaluation of integration and matrix production under more controlled experimental conditions than possible in vivo.
Collapse
Affiliation(s)
- Meike W A Kleuskens
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, The Netherlands
| | - João F Crispim
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, The Netherlands
| | - Corrinus C van Donkelaar
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, The Netherlands
| | - Rob P A Janssen
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, The Netherlands.,Department of Orthopaedic Surgery and Trauma, Máxima Medical Center, Eindhoven-Veldhoven, The Netherlands.,Department of Paramedical Sciences, Fontys University of Applied Sciences, Eindhoven, The Netherlands
| | - Keita Ito
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, The Netherlands
| |
Collapse
|
2
|
Awang-Junaidi AH, Singh J, Honaramooz A. Regeneration of testis tissue after ectopic implantation of porcine testis cell aggregates in mice: improved consistency of outcomes and in situ monitoring. Reprod Fertil Dev 2021; 32:594-609. [PMID: 32051087 DOI: 10.1071/rd19043] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 10/08/2019] [Indexed: 12/12/2022] Open
Abstract
Ectopic implantation of donor testis cell aggregates in recipient mice results in de novo formation or regeneration of testis tissue and, as such, provides a unique invivo model for the study of testis development. However, currently the results are inconsistent and the efficiency of the model remains low. This study was designed to: (1) examine several factors that can potentially improve the consistency and efficiency of this model and (2) explore the use of ultrasound biomicroscopy (UBM) for the non-invasive invivo evaluation of implants. Testis cell aggregates, containing ~40% gonocytes, from 1-week-old donor piglets were implanted under the back skin of immunodeficient mice through skin incisions using gel matrices or through subcutaneous injection without using gel matrices. The addition of gel matrices led to inconsistent tissue development; gelatin had the greatest development, followed by collagen, whereas agarose resulted in poor development. The results also depended on the implanted cell numbers since implants with 100×106 cells were larger than those with 50×106 cells. The injection approach for cell implantation was less invasive and resulted in more consistent and efficient testis tissue development. UBM provided promising results as a means of non-invasive monitoring of implants.
Collapse
Affiliation(s)
- Awang Hazmi Awang-Junaidi
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4 Canada; and Present address: Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - Jaswant Singh
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4 Canada
| | - Ali Honaramooz
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4 Canada; and Corresponding author.
| |
Collapse
|
3
|
Fayaz MA, Awang-Junaidi AH, Singh J, Honaramooz A. Long-Term Monitoring of Donor Xenogeneic Testis Tissue Grafts and Cell Implants in Recipient Mice Using Ultrasound Biomicroscopy. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:3088-3103. [PMID: 32800471 DOI: 10.1016/j.ultrasmedbio.2020.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/24/2020] [Accepted: 07/13/2020] [Indexed: 06/11/2023]
Abstract
Testis tissue xenografting and testis cell aggregate implantation from various donor species into recipient mice are novel models for the study and manipulation of testis formation and function in target species. Thus far, the analysis of such studies has been limited to surgical or post-mortem retrieval of samples. Here we used ultrasound biomicroscopy (UBM) to monitor the development of neonatal porcine testis grafts and implants in host mice for 24 wk, and to correlate UBM and (immuno)histologic changes. This led to long-term visualization of gradual changes in volume, dimension and structure of grafts and implants; detection of a 4 wk developmental gap between grafts and implants; and revelation of differences in implant development depending on the craniocaudal site of implantation on the back of host mice. Our data support the reliability and precision of UBM for longitudinal study of transplants, which eliminates the need for frequent surgical sampling.
Collapse
Affiliation(s)
- Mohammad Amin Fayaz
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B4, Canada
| | - Awang Hazmi Awang-Junaidi
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B4, Canada; Present address: Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Malaysia
| | - Jaswant Singh
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B4, Canada
| | - Ali Honaramooz
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B4, Canada.
| |
Collapse
|
4
|
Di Federico E, Bader DL, Shelton JC. 3D models of chondrocytes within biomimetic scaffolds: Effects of cell deformation from loading regimens. Clin Biomech (Bristol, Avon) 2020; 79:104972. [PMID: 32093973 DOI: 10.1016/j.clinbiomech.2020.01.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 11/26/2019] [Accepted: 01/28/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Mechanical conditioning has been widely used to attempt to enhance chondrocyte metabolism for the evolution of functionally competent cartilage. However, although upregulation of proteoglycans have been reported through the application of uniaxial compression, minimal collagen has been produced. The study is designed to examine whether alternative loading regimens, equivalent to physiological conditions, involving shear in addition to compression can enhance collagen production. METHODS Finite element models were developed to determine how the local chondrocyte environments within agarose constructs were influenced by a range of static and dynamic loading regimens. 3-D poro-viscoelastic models were validated against experimental data. In particular, these models were used to characterise chondrocyte deformation in compression with and without shear superimposed, with special reference to the formation of pericellular matrix around the cells. FINDINGS The models of the hydrogel constructs under stress relaxation and dynamic cyclic compression conditions were highly correlated with the experimental data. The cell deformation (y/z) in the constructs was greatest in the centre of the constructs, increasing with magnitude of compression up to 25%. The superposition of shear however did not produce significant additional changes in deformation, with the presence of PCM reducing the chondrocyte deformation. INTERPRETATION The use of FE models can prove important in the definition of appropriate, optimised mechanical conditioning regimens for the synthesis and organisation of mature extra cellular matrix by chondrocyte-seeded constructs. They will also provide insight into the mechanisms relating cell deformation to mechanotransduction pathways, thereby progressing the development of functionally competent tissue engineered cartilage.
Collapse
Affiliation(s)
- Erica Di Federico
- Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, UK
| | - Dan L Bader
- Faculty of Health Sciences, University of Southampton, UK
| | - Julia C Shelton
- Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, UK.
| |
Collapse
|
5
|
Rytky SJO, Tiulpin A, Frondelius T, Finnilä MAJ, Karhula SS, Leino J, Pritzker KPH, Valkealahti M, Lehenkari P, Joukainen A, Kröger H, Nieminen HJ, Saarakkala S. Automating three-dimensional osteoarthritis histopathological grading of human osteochondral tissue using machine learning on contrast-enhanced micro-computed tomography. Osteoarthritis Cartilage 2020; 28:1133-1144. [PMID: 32437969 DOI: 10.1016/j.joca.2020.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 04/16/2020] [Accepted: 05/01/2020] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To develop and validate a machine learning (ML) approach for automatic three-dimensional (3D) histopathological grading of osteochondral samples imaged with contrast-enhanced micro-computed tomography (CEμCT). DESIGN A total of 79 osteochondral cores from 24 total knee arthroplasty patients and two asymptomatic donors were imaged using CEμCT with phosphotungstic acid -staining. Volumes-of-interest (VOI) in surface (SZ), deep (DZ) and calcified (CZ) zones were extracted depth-wise and subjected to dimensionally reduced Local Binary Pattern -textural feature analysis. Regularized linear and logistic regression (LR) models were trained zone-wise against the manually assessed semi-quantitative histopathological CEμCT grades (diameter = 2 mm samples). Models were validated using nested leave-one-out cross-validation and an independent test set (4 mm samples). The performance was primarily assessed using Mean Squared Error (MSE) and Average Precision (AP, confidence intervals are given in square brackets). RESULTS Highest performance on cross-validation was observed for SZ, both on linear regression (MSE = 0.49, 0.69 and 0.71 for SZ, DZ and CZ, respectively) and LR (AP = 0.9 [0.77-0.99], 0.46 [0.28-0.67] and 0.65 [0.41-0.85] for SZ, DZ and CZ, respectively). The test set evaluations yielded increased MSE on all zones. For LR, the performance was also best for the SZ (AP = 0.85 [0.73-0.93], 0.82 [0.70-0.92] and 0.8 [0.67-0.9], for SZ, DZ and CZ, respectively). CONCLUSION We present the first ML-based automatic 3D histopathological osteoarthritis (OA) grading method which also adequately perform on grading unseen data, especially in SZ. After further development, the method could potentially be applied by OA researchers since the grading software and all source codes are publicly available.
Collapse
Affiliation(s)
- S J O Rytky
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland.
| | - A Tiulpin
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland; Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland.
| | - T Frondelius
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland.
| | - M A J Finnilä
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland; Medical Research Center, University of Oulu, Oulu, Finland.
| | - S S Karhula
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland; Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland.
| | - J Leino
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland.
| | - K P H Pritzker
- Department of Laboratory Medicine and Pathobiology, Surgery University of Toronto, Toronto, Ontario, Canada; Mount Sinai Hospital, Toronto, Ontario, Canada.
| | - M Valkealahti
- Department of Surgery and Intensive Care, Oulu University Hospital, Oulu, Finland.
| | - P Lehenkari
- Medical Research Center, University of Oulu, Oulu, Finland; Department of Surgery and Intensive Care, Oulu University Hospital, Oulu, Finland; Cancer and Translational Medical Research Unit, Faculty of Medicine, University of Oulu, Oulu, Finland.
| | - A Joukainen
- Department of Orthopaedics, Traumatology and Hand Surgery, Kuopio University Hospital, Kuopio, Finland.
| | - H Kröger
- Department of Orthopaedics, Traumatology and Hand Surgery, Kuopio University Hospital, Kuopio, Finland.
| | - H J Nieminen
- Dept. of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland; Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland.
| | - S Saarakkala
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland; Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland.
| |
Collapse
|
6
|
Nieminen H, Gahunia H, Pritzker K, Ylitalo T, Rieppo L, Karhula S, Lehenkari P, Hæggström E, Saarakkala S. 3D histopathological grading of osteochondral tissue using contrast-enhanced micro-computed tomography. Osteoarthritis Cartilage 2017; 25:1680-1689. [PMID: 28606558 PMCID: PMC5773475 DOI: 10.1016/j.joca.2017.05.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 05/24/2017] [Accepted: 05/31/2017] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Histopathological grading of osteochondral (OC) tissue is widely used in osteoarthritis (OA) research, and it is relatively common in post-surgery in vitro diagnostics. However, relying on thin tissue section, this approach includes a number of limitations, such as: (1) destructiveness, (2) sample processing artefacts, (3) 2D section does not represent spatial 3D structure and composition of the tissue, and (4) the final outcome is subjective. To overcome these limitations, we recently developed a contrast-enhanced μCT (CEμCT) imaging technique to visualize the collagenous extracellular matrix (ECM) of articular cartilage (AC). In the present study, we demonstrate that histopathological scoring of OC tissue from CEμCT is feasible. Moreover, we establish a new, semi-quantitative OA μCT grading system for OC tissue. RESULTS Pathological features were clearly visualized in AC and subchondral bone (SB) with μCT and verified with histology, as demonstrated with image atlases. Comparison of histopathological grades (OARSI or severity (0-3)) across the characterization approaches, CEμCT and histology, excellent (0.92, 95% CI = [0.84, 0.96], n = 30) or fair (0.50, 95% CI = [0.16, 0.74], n = 27) intra-class correlations (ICC), respectively. A new μCT grading system was successfully established which achieved an excellent cross-method (μCT vs histology) reader-to-reader intra-class correlation (0.78, 95% CI = [0.58, 0.89], n = 27). CONCLUSIONS We demonstrated that histopathological information relevant to OA can reliably be obtained from CEμCT images. This new grading system could be used as a reference for 3D imaging and analysis techniques intended for volumetric evaluation of OA pathology in research and clinical applications.
Collapse
Affiliation(s)
- H.J. Nieminen
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada,Department of Physics, University of Helsinki, Helsinki, Finland,Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland,Address correspondence and reprint requests to: H.J. Nieminen, Department of Neuroscience and Biomedical Engineering, Aalto University, School of Science, POB 12200, FI-00076 Aalto, Finland.Department of Neuroscience and Biomedical EngineeringAalto UniversitySchool of SciencePOB 12200AaltoFI-00076Finland
| | - H.K. Gahunia
- Orthopedic Science Consulting Services, Oakville, Ontario, Canada
| | - K.P.H. Pritzker
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada,Department of Laboratory Medicine and Pathobiology, Mount Sinai Hospital, Toronto, Canada
| | - T. Ylitalo
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland,Department of Physics, University of Helsinki, Helsinki, Finland
| | - L. Rieppo
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - S.S. Karhula
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland,Infotech Doctoral Program, University of Oulu, Oulu, Finland
| | - P. Lehenkari
- Department of Anatomy and Cell Biology, University of Oulu, Oulu, Finland,Department of Surgery and Intensive Care, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - E. Hæggström
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - S. Saarakkala
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland,Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
7
|
DiFederico E, Shelton JC, Bader DL. Complex mechanical conditioning of cell-seeded agarose constructs can influence chondrocyte biosynthetic activity. Biotechnol Bioeng 2017; 114:1614-1625. [PMID: 28240346 DOI: 10.1002/bit.26273] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 01/16/2017] [Accepted: 02/07/2017] [Indexed: 11/10/2022]
Abstract
Articular cartilage with its inherently poor capacity for self-regeneration represents a primary target for tissue engineering strategies, with approaches focusing on the in vitro generation of neo-cartilage using chondrocyte-seeded 3D scaffolds subjected to mechanical conditioning. Although uniaxial compression regimens have significantly up-regulated proteoglycan synthesis, their effects on the synthesis of collagen have been modest. Articular cartilage is subjected to shear forces during joint motion. Accordingly, this study utilized an apparatus to apply biaxial loading to chondrocytes seeded within agarose constructs with endplates. The chondrocytes yielded a monotonic increase in proteoglycan synthesis both in free swelling culture up to day 8 and when the constructs were subjected to dynamic compression alone (15% amplitude at a frequency of 1 Hz for 48 h). However, when dynamic shear (10% amplitude at 1 Hz) was superimposed on dynamic compression, total collagen synthesis was also up-regulated, within 3 days of culture, without compromising proteoglycan synthesis. Histological analysis revealed marked collagen deposition around individual chondrocytes. A significant proportion (50%) of collagen was released into the culture medium, suggesting that it had only been partially synthesized in its mature state. The overall biosynthetic activity was enhanced more when the biaxial stimulation was applied in a continuous mode as opposed to intermittent loading. Results of the present study strongly suggest that proteoglycan and collagen synthesis may be triggered by uncoupled mechanosensitive cellular responses. The proposed in vitro model and the prescribed conditioning protocols demonstrated that a short pre-culture period is preferable to long free swelling culture condition as it enables a significantly higher up-regulation of collagen. Biotechnol. Bioeng. 2017;114: 1614-1625. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Erica DiFederico
- Medical Engineering Division, School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK.,Department of Bioengineering, Imperial College, London, UK
| | - Julia C Shelton
- Medical Engineering Division, School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Daniel L Bader
- Medical Engineering Division, School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK.,Faculty of Health Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
8
|
Ultrasound palpation for fast in-situ quantification of articular cartilage stiffness, thickness and relaxation capacity. Biomech Model Mechanobiol 2017; 16:1171-1185. [PMID: 28210824 DOI: 10.1007/s10237-017-0880-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 01/24/2017] [Indexed: 12/13/2022]
Abstract
Most current cartilage testing devices require the preparation of excised samples and therefore do not allow intra-operative application for diagnostic purposes. The gold standard during open or arthroscopic surgery is still the subjective perception of manual palpation. This work presents a new diagnostic method of ultrasound palpation (USP) to acquire applied stress and strain data during manual palpation of articular cartilage. With the proposed method, we obtain cartilage thickness and stiffness. Moreover, repeated palpations allow the quantification of relaxation effects. USP measurements on elastomer phantoms demonstrated very good repeatability for both, stage-guided (97.2%) and handheld (96.0%) applications. The USP measurements were compared with conventional indentation experiments and revealed very good agreement on elastomer phantoms ([Formula: see text]) and good agreement on porcine cartilage samples ([Formula: see text]). Artificially degenerated cartilage samples showed reduced stiffness, weak capacity to relax after palpation and an increase of stiffness of approximately 50% with each single palpation. Intact cartilage was measured by USP directly at the patella (in situ) and after excision and removal of the subchondral bone (ex situ), leading to stiffness values of [Formula: see text] and [Formula: see text] ([Formula: see text]), respectively. The results demonstrate the potential of the USP system for cartilage testing, its sensitivity to degenerative changes and as a method for quantifying relaxation processes by means of repeated palpations. Furthermore, the differences in the results of in-situ and ex-situ measurements are of general interest, since such comparison has not been reported previously. We point out the limited comparability of ex-situ cartilage with its in-situ biomechanical behavior.
Collapse
|