1
|
Lückgen J, Diederichs S, Raqué E, Renkawitz T, Richter W, Buchert J. Mechanoinduction of PTHrP/cAMP-signaling governs proteoglycan production in mesenchymal stromal cell-derived neocartilage. J Cell Physiol 2024:e31430. [PMID: 39238313 DOI: 10.1002/jcp.31430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/15/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024]
Abstract
Abnormal mechanical loading is one of the major risk factors for articular cartilage degeneration. Engineered mesenchymal stromal cell (MSC)-derived cartilage holds great promise for cell-based cartilage repair. However, physiological loading protocols were shown to reduce matrix synthesis of MSC-derived neocartilage in vitro and the regulators of this undesired mechanoresponse remain poorly understood. Parathyroid hormone-related protein (PTHrP) is involved in cartilage development and can affect extracellular matrix (ECM) production during MSC chondrogenesis opposingly, depending on a continuous or transient exposure. PTHrP is induced by various mechanical cues in multiple tissues and species; but whether PTHrP is regulated in response to loading of human engineered neocartilage and may affect matrix synthesis in a positive or negative manner is unknown. The aim of this study was to investigate whether dynamic loading adjusts PTHrP-signaling in human MSC-derived neocartilage and whether it regulates matrix synthesis and other factors involved in the MSC mechanoresponse. Interestingly, MSC-derived chondrocytes significantly upregulated PTHrP mRNA (PTHLH) expression along with its second messenger cAMP in response to loading in our custom-built bioreactor. Exogenous PTHrP(1-34) induced the expression of known mechanoresponse genes (FOS, FOSB, BMP6) and significantly decreased glycosaminoglycan (GAG) and collagen synthesis similar to loading. The adenylate-cyclase inhibitor MDL-12,330A rescued the load-mediated decrease in GAG synthesis, indicating a direct involvement of cAMP-signaling in the reduction of ECM production. According to COL2A1-corrected hypertrophy-associated marker expression, load and PTHrP treatment shared the ability to reduce expression of MEF2C and PTH1R. In conclusion, the data demonstrate a significant mechanoinduction of PTHLH and a negative contribution of the PTHrP-cAMP signaling axis to GAG synthesis in MSC-derived chondrocytes after loading. To improve ECM synthesis and the mechanocompetence of load-exposed neocartilage, inhibition of PTHrP activity should be considered for MSC-based cartilage regeneration strategies.
Collapse
Affiliation(s)
- Janine Lückgen
- Department of Orthopaedics, Experimental Orthopaedics, Research Centre for Molecular and Regenerative Orthopaedics, Heidelberg University Hospital, Heidelberg, Germany
| | - Solvig Diederichs
- Department of Orthopaedics, Experimental Orthopaedics, Research Centre for Molecular and Regenerative Orthopaedics, Heidelberg University Hospital, Heidelberg, Germany
| | - Elisabeth Raqué
- Department of Orthopaedics, Experimental Orthopaedics, Research Centre for Molecular and Regenerative Orthopaedics, Heidelberg University Hospital, Heidelberg, Germany
| | - Tobias Renkawitz
- Department of Orthopaedics, Research Centre for Molecular and Regenerative Orthopaedics, Heidelberg University Hospital, Heidelberg, Germany
| | - Wiltrud Richter
- Department of Orthopaedics, Experimental Orthopaedics, Research Centre for Molecular and Regenerative Orthopaedics, Heidelberg University Hospital, Heidelberg, Germany
| | - Justyna Buchert
- Department of Orthopaedics, Experimental Orthopaedics, Research Centre for Molecular and Regenerative Orthopaedics, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
2
|
Chen LK, Yu QM. Effect of sodium hyaluronate combined with rehabilitation training on knee joint injury caused by golf. World J Clin Cases 2024; 12:4543-4549. [PMID: 39070828 PMCID: PMC11235504 DOI: 10.12998/wjcc.v12.i21.4543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/15/2024] [Accepted: 06/11/2024] [Indexed: 06/30/2024] Open
Abstract
BACKGROUND In high-intensity sports like golf, knee joints are prone to injury, leading to pain, limited mobility, and decreased quality of life. Traditional treatment methods typically involve rehabilitation exercises, but their effectiveness may be limited. In recent years, sodium hyaluronate has emerged as a widely used biomedical material in the treatment of joint diseases. AIM To explore the effect of sodium hyaluronate combined with rehabilitation training on pain degree, flexion range of motion and motor function of knee joint injured by golf. METHODS Eighty patients with knee joint injury caused by golf were randomly divided into control (group B) and observation group (group A). The group B was treated with rehabilitation training, and the group A was treated with sodium hyaluronate combined with rehabilitation training. The clinical efficacy, range of motion and function of knee joint, quality of life and inflammatory factors were compared. RESULTS The excellent and good rate of rehabilitation in the group A was raised than group B. At 6 weeks and 3 months after treatment, the range of motion of the two groups was raised than that before treatment, and that of the group A was raised than group B. After treatment, the scores of Lysholm and International Knee Documentation Committee (IKDC) in the group A were raised, and those in the group A were raised than group B. The VAS score of the two groups was reduced than that of the group B, and the SF-36 score of the group A was reduced than group B. The interleukin (IL)-1 β, IL-8 and tumor necrosis factor-α in the two groups were reduced, and those in the group A were reduced than group B. CONCLUSION Sodium hyaluronate combined with rehabilitation training has a good clinical effect in the treatment of patients with knee joint injury caused by golf, which relieve pain, maintain knee joint function and improve patients' life quality.
Collapse
Affiliation(s)
- Li-Ke Chen
- Physical Education Institute, Honam University, Gwangju 62399, South Korea
| | - Qin-Ming Yu
- College of Humanities and Management, Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang Province, China
| |
Collapse
|
3
|
Ladner YD, Kasper H, Armiento AR, Stoddart MJ. A multi-well bioreactor for cartilage tissue engineering experiments. iScience 2023; 26:107092. [PMID: 37408683 PMCID: PMC10318521 DOI: 10.1016/j.isci.2023.107092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/20/2023] [Accepted: 06/07/2023] [Indexed: 07/07/2023] Open
Abstract
Cartilage tissue engineering necessitates the right mechanical cues to regenerate impaired tissue. For this reason, bioreactors can be employed to induce joint-relevant mechanical loading, such as compression and shear. However, current articulating joint bioreactor designs are lacking in terms of sample size and usability. In this paper, we describe a new, simple-to-build and operate, multi-well kinematic load bioreactor and investigate its effect on the chondrogenic differentiation of human bone marrow-derived stem cells (MSCs). We seeded MSCs into a fibrin-polyurethane scaffold and subsequently exposed the samples to a combination of compression and shear for 25 days. The mechanical loading activates transforming growth factor beta 1, upregulates chondrogenic genes, and increases sulfated glycosaminoglycan retention within the scaffolds. Such a higher-throughput bioreactor could be operated in most cell culture laboratories, dramatically accelerating and improving the testing of cells, new biomaterials, and tissue-engineered constructs.
Collapse
Affiliation(s)
- Yann D. Ladner
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos Platz, Switzerland
- Institute for Biomechanics, ETH Zurich, Lengghalde 5, CH-8008 Zurich, Switzerland
| | - Hermann Kasper
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos Platz, Switzerland
| | - Angela R. Armiento
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos Platz, Switzerland
- UCB Pharma, Slough, UK
| | - Martin J. Stoddart
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos Platz, Switzerland
- Department of Orthopedics and Trauma Surgery, Medical Center-Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, 79106 Freiburg, Germany
| |
Collapse
|
4
|
Wang X, Li X. Regulation of pain neurotransmitters and chondrocytes metabolism mediated by voltage-gated ion channels: A narrative review. Heliyon 2023; 9:e17989. [PMID: 37501995 PMCID: PMC10368852 DOI: 10.1016/j.heliyon.2023.e17989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 05/15/2023] [Accepted: 07/04/2023] [Indexed: 07/29/2023] Open
Abstract
Osteoarthritis (OA) is one of the leading causes of chronic pain and dysfunction. It is essential to comprehend the nature of pain and cartilage degeneration and its influencing factors on OA treatment. Voltage-gated ion channels (VGICs) are essential in chondrocytes and extracellular matrix (ECM) metabolism and regulate the pain neurotransmitters between the cartilage and the central nervous system. This narrative review focused primarily on the effects of VGICs regulating pain neurotransmitters and chondrocytes metabolism, and most studies have focused on voltage-sensitive calcium channels (VSCCs), voltage-gated sodium channels (VGSCs), acid-sensing ion channels (ASICs), voltage-gated potassium channels (VGKCs), voltage-gated chloride channels (VGCCs). Various ion channels coordinate to maintain the intracellular environment's homeostasis and jointly regulate metabolic and pain under normal circumstances. In the OA model, the ion channel transport of chondrocytes is abnormal, and calcium influx is increased, which leads to increased neuronal excitability. The changes in ion channels are strongly associated with the OA disease process and individual OA risk factors. Future studies should explore how VGICs affect the metabolism of chondrocytes and their surrounding tissues, which will help clinicians and pharmacists to develop more effective targeted drugs to alleviate the progression of OA disease.
Collapse
|
5
|
Stoddart MJ, Della Bella E, Armiento AR. Cartilage Tissue Engineering: An Introduction. Methods Mol Biol 2023; 2598:1-7. [PMID: 36355280 DOI: 10.1007/978-1-0716-2839-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Once damaged, cartilage has limited healing capability. This has led to a huge body of research that aims to repair or regenerate this important tissue. Despite the progress made, significant hurdles still need to be overcome. This chapter highlights some of the progress made, while elaborating on areas that need further research. The concept of translation and the route to clinical translation must be kept in mind if some of the promising preclinical research is to make it to routine clinical application.
Collapse
Affiliation(s)
| | | | - Angela R Armiento
- AO Research Institute Davos, Davos Platz, Switzerland
- UCB Pharma, Slough, UK
| |
Collapse
|
6
|
Brose TZ, Ladner YD, Kubosch EJ, Stoddart MJ, Armiento AR. Co-culture of Human Articular Chondrocytes Seeded in Polyurethane Scaffolds and Human Mesenchymal Stromal Cells Encapsulated in Alginate Beads. Methods Mol Biol 2023; 2598:177-186. [PMID: 36355292 DOI: 10.1007/978-1-0716-2839-3_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Co-culturing is an essential method for unravelling the importance of cross talk and cellular interaction. This chapter describes the preparation of an indirect co-culture technique based on encapsulation of chondrocytes and mesenchymal stromal cells in polyurethane scaffolds and alginate beads, respectively. This way, both cell populations can communicate through paracrine effects in the absence of cell-cell contact. Due to the mechanical properties of polyurethane, this model can be employed in mechanobiology studies. The resulting engineered cultures can provide a more realistic environment, recreating the complex joints' microenvironment and physiology.
Collapse
Affiliation(s)
- Teresa Z Brose
- Medical Center-Albert-Ludwigs-University, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Yann D Ladner
- Regenerative Orthopaedics Program, AO Research Institute Davos, Davos Platz, Switzerland
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - E Johanna Kubosch
- Medical Center-Albert-Ludwigs-University, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Martin J Stoddart
- Regenerative Orthopaedics Program, AO Research Institute Davos, Davos Platz, Switzerland
| | - Angela R Armiento
- Regenerative Orthopaedics Program, AO Research Institute Davos, Davos Platz, Switzerland.
- UCB Pharma, Slough, UK.
| |
Collapse
|
7
|
Lückgen J, Raqué E, Reiner T, Diederichs S, Richter W. NFκB inhibition to lift the mechano-competence of mesenchymal stromal cell-derived neocartilage toward articular chondrocyte levels. Stem Cell Res Ther 2022; 13:168. [PMID: 35477424 PMCID: PMC9044876 DOI: 10.1186/s13287-022-02843-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/07/2022] [Indexed: 11/10/2022] Open
Abstract
Background Fully functional regeneration of skeletal defects by multipotent progenitor cells requires that differentiating cells gain the specific mechano-competence needed in the target tissue. Using cartilage neogenesis as an example, we asked whether proper phenotypic differentiation of mesenchymal stromal cells (MSC) into chondrocytes in vitro will install the adequate biological mechano-competence of native articular chondrocytes (AC). Methods The mechano-competence of human MSC- and AC-derived neocartilage was compared during differentiation for up to 35 days. The neocartilage layer was subjected to physiologic dynamic loading in a custom-designed bioreactor and assayed for mechano-sensitive gene and pathway activation, extracellular matrix (ECM) synthesis by radiolabel incorporation, nitric oxide (NO) and prostaglandin E2 (PGE2) production. Input from different pathways was tested by application of agonists or antagonists. Results MSC and AC formed neocartilage of similar proteoglycan content with a hardness close to native tissue. Mechano-stimulation on day 21 and 35 induced a similar upregulation of mechano-response genes, ERK phosphorylation, NO production and PGE2 release in both groups, indicating an overall similar transduction of external mechanical signals. However, while AC maintained or enhanced proteoglycan synthesis after loading dependent on tissue maturity, ECM synthesis was always significantly disturbed by loading in MSC-derived neocartilage. This was accompanied by significantly higher COX2 and BMP2 background expression, > 100-fold higher PGE2 production and a weaker SOX9 stimulation in response to loading in MSC-derived neocartilage. Anabolic BMP-pathway activity was not rate limiting for ECM synthesis after loading in both groups. However, NFκB activation mimicked the negative loading effects and enhanced PGE2 production while inhibition of catabolic NFκB signaling rescued the load-induced negative effects on ECM synthesis in MSC-derived neocartilage. Conclusions MSC-derived chondrocytes showed a higher vulnerability to be disturbed by loading despite proper differentiation and did not acquire an AC-like mechano-competence to cope with the mechanical stress of a physiologic loading protocol. Managing catabolic NFκB influences was one important adaptation to install a mechano-resistance closer to AC-derived neocartilage. This new knowledge asks for a more functional adaptation of MSC chondrogenesis, novel pharmacologic co-treatment strategies for MSC-based clinical cartilage repair strategies and may aid a more rational design of physical rehabilitation therapy after AC- versus MSC-based surgical cartilage intervention. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02843-x.
Collapse
Affiliation(s)
- Janine Lückgen
- Research Centre for Experimental Orthopaedics, Heidelberg University Hospital, Schlierbacher Landstrasse 200a, 69118, Heidelberg, Germany
| | - Elisabeth Raqué
- Research Centre for Experimental Orthopaedics, Heidelberg University Hospital, Schlierbacher Landstrasse 200a, 69118, Heidelberg, Germany
| | - Tobias Reiner
- Department of Orthopaedic and Trauma Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Solvig Diederichs
- Research Centre for Experimental Orthopaedics, Heidelberg University Hospital, Schlierbacher Landstrasse 200a, 69118, Heidelberg, Germany
| | - Wiltrud Richter
- Research Centre for Experimental Orthopaedics, Heidelberg University Hospital, Schlierbacher Landstrasse 200a, 69118, Heidelberg, Germany.
| |
Collapse
|
8
|
Dieterle MP, Husari A, Rolauffs B, Steinberg T, Tomakidi P. Integrins, cadherins and channels in cartilage mechanotransduction: perspectives for future regeneration strategies. Expert Rev Mol Med 2021; 23:e14. [PMID: 34702419 PMCID: PMC8724267 DOI: 10.1017/erm.2021.16] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 02/07/2023]
Abstract
Articular cartilage consists of hyaline cartilage, is a major constituent of the human musculoskeletal system and has critical functions in frictionless joint movement and articular homoeostasis. Osteoarthritis (OA) is an inflammatory disease of articular cartilage, which promotes joint degeneration. Although it affects millions of people, there are no satisfying therapies that address this disease at the molecular level. Therefore, tissue regeneration approaches aim at modifying chondrocyte biology to mitigate the consequences of OA. This requires appropriate biochemical and biophysical stimulation of cells. Regarding the latter, mechanotransduction of chondrocytes and their precursor cells has become increasingly important over the last few decades. Mechanotransduction is the transformation of external biophysical stimuli into intracellular biochemical signals, involving sensor molecules at the cell surface and intracellular signalling molecules, so-called mechano-sensors and -transducers. These signalling events determine cell behaviour. Mechanotransducing ion channels and gap junctions additionally govern chondrocyte physiology. It is of great scientific and medical interest to induce a specific cell behaviour by controlling these mechanotransduction pathways and to translate this knowledge into regenerative clinical therapies. This review therefore focuses on the mechanotransduction properties of integrins, cadherins and ion channels in cartilaginous tissues to provide perspectives for cartilage regeneration.
Collapse
Affiliation(s)
- Martin Philipp Dieterle
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106Freiburg, Germany
| | - Ayman Husari
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106Freiburg, Germany
- Department of Orthodontics, Center for Dental Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106Freiburg, Germany
| | - Bernd Rolauffs
- Department of Orthopedics and Trauma Surgery, G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Medical Center – Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, 79085Freiburg im Breisgau, Germany
| | - Thorsten Steinberg
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106Freiburg, Germany
| | - Pascal Tomakidi
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106Freiburg, Germany
| |
Collapse
|