1
|
Khan HA, Neyaz LA, Malak HA, Alshehri WA, Elbanna K, Organji SR, Asiri FH, Aldosari MS, Abulreesh HH. Diversity and antimicrobial susceptibility patterns of clinical and environmental Salmonella enterica serovars in Western Saudi Arabia. Folia Microbiol (Praha) 2024; 69:1305-1317. [PMID: 38767834 DOI: 10.1007/s12223-024-01172-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 05/13/2024] [Indexed: 05/22/2024]
Abstract
The diverse environmental distribution of Salmonella makes it a global source of human gastrointestinal infections. This study aimed to detect Salmonella spp. and explore their diversity and antimicrobial susceptibility patterns in clinical and environmental samples. Pre-enrichment, selective enrichment, and selective plating techniques were adopted for the Salmonella detection whereas the API 20E test and Vitek Compact 2 system were used to confirm the identity of isolates. Salmonella serovars were subjected to molecular confirmation by 16S rDNA gene sequencing. Disc diffusion method and Vitek 2 Compact system determined the antibiotic susceptibility of Salmonella serovars. Multiple antibiotic resistance index (MARI) was calculated to explore whether Salmonella serovars originate from areas with heavy antibiotic usage. Results depicted low Salmonella prevalence in clinical and environmental samples (3.5%). The main detected serovars included Salmonella Typhimurium, S. enteritidis, S. Infantis, S. Newlands, S. Heidelberg, S. Indian, S. Reading, and S. paratyphi C. All the detected Salmonella serovars (27) exhibited multidrug resistance to three or more antimicrobial classes. The study concludes that the overall Salmonella serovars prevalence was found to be low in environmental and clinical samples of Western Saudi Arabia (Makkah and Jeddah). However, antimicrobial susceptibility patterns of human and environmental Salmonella serovars revealed that all isolates exhibited multidrug-resistance (MDR) patterns to frequently used antibiotics, which might reflect antibiotic overuse in clinical and veterinary medicine. It would be suitable to apply and enforce rules and regulations from the One Health approach, which aim to prevent antibiotic resistance infections, enhance food safety, and improve human and animal health, given that all Salmonella spp. detected in this investigation were exhibiting MDR patterns.
Collapse
Affiliation(s)
- Hajrah A Khan
- Department of Biology, Faculty of Science, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
- Research Laboratories Unit, Faculty of Science, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Leena A Neyaz
- Department of Biology, Faculty of Science, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
- Research Laboratories Unit, Faculty of Science, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Hesham A Malak
- Department of Biology, Faculty of Science, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
- Research Laboratories Unit, Faculty of Science, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Wafa A Alshehri
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Khaled Elbanna
- Department of Biology, Faculty of Science, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
- Research Laboratories Unit, Faculty of Science, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
- Department of Agricultural Microbiology, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | - Sameer R Organji
- Department of Biology, Faculty of Science, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
- Research Laboratories Unit, Faculty of Science, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Fatimah H Asiri
- King Abdulaziz Hospital, Ministry of Health, Makkah, Saudi Arabia
| | | | - Hussein H Abulreesh
- Department of Biology, Faculty of Science, Umm Al-Qura University, Makkah, 21955, Saudi Arabia.
- Research Laboratories Unit, Faculty of Science, Umm Al-Qura University, Makkah, 21955, Saudi Arabia.
| |
Collapse
|
2
|
Wu J, Han X, Ye M, Li Y, Wang X, Zhong Q. Exopolysaccharides synthesized by lactic acid bacteria: biosynthesis pathway, structure-function relationship, structural modification and applicability. Crit Rev Food Sci Nutr 2022; 63:7043-7064. [PMID: 35213280 DOI: 10.1080/10408398.2022.2043822] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Probiotics and their fermentation products are increasingly been focused on due to their health-boosting effects. Exopolysaccharides (EPS) synthetized by lactic acid bacteria (LAB) are widely applied as texture modifiers in dairy, meat and bakery products owning to their improved properties. Moreover, LAB-derived EPS have been confirmed to possess diverse physiological bioactivities including antioxidant, anti-biofilm, antiviral, immune-regulatory or antitumor. However, the low production and high acquisition cost hinder their development. Even though LAB-derived EPS have been extensively studied for their production-improving, there are only few reports on the systematic elucidation and summary of the relationship among biosynthesis pathway, strain selection, production parameter, structure-function relationship. Therefore, a detailed summary on biosynthesis pathway, production parameter and structure-function relationship of LAB-derived EPS is provided in this review, the structural modifications together with the current and potential applications are also discussed in this paper.
Collapse
Affiliation(s)
- Jinsong Wu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
- Department of Science, Henan University of Animal Husbandry and Economy, Henan, Zhengzhou, China
| | - Xiangpeng Han
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Meizhi Ye
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Yao Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Xi Wang
- Department of Science, Henan University of Animal Husbandry and Economy, Henan, Zhengzhou, China
| | - Qingping Zhong
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
3
|
Metrouh R, Fares R, Mechai A, Debabza M, Menassria T. Technological properties and probiotic potential of
Lactiplantibacillus plantarum
SJ14 isolated from Algerian Traditional Cheese “Jben”. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Roumaissa Metrouh
- Laboratory of Bioactive Molecules and Applications Department of Applied Biology University of Larbi Tebessi Tebessa 12002 Algeria
| | - Roufaida Fares
- Laboratory of Bioactive Molecules and Applications Department of Applied Biology University of Larbi Tebessi Tebessa 12002 Algeria
| | - Abdelbasset Mechai
- Laboratory of Bioactive Molecules and Applications Department of Applied Biology University of Larbi Tebessi Tebessa 12002 Algeria
| | - Manel Debabza
- Laboratory of Bioactive Molecules and Applications Department of Applied Biology University of Larbi Tebessi Tebessa 12002 Algeria
| | - Taha Menassria
- Laboratory of Bioactive Molecules and Applications Department of Applied Biology University of Larbi Tebessi Tebessa 12002 Algeria
| |
Collapse
|
4
|
Prete R, Alam MK, Perpetuini G, Perla C, Pittia P, Corsetti A. Lactic Acid Bacteria Exopolysaccharides Producers: A Sustainable Tool for Functional Foods. Foods 2021; 10:1653. [PMID: 34359523 PMCID: PMC8305620 DOI: 10.3390/foods10071653] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/09/2021] [Accepted: 07/15/2021] [Indexed: 12/30/2022] Open
Abstract
Lactic acid bacteria (LAB) used in the food industry, mainly for the production of dairy products, are able to synthetize exopolysaccharides (EPS). EPS play a central role in the assessment of rheological and sensory characteristics of dairy products since they positively influence texture and organoleptic properties. Besides these, EPS have gained relevant interest for pharmacological and nutraceutical applications due to their biocompatibility, non-toxicity and biodegradability. These bioactive compounds may act as antioxidant, cholesterol-lowering, antimicrobial and prebiotic agents. This review provides an overview of exopolysaccharide-producing LAB, with an insight on the factors affecting EPS production, their dairy industrial applications and health benefits.
Collapse
Affiliation(s)
- Roberta Prete
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (R.P.); (M.K.A.); (P.P.); (A.C.)
| | - Mohammad Khairul Alam
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (R.P.); (M.K.A.); (P.P.); (A.C.)
| | - Giorgia Perpetuini
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (R.P.); (M.K.A.); (P.P.); (A.C.)
| | - Carlo Perla
- Dalton Biotecnologie srl, Spoltore, 65010 Pescara, Italy;
| | - Paola Pittia
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (R.P.); (M.K.A.); (P.P.); (A.C.)
| | - Aldo Corsetti
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (R.P.); (M.K.A.); (P.P.); (A.C.)
| |
Collapse
|
5
|
Lactic Acid Bacterial Production of Exopolysaccharides from Fruit and Vegetables and Associated Benefits. FERMENTATION-BASEL 2020. [DOI: 10.3390/fermentation6040115] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Microbial polysaccharides have interesting and attractive characteristics for the food industry, especially when produced by food grade bacteria. Polysaccharides produced by lactic acid bacteria (LAB) during fermentation are extracellular macromolecules of either homo or hetero polysaccharidic nature, and can be classified according to their chemical composition and structure. The most prominent exopolysaccharide (EPS) producing lactic acid bacteria are Lactobacillus, Leuconostoc, Weissella, Lactococcus, Streptococcus, Pediococcus and Bifidobacterium sp. The EPS biosynthesis and regulation pathways are under the dependence of numerous factors as producing-species or strain, nutrient availability, and environmental conditions, resulting in varied carbohydrate compositions and beneficial properties. The interest is growing for fruits and vegetables fermented products, as new functional foods, and the present review is focused on exploring the EPS that could derive from lactic fermented fruit and vegetables. The chemical composition, biosynthetic pathways of EPS and their regulation mode is reported. The consequences of EPS on food quality, especially texture, are explored in relation to producing species. Attention is given to the scientific investigations on health benefits attributed to EPS such as prebiotic, antioxidant, anti-inflammatory and cholesterol lowering activities.
Collapse
|