1
|
Abd El-Kaream SA, Hamoda SAH, El Kholey SM, El-Sharkawy AM. Pulsed cavitation ultrasound assisted delivery of cardamom, pistacia and laurel encapsulated micelles nanoparticles for sono-photodynamic lymphoma in vitro and in vivo treatment. Lasers Med Sci 2025; 40:156. [PMID: 40126665 PMCID: PMC11933185 DOI: 10.1007/s10103-025-04387-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 02/26/2025] [Indexed: 03/26/2025]
Abstract
Sono-photodynamic therapy (SPDT) has attracted a lot of interest as a cutting-edge therapeutic strategy in the field of cancer treatment. The essential part of SPDT is the sensitizer, which under laser photon and pulsed cavitation ultrasound sono-irradiation may transform sono and photo- energy into cytotoxic molecules. Photon absorption, targeting, penetration, and oxygen dependence remain challenges in sono- -photosensitizer (SPs) design. Rapid advancements in material science have prompted the creation of several SPs that create cytotoxic species with great selectivity, safety, and noninvasiveness for the treatment of tumors. The current study aims to provide an advanced method of activated cancer treatment by using pulsed cavitation to assist the delivery of cardamom, pistacia and laurel conjugated micelles nanoparticles (CPL-Micelle NP) for the sono-photodynamic lymphoma in vivo and in vitro treatment. Human lymphoma cells (U-937) were used in the in vitro study, and the in vivo application groups of the study protocol were Swiss albino mice treated with 9,10-Dimethyl-1,2-Benzanthracene (DMBA) only; they were not given any treatment to induce lymphoma. The study treatment protocol started only after lymphoma induction, and involved daily administration of CPL-Micelle NP as SPDT sensitizer whether or not to be exposed to photo- (IRL) or sono- (US) or a combination of them for three minutes for a period of two weeks. Indicated that Micelle NP is a useful CPL delivery mechanism that targets lymphoma cells directly. Furthermore, CPL-Micelle NP is a promising SPS that, when used in conjunction with SPDT, can be very effective in in vitro treating lymphoma-U-937 (in a dose-dependent manner cell viability declined, an increase in the cells population during the S and G2/M phases indicates that the cell cycle was arrested, and an increase in cell population in the Pre-G, autophagic cell death, as well as necrosis and early and late apoptosis, indicate that cell death was induced) and DMBA-Lymphoma-induced mice in vivo (induced antiproliferative genes, repressed antiangiogenic and antiapoptotic genes), successfully slowing the growth of tumors and even killing cancer cells, as well as lowering oxidative stress malondialdehyde (MDA), improving the functions of the kidneys, liver, and enzymatic and non enzymatic antioxidants. SPDT, the photo- or sono- chemical CPL activation mechanism, and the antioxidant capacity of non-activated CPL can all be linked to this process. On the bases of the findings, CPL-Micelle NP shows a great promise as a novel, efficient selective delivery system for localized SPDT-activated lymphoma treatment.
Collapse
|
2
|
Fik-Jaskółka M, Mittova V, Motsonelidze C, Vakhania M, Vicidomini C, Roviello GN. Antimicrobial Metabolites of Caucasian Medicinal Plants as Alternatives to Antibiotics. Antibiotics (Basel) 2024; 13:487. [PMID: 38927153 PMCID: PMC11200912 DOI: 10.3390/antibiotics13060487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
This review explores the potential of antimicrobial metabolites derived from Caucasian medicinal plants as alternatives to conventional antibiotics. With the rise of antibiotic resistance posing a global health threat, there is a pressing need to investigate alternative sources of antimicrobial agents. Caucasian medicinal plants have traditionally been used for their therapeutic properties, and recent research has highlighted their potential as sources of antimicrobial compounds. Representatives of 15 families of Caucasian medicinal plant extracts (24 species) have been explored for their efficacy against these pathogens. The effect of these plants on Gram-positive and Gram-negative bacteria and fungi is discussed in this paper. By harnessing the bioactive metabolites present in these plants, this study aims to contribute to the development of new antimicrobial treatments that can effectively combat bacterial infections while minimizing the risk of resistance emergence. Herein we discuss the following classes of bioactive compounds exhibiting antimicrobial activity: phenolic compounds, flavonoids, tannins, terpenes, saponins, alkaloids, and sulfur-containing compounds of Allium species. The review discusses the pharmacological properties of selected Caucasian medicinal plants, the extraction and characterization of these antimicrobial metabolites, the mechanisms of action of antibacterial and antifungal plant compounds, and their potential applications in clinical settings. Additionally, challenges and future directions in the research of antimicrobial metabolites from Caucasian medicinal plants are addressed.
Collapse
Affiliation(s)
- Marta Fik-Jaskółka
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Valentina Mittova
- Teaching University Geomedi, 4 King Solomon II Str., Tbilisi 0114, Georgia; (V.M.)
| | | | - Malkhaz Vakhania
- Teaching University Geomedi, 4 King Solomon II Str., Tbilisi 0114, Georgia; (V.M.)
| | - Caterina Vicidomini
- Institute of Biostructures and Bioimaging, Italian National Council for Research (IBB-CNR), Area di Ricerca Site and Headquarters, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Giovanni N. Roviello
- Institute of Biostructures and Bioimaging, Italian National Council for Research (IBB-CNR), Area di Ricerca Site and Headquarters, Via Pietro Castellino 111, 80131 Naples, Italy
| |
Collapse
|
3
|
Kendir G, Özek G, Köroğlu A, Özek T. The quality evaluation of the laurel leaf samples sold in the market under the name of "Defne Yaprağı". PROTOPLASMA 2024; 261:303-316. [PMID: 37816984 DOI: 10.1007/s00709-023-01897-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/22/2023] [Indexed: 10/12/2023]
Abstract
Laurus nobilis L. is an aromatic shrub or tree, Mediterranean element. The leaves are employed as a spice and for medicinal purposes. It is known by various names in Turkey, such as "defne, har and tehnel." In this study, 15 different laurel leaf samples were purchased from 6 different cities in Turkey, diagnosed, and evaluated in terms of quality. The conditions of use and sale of these samples were evaluated. The essential oils obtained from the leaf samples were analyzed, and their physical properties such as density, refractive index, and optical rotation were determined. In the chemical composition of the oils, 1,8-cineole (41.2-64.4%), sabinene (1.5-15.9%), and α-terpinyl acetate (1.5-15%) have been found to be the major components. However, in one station, the presence of 1,8-cineole was not be determined. Laurel leaf drugs offered for sale in some provinces of Turkey were purchased from the market and their morphological characteristics and essential oil profiles were examined and evaluated in terms of public health. It was determined that these samples should be standardized and quality-controlled before being released to the market.
Collapse
Affiliation(s)
- Gülsen Kendir
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Süleyman Demirel University, Isparta, Türkiye.
| | - Gülmira Özek
- Department of Pharmacognosy, Faculty of Pharmacy, Anadolu University, Eskişehir, Türkiye
| | - Ayşegül Köroğlu
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Ankara University, Tandoğan, Ankara, Türkiye
| | - Temel Özek
- Department of Pharmacognosy, Faculty of Pharmacy, Anadolu University, Eskişehir, Türkiye
| |
Collapse
|
4
|
Šilha D, Švarcová K, Bajer T, Královec K, Tesařová E, Moučková K, Pejchalová M, Bajerová P. Chemical Composition of Natural Hydrolates and Their Antimicrobial Activity on Arcobacter-Like Cells in Comparison with Other Microorganisms. Molecules 2020; 25:E5654. [PMID: 33266263 PMCID: PMC7730011 DOI: 10.3390/molecules25235654] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 12/19/2022] Open
Abstract
Hydrolates obtained via the hydrodistillation and steam distillation of Lavandulaangustifolia Mill., Syzygiumaromaticum L., Foeniculumvulgare Mill., and Laurusnobilis L. were analyzed by gas chromatography with flame ionization detector (GC-FID) and gas chromatography coupled to mass spectrometry (GC-MS). Additionally, the hydrolates were evaluated for antimicrobial activity (disk-diffusion and microdilution method), influence on biofilm formation (Christensen method) and cytotoxicity of concentrated hydrolates against human cell lines (A549) by xCELLigence system. Using chemical analysis, 48, 9, 13 and 33 different components were detected in lavender, clove, fennel and laurel hydrolates, respectively. Lavender hydrolate contained the largest proportion of 1,8-cineol, linalool furanoxide, and linalool. The main components of laurel hydrolate were 1,8-cineol, 4-terpineol and α-terpineol. Fenchone and estragole were the most abundant in fennel hydrolate, and eugenol and eugenyl acetate in clove hydrolate. Concentrated hydrolates showed significant antimicrobial activity. Clove hydrolate was among the most antimicrobially active agents, most preferably against C. albicans, with an inhibition zone up to 23.5 mm. Moreover, concentrated hydrolates did not show any cytotoxic effect again8 st human A549 cells. In the presence of the non-concentrated hydrolates, significantly reduced biofilm formation was observed; however, with concentrated clove hydrolate, there was an increase in biofilm formation, e.g., of A. thereius, A. lanthieri, and A. butzleri. Research shows new findings about hydrolates that may be important in natural medicine or for preservation purposes.
Collapse
Affiliation(s)
- David Šilha
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic; (K.Š.); (K.K.); (E.T.); (M.P.)
| | - Karolína Švarcová
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic; (K.Š.); (K.K.); (E.T.); (M.P.)
| | - Tomáš Bajer
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic; (T.B.); (K.M.)
| | - Karel Královec
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic; (K.Š.); (K.K.); (E.T.); (M.P.)
| | - Eliška Tesařová
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic; (K.Š.); (K.K.); (E.T.); (M.P.)
| | - Kristýna Moučková
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic; (T.B.); (K.M.)
| | - Marcela Pejchalová
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic; (K.Š.); (K.K.); (E.T.); (M.P.)
| | - Petra Bajerová
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic; (T.B.); (K.M.)
| |
Collapse
|