1
|
Mugnai G, Pinchuk I, Borruso L, Tiziani R, Sannino C, Canini F, Turchetti B, Mimmo T, Zucconi L, Buzzini P. The hidden network of biocrust successional stages in the High Arctic: Revealing abiotic and biotic factors shaping microbial and metazoan communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171786. [PMID: 38508248 DOI: 10.1016/j.scitotenv.2024.171786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/05/2024] [Accepted: 03/15/2024] [Indexed: 03/22/2024]
Abstract
Despite the important role that biocrust communities play in maintaining ecosystem structure and functioning in deglaciated barren soil, few studies have been conducted on the dynamics of biotic communities and the impact of physicochemical characteristics in shaping the different successional stages. In this study an integrated approach encompassing physicochemical parameters and molecular taxonomy was used for identifying the indicator taxa and the presence of intra- and inter-kingdom interactions in five different crust/biocrust successional stages: i) physical crust, ii) cyanobacteria-dominated biocrust, iii) cyanobacteria/moss-dominated biocrust, iv) moss-dominated biocrust and v) bryophyte carpet. The phylum Gemmatimonadota was the bacterial indicator taxon in the early stage, promoting both inter- and intra-kingdom interactions, while Cyanobacteria and Nematoda phyla played a pivotal role in formation and dynamics of cyanobacteria-dominated biocrusts. A multitrophic community, characterized by a shift from oligotrophic to copiotrophic bacteria and the presence of saproxylic arthropod and herbivore insects was found in the cyanobacteria/moss-dominated biocrust, while a more complex biota, characterized by an increased fungal abundance (classes Sordariomycetes, Leotiomycetes, and Dothideomycetes, phylum Ascomycota), associated with highly trophic consumer invertebrates (phyla Arthropoda, Rotifera, Tardigrada), was observed in moss-dominated biocrusts. The class Bdelloidea and the family Hypsibiidae (phyla Rotifera and Tardigrada, respectively) were metazoan indicator taxon in bryophyte carpet, suggesting their potential role in shaping structure and function of this late successional stage. Nitrogen and phosphorus were the main physicochemical limiting factors driving the shift among different crust/biocrust successional stages. Identification and characterization of indicator taxa, biological intra- and inter-kingdom interactions and abiotic factors driving the shift among different crust/biocrust successional stages provide a detailed picture on crust/biocrust dynamics, revealing a strong interconnection among micro- and macrobiota systems. These findings enhance our understanding of biocrust ecosystems in High Arctic, providing valuable insights for their conservation and management in response to environmental shifts due to climate change.
Collapse
Affiliation(s)
- Gianmarco Mugnai
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 74, Perugia 06121, Italy.
| | - Irina Pinchuk
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 74, Perugia 06121, Italy
| | - Luigimaria Borruso
- Faculty of Agricultural, Environmental and Food Science, Free University of Bolzano-Bozen, Bozen-Bolzano, 39100, Italy
| | - Raphael Tiziani
- Faculty of Agricultural, Environmental and Food Science, Free University of Bolzano-Bozen, Bozen-Bolzano, 39100, Italy
| | - Ciro Sannino
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 74, Perugia 06121, Italy
| | - Fabiana Canini
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo 01100, Italy
| | - Benedetta Turchetti
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 74, Perugia 06121, Italy
| | - Tanja Mimmo
- Faculty of Agricultural, Environmental and Food Science, Free University of Bolzano-Bozen, Bozen-Bolzano, 39100, Italy
| | - Laura Zucconi
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo 01100, Italy
| | - Pietro Buzzini
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 74, Perugia 06121, Italy
| |
Collapse
|
2
|
Barbato M, Vacchini V, Engelen AH, Patania G, Mapelli F, Borin S, Crotti E. What lies on macroalgal surface: diversity of polysaccharide degraders in culturable epiphytic bacteria. AMB Express 2022; 12:98. [PMID: 35895126 PMCID: PMC9329506 DOI: 10.1186/s13568-022-01440-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/13/2022] [Indexed: 11/10/2022] Open
Abstract
Macroalgal surface constitutes a peculiar ecological niche and an advantageous substratum for microorganisms able to degrade the wide diversity of algal glycans. The degrading enzymatic activities of macroalgal epiphytes are of paramount interest for the industrial by-product sector and biomass resource applications. We characterized the polysaccharide hydrolytic profile of bacterial isolates obtained from three macroalgal species: the red macroalgae Asparagopsis taxiformis and Sphaerococcus coronopifolius (Rhodophyceae) and the brown Halopteris scoparia (Phaeophyceae), sampled in South Portugal. Bacterial enrichment cultures supplemented with chlorinated aliphatic compounds, typically released by marine algae, were established using as inoculum the decaying biomass of the three macroalgae, obtaining a collection of 634 bacterial strains. Although collected from the same site and exposed to the same seawater seeding microbiota, macroalgal cultivable bacterial communities in terms of functional and phylogenetic diversity showed host specificity. Isolates were tested for the hydrolysis of starch, pectin, alginate and agar, exhibiting a different hydrolytic potential according to their host: A. taxiformis showed the highest percentage of active isolates (91%), followed by S. coronopifolius (54%) and H. scoparia (46%). Only 30% of the isolates were able to degrade starch, while the other polymers were degraded by 55-58% of the isolates. Interestingly, several isolates showed promiscuous capacities to hydrolyze more than one polysaccharide. The isolate functional fingerprint was statistically correlated to bacterial phylogeny, host species and enrichment medium. In conclusion, this work depicts macroalgae as holobionts with an associated microbiota of interest for blue biotechnologies, suggesting isolation strategies and bacterial targets for polysaccharidases' discovery.
Collapse
Affiliation(s)
- Marta Barbato
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS), Università degli Studi di Milano, via Celoria 2, 20133, Milano, Italy.,Department of Biology, Section for Microbiology, Aarhus University, Ny Munkegade 116, 8000, Aarhus, Denmark
| | - Violetta Vacchini
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS), Università degli Studi di Milano, via Celoria 2, 20133, Milano, Italy
| | - Aschwin H Engelen
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Giovanni Patania
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS), Università degli Studi di Milano, via Celoria 2, 20133, Milano, Italy
| | - Francesca Mapelli
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS), Università degli Studi di Milano, via Celoria 2, 20133, Milano, Italy
| | - Sara Borin
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS), Università degli Studi di Milano, via Celoria 2, 20133, Milano, Italy.
| | - Elena Crotti
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS), Università degli Studi di Milano, via Celoria 2, 20133, Milano, Italy
| |
Collapse
|
3
|
Kashkak ES, Kataev VY, Khlopko YA, Budagaeva VG, Danilova EV, Oorzhak US, Dagurova OP, Plotnikov AO. Data on draft genome sequence of stenotrophomonas sp. SAM-B isolated from a mineral cold spring located in Tyva, southern Siberia. Data Brief 2020; 32:106278. [PMID: 32984471 PMCID: PMC7494669 DOI: 10.1016/j.dib.2020.106278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/27/2020] [Accepted: 08/31/2020] [Indexed: 11/21/2022] Open
Abstract
Stenotrophomonas sp. SAM-B was isolated from Uzharlyg Mineral Cold Spring, Samagaltay Settlement, Republic of Tyva (Southern Siberia), Russian Federation. A whole genome sequencing of Stenotrophomonas sp. SAM-B was performed using an Illumina MiSeq platform. The resulting draft genome contains 4,253,956 bp with 66.48% GC-content and 71 contigs; the longest contig contains 968,648 bp, and the N50 has a length of 401,736 bp. The genome includes 3816 protein-coding genes, among which 23 are responsible for protein degradation, 65 are associated with stress response, and 31 are associated with virulence, disease, and defense, including beta-lactamase and resistance to fluoroquinolones. The genome data on the SAM-B strain provides fundamental knowledge that would allow a better understanding of the microorganisms inhabiting cold water environments. Moreover, the results of the genome annotation indicated that diverse metabolic pathways are encoded in the genome of the SAM-B strain and that it has biotechnological potential. The draft genome sequence of Stenotrophomonas sp. SAM-B has been deposited in DDBJ/ENA/GenBank under the accession number JABBXB000000000; the accession number of the genome sequence referred to in this paper is JABBXB010000000.
Collapse
Affiliation(s)
- Elena S. Kashkak
- The Department of Chemistry, Tuvan State University, 36 Lenin St., Kyzyl 667000, Russian Federation
| | - Vladimir Ya Kataev
- Institute for Cellular and Intracellular Symbiosis, Ural Branch of Russian Academy of Sciences, 11 Pionerskaya St., Orenburg 460000, Russian Federation
| | - Yuri A. Khlopko
- Institute for Cellular and Intracellular Symbiosis, Ural Branch of Russian Academy of Sciences, 11 Pionerskaya St., Orenburg 460000, Russian Federation
| | - Valentina G. Budagaeva
- Institute of General and Experimental Biology, Siberian Branch of Russian Academy of Sciences, 6 Sakhyanovoy St., Ulan-Ude 670047, Russian Federation
| | - Erzhena V. Danilova
- Institute of General and Experimental Biology, Siberian Branch of Russian Academy of Sciences, 6 Sakhyanovoy St., Ulan-Ude 670047, Russian Federation
| | - Urana S. Oorzhak
- The Department of Chemistry, Tuvan State University, 36 Lenin St., Kyzyl 667000, Russian Federation
| | - Olga P. Dagurova
- Institute of General and Experimental Biology, Siberian Branch of Russian Academy of Sciences, 6 Sakhyanovoy St., Ulan-Ude 670047, Russian Federation
| | - Andrey O. Plotnikov
- Institute for Cellular and Intracellular Symbiosis, Ural Branch of Russian Academy of Sciences, 11 Pionerskaya St., Orenburg 460000, Russian Federation
| |
Collapse
|
4
|
Bacteriocin Producing Bacteria Isolated from Turkish Traditional Sausage Samples. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2020. [DOI: 10.22207/jpam.14.2.55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|