1
|
Clement WJJ, Kalpana K, Aiyanathan KEA, Ramakrishnan M, Kandan A, Manonmani K, Yesuraja I, Sabarinathan KG, Mini ML, Shanthi M, Rajangam J, Punitha A. Exploring the Perilous Nature of Phytophthora: Insights into Its Biology, Host Range, Detection, and Integrated Management Strategies in the Fields of Spices and Plantation Crops. THE PLANT PATHOLOGY JOURNAL 2025; 41:121-139. [PMID: 40211618 PMCID: PMC11986356 DOI: 10.5423/ppj.rw.07.2024.0108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 01/29/2025] [Accepted: 02/01/2025] [Indexed: 04/14/2025]
Abstract
The horticultural crops, including spices and plantation crops, are known for their enormous benefits, contributing to the country's economy. However, Phytophthora, a genus of Oomycetes class, poses a threat to spice and plantation crops by infecting and damaging them, resulting in yield losses, economic hardship for farmers, and food security concerns, thereby threatening the sustainability of spice and plantation crops. Moreover, Phytophthora has greater adaptation systems in varying environmental conditions. Therefore, eradicating or controlling Phytophthora is a highly challenging process due to the longevity of its infective propagules in soil. Early detection and curative measures would be more effective in managing this destructive pathogen. Additionally, molecular detection using innovative methods such as polymerase chain reaction, reverse transcription polymerase chain reaction, recombinase polymerase amplification, and loop-mediated isothermal amplification would offer reliable and rapid detection. Furthermore, integrated disease management strategies, combining cultural, physical, chemical, and biological methods, would prove highly beneficial in managing Phytophthora infections in spices and plantation crops. This review provides a comprehensive overview of the diversity, symptomatology, pathogenicity, and impact of Phytophthora diseases on prominent spice and plantation crops. Finally, our review explores the current disease reduction strategies and suggests future research directions to address the threat posed by Phytophthora to spices and plantation crops.
Collapse
Affiliation(s)
| | - Krishnan Kalpana
- Department of Plant Protection, Horticultural College and Research Institute, TNAU Periyakulam, Tamil Nadu 625104, India
| | | | | | - Aravindaram Kandan
- Division of Germplasm Conservation and Utilization, ICAR-NBAIR, Bengaluru, Karnataka 560024, India
| | - Karunakaran Manonmani
- Department of Plant Pathology, Agricultural College and Research Institute, TNAU Madurai, Tamil Nadu 625104, India
| | - Iruthayarajan Yesuraja
- Department of Plant Pathology, Agricultural College and Research Institute, TNAU Madurai, Tamil Nadu 625104, India
| | | | - Madhavan Lysal Mini
- Department of Biotechnology, Agricultural College and Research Institute, TNAU Madurai, Tamil Nadu 625104, India
| | - Mookiah Shanthi
- Centre for Plant Protection Studies, TNAU, Coimbatore, Tamil Nadu 641003, India
| | - Jacop Rajangam
- Department of Horticulture, Horticultural College and Research Institute, TNAU, Periyakulam, Tamil Nadu 625601, India
| | - Ayyar Punitha
- Rice Research Station, TNAU, Tirur, Tamil Nadu 604102, India
| |
Collapse
|
2
|
Sam-On MFS, Mustafa S, Yusof MT, Mohd Hashim A, Ku Aizuddin KNA. Exploring the Global Trends of Bacillus, Trichoderma and Entomopathogenic Fungi for Pathogen and Pest Control in Chili Cultivation. Saudi J Biol Sci 2024; 31:104046. [PMID: 38983130 PMCID: PMC11231758 DOI: 10.1016/j.sjbs.2024.104046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/29/2024] [Accepted: 06/07/2024] [Indexed: 07/11/2024] Open
Abstract
Chili, renowned globally and deeply ingrained in various cultures. Regrettably, the onset of diseases instigated by pests and pathogens has inflicted substantial losses on chili crops, with some farms experiencing complete production decimation. Challenges confronting chili cultivation include threats from pathogenic microbes like Xanthomonas, Fusarium, Phytophthora, Verticillium, Rhizoctonia, Colletotrichium and Viruses, alongside pests such as whiteflies, mites, thrips, aphids, and fruit flies. While conventional farming practices often resort to chemical pesticides to combat these challenges, their utilization poses substantial risks to both human health and the environment. In response to this pressing issue, this review aims to evaluate the potential of microbe-based biological control as eco-friendly alternatives to chemical pesticides for chili cultivation. Biocontrol agents such as Bacillus spp., Trichoderma spp., and entomopathogenic fungi present safer and more environmentally sustainable alternatives to chemical pesticides. However, despite the recognised potential of biocontrol agents, research on their efficacy in controlling the array of pests and pathogens affecting chili farming remains limited. This review addresses this gap by evaluating the efficiency of biocontrol agents, drawing insights from existing studies conducted in other crop systems, regarding pest and pathogen management. Notably, an analysis of Scopus publications revealed fewer than 30 publications in 2023 focused on these three microbial agents. Intriguingly, India, as the world's largest chili producer, leads in the number of publications concerning Bacillus spp., Trichoderma spp., and entomopathogenic fungi in chili cultivation. Further research on microbial agents is imperative to mitigate infections and reduce reliance on chemical pesticides for sustainable chili production.
Collapse
Affiliation(s)
- Muhamad Firdaus Syahmi Sam-On
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Shuhaimi Mustafa
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Mohd Termizi Yusof
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Amalia Mohd Hashim
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Ku Nur Azwa Ku Aizuddin
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| |
Collapse
|
3
|
Andrade-Hoyos P, Rivera-Jiménez MN, Landero-Valenzuela N, Silva-Rojas HV, Martínez-Salgado SJ, Romero-Arenas O. [Ecological and biological benefits of the cosmopolitan fungus Trichoderma spp. in agriculture: A perspective in the Mexican countryside]. Rev Argent Microbiol 2023; 55:366-377. [PMID: 37704515 DOI: 10.1016/j.ram.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 05/16/2023] [Accepted: 06/02/2023] [Indexed: 09/15/2023] Open
Abstract
There is currently an extensive record of scientific studies on the general characteristics of filamentous fungus Trichoderma spp., which demonstrates its wide range of interrelation in ecosystems and its fungal activity that benefits the agricultural sector and agroindustry, as well as its importance in the preservation and restoration of the soil microbiota. The success of the biological and ecological benefits of Trichoderma is due to its reproductive capacity, as well as its efficiency in the use of soil nutrients; the efficacy of the genus has been reported against a variety of phytopathogenic fungi, as well as the potential to synthesize and release enzymes (cellulases, xylanases, and chitinases) that have been implemented in agroindustrial bioprocesses. It has also been reported that various species of Trichoderma spp. can produce auxins and gibberellin-type growth regulators, reported as growth promoters of some agricultural crops; however, their most relevant fact is their ability to prevail at certain doses of 'agrotoxic' active ingredients and contribute studies regarding processes for obtaining biofuel and bioremediation of the agricultural soil. In this overview, a general description of the current and relevant studies of the different subspecies of Trichoderma and their contribution in agriculture is made, presenting results obtained in vitro, in greenhouses and in the field. This analysis will serve as a starting point for future research in Mexico, specifically on the genus Trichoderma and its benefits for the Mexican countryside.
Collapse
Affiliation(s)
- Petra Andrade-Hoyos
- Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias (INIFAP), Campo Experimental Zacatepec, Morelos, México
| | - Mally N Rivera-Jiménez
- Dirección de Investigación Agrícola. Agrosistemas mg S. A. de C.V., Villahermosa, Tabasco, México
| | | | - Hilda V Silva-Rojas
- Producción de Semillas, Colegio de Postgraduados, Campus Montecillo, Texcoco, Estado de México, México
| | - Saira J Martínez-Salgado
- Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias (INIFAP), Campo Experimental Zacatepec, Morelos, México
| | - Omar Romero-Arenas
- Manejo Sostenible de Agroecosistemas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, San Pedro Zacachimalpa, Puebla, México.
| |
Collapse
|
4
|
Muthu Narayanan M, Ahmad N, Shivanand P, Metali F. The Role of Endophytes in Combating Fungal- and Bacterial-Induced Stress in Plants. Molecules 2022; 27:6549. [PMID: 36235086 PMCID: PMC9571366 DOI: 10.3390/molecules27196549] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/18/2022] [Accepted: 09/28/2022] [Indexed: 11/09/2022] Open
Abstract
Plants are subjected to multifaceted stresses that significantly jeopardize crop production. Pathogenic microbes influence biotic stress in plants, which ultimately causes annual crop loss worldwide. Although the use of pesticides and fungicides can curb the proliferation of pathogens in plants and enhance crop production, they pollute the environment and cause several health issues in humans and animals. Hence, there is a need for alternative biocontrol agents that offer an eco-friendly mode of controlling plant diseases. This review discusses fungal- and bacterial-induced stress in plants, which causes various plant diseases, and the role of biocontrol defense mechanisms, for example, the production of hydrolytic enzymes, secondary metabolites, and siderophores by stress-tolerant fungi and bacteria to combat plant pathogens. It is observed that beneficial endophytes could sustain crop production and resolve the issues regarding crop yield caused by bacterial and fungal pathogens. The collated literature review indicates that future research is necessary to identify potential biocontrol agents that can minimize the utility of synthetic pesticides and increase the tenable agricultural production.
Collapse
Affiliation(s)
| | | | - Pooja Shivanand
- Environmental and Life Sciences Program, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Bandar Seri Begawan BE1410, Brunei
| | | |
Collapse
|