1
|
Matsumoto T, Sunada K, Nagai T, Isobe T, Matsushita S, Ishiguro H, Nakajima A. Effects of cerium and tungsten substitution on antiviral and antibacterial properties of lanthanum molybdate. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 117:111323. [PMID: 32919679 PMCID: PMC7402209 DOI: 10.1016/j.msec.2020.111323] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/20/2020] [Accepted: 07/30/2020] [Indexed: 11/26/2022]
Abstract
Powders of cerium (Ce)-substituted and tungsten (W)-substituted La2Mo2O9 (LMO) were prepared using polymerizable complex method. Their antiviral and antibacterial performances were then evaluated using bacteriophage Qβ, bacteriophage Φ6, Escherichia coli, and Staphylococcus aureus. The obtained powders, which were almost single-phase, exhibited both antiviral and antibacterial properties. Effects of dissolved ions on their antiviral activity against bacteriophage Qβ were remarkable. A certain contribution of direct contact to the powder surface was also inferred along with the dissolved ion effect for antiviral activity against bacteriophage Φ6. Dissolved ion effects and pH values suggest that both Mo and W are in the form of polyacids. Antiviral activity against bacteriophage Φ6 was improved by substituting Ce for La in LMO. Similarly to LMO, Ce-substituted LMO exhibited hydrophobicity. Inactivation of alkaline phosphatase enzyme proteins was inferred as one mechanism of the antiviral and antibacterial activities of the obtained powders. Ce and W were partially substituted in La2Mo2O9 (LMO). These powders inactivated E. coli, S. aureus, bacteriophage Qβ, and bacteriophage Φ6. Inactivation of alkaline phosphatase enzyme proteins on these materials was confirmed. Antiviral activity against bacteriophage Φ6 of LMO was improved by substituting Ce. Hydrophobicity and UV shielding performance were also confirmed for this material.
Collapse
Affiliation(s)
- Takumi Matsumoto
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro, Tokyo 152-8550, Japan
| | - Kayano Sunada
- Antibacterial and Antiviral Research Group, Kanagawa Institute of Industrial Science and Technology, LiSE4c-1, 3-25-13 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Takeshi Nagai
- Antibacterial and Antiviral Research Group, Kanagawa Institute of Industrial Science and Technology, LiSE4c-1, 3-25-13 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Toshihiro Isobe
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro, Tokyo 152-8550, Japan.
| | - Sachiko Matsushita
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro, Tokyo 152-8550, Japan
| | - Hitoshi Ishiguro
- Antibacterial and Antiviral Research Group, Kanagawa Institute of Industrial Science and Technology, LiSE4c-1, 3-25-13 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Akira Nakajima
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro, Tokyo 152-8550, Japan.
| |
Collapse
|