1
|
Borges MF, Maurmann N, Pranke P. Easy-to-Assembly System for Decellularization and Recellularization of Liver Grafts in a Bioreactor. MICROMACHINES 2023; 14:449. [PMID: 36838149 PMCID: PMC9962055 DOI: 10.3390/mi14020449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/31/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Decellularization of organs creates an acellular scaffold, ideal for being repopulated by cells. In this work, a low-cost perfusion system was created to be used in the process of liver decellularization and as a bioreactor after recellularization. It consists of a glass chamber to house the organ coupled to a peristaltic pump to promote liquid flow through the organ vascular tree. The rats' liver decellularization was made with a solution of sodium dodecyl sulfate. The recellularization was made with 108 mesenchymal stromal/stem cells and cultivated for seven days. The decellularized matrices showed an absence of DNA while preserving the collagen and glycosaminoglycans quantities, confirming the efficiency of the process. The functional analyses showed a rise in lactate dehydrogenase levels occurring in the first days of the cultivation, suggesting that there is cell death in this period, which stabilized on the seventh day. Histological analysis showed conservation of the collagen web and some groups of cells next to the vessels. It was possible to establish a system for decellularization and a bioreactor to use for the recellularization method. It is easy to assemble, can be ready to use in little time and be easily sterilized.
Collapse
Affiliation(s)
- Maurício Felisberto Borges
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90610-000, Brazil
| | - Natasha Maurmann
- Postgraduate Program in Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90050-170, Brazil
| | - Patricia Pranke
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90610-000, Brazil
| |
Collapse
|
2
|
Protective Effects of a synthetic glycosaminoglycan mimetic (OTR4132) in a rat immunotoxic lesion model of septohippocampal cholinergic degeneration. Glycoconj J 2022; 39:107-130. [PMID: 35254602 PMCID: PMC8979900 DOI: 10.1007/s10719-022-10047-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/20/2021] [Accepted: 01/28/2022] [Indexed: 11/06/2022]
Abstract
Using a partial hippocampal cholinergic denervation model, we assessed the effects of the RGTA® named OTR4132, a synthetic heparan-mimetic biopolymer with neuroprotective/neurotrophic properties. Long-Evans male rats were injected with the cholinergic immunotoxin 192 IgG-saporin into the medial septum/diagonal band of Broca (0.37 µg); vehicle injections served as controls. Immediately after surgery, OTR4132 was injected into the lateral ventricles (0.25 µg/5 µl/rat) or intramuscularly (1.5 mg/kg). To determine whether OTR4132 reached the lesion site, some rats received intracerebroventricular (ICV) or intramuscular (I.M.) injections of fluorescent OTR4132. Rats were sacrificed at 4, 10, 20, or 60 days post-lesion (DPL). Fluorescein-labeled OTR4132 injected ICV or I.M. was found in the lesion from 4 to 20 DPL. Rats with partial hippocampal cholinergic denervation showed decreases in hippocampal acetylcholinesterase reaction products and in choline acetyltransferase-positive neurons in the medial septum. These lesions were the largest at 10 DPL and then remained stable until 60 DPL. Both hippocampal acetylcholinesterase reaction products and choline acetyltransferase-positive neurons in the medial septum effects were significantly attenuated in OTR4132-treated rats. These effects were not related to competition between OTR4132 and 192 IgG-saporin for the neurotrophin receptor P75 (p75NTR), as OTR4132 treatment did not alter the internalization of Cy3-labelled 192 IgG. OTR4132 was more efficient at reducing the acetylcholinesterase reaction products and choline acetyltransferase-positive neurons than a comparable heparin dose used as a comparator. Using the slice superfusion technique, we found that the lesion-induced decrease in muscarinic autoreceptor sensitivity was abolished by intramuscular OTR4132. After partial cholinergic damage, OTR4132 was able to concentrate at the brain lesion site possibly due to the disruption of the blood-brain barrier and to exert structural and functional effects that hold promises for neuroprotection/neurotrophism.
Collapse
|
3
|
Barinov E, Statinova E, Faber T, Gillyer D. Extracellular matrix remodeling as a risk factor for the progression of cerebrovascular pathology. Zh Nevrol Psikhiatr Im S S Korsakova 2022; 122:27-31. [DOI: 10.17116/jnevro202212203127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
4
|
Salazar-Quiñones L, Molero-Senosiáin M, Aguilar-Munoa S, Gegúndez-Fernández JA, Díaz-Valle D, Muñoz-Hernández AM, Benítez-Del-Castillo JM. Management of corneal neurotrophic ulcers with Cacicol®-RGTA (ReGeneraTing Agent): a case series. ACTA ACUST UNITED AC 2020; 95:421-428. [PMID: 32563627 DOI: 10.1016/j.oftal.2020.04.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/05/2020] [Accepted: 04/06/2020] [Indexed: 10/24/2022]
Abstract
PURPOSE Neurotrophic corneal ulcers are difficult to treat, and the conventional treatment often results in failure. A new matrix regenerating agent ("ReGeneraTing Agents"), Cacicol® (Laboratoires Théa), has demonstrated good results over the last few years. Therefore, the aim of this study was to evaluate the response to Cacicol® in a series of cases with neurotrophic corneal ulcers. METHODS Retrospective case series looking at 11 patients with corneal ulcers unresponsive to conventional therapy that underwent treatment with Cacicol®. One cycle included 1 drop every two days for 5 days. RESULTS The range of conventional therapy prior to Cacicol® was 0-91 days. On introducing Cacicol® 82% (9/11) of the cases were cured, and 18% (2/11) failed, requiring an amniotic membrane transplant or penetrating keratoplasty. The healing only required one cycle of Cacicol® in 67% (6/9) of the patients. More than one cycle of Cacicol® was needed in 45% (5/11) patients. One corneal bacterial ulcer responded favourably and one case related to Acanthamoeba did not respond. Most of the patients improved or maintained their visual acuity. CONCLUSION Cacicol® was a useful therapy in a high number of difficult neurotrophic corneal ulcers, including corneal infections. Some cases may require more than one cycle of Cacicol® or used as first-line treatment in order to achieve the desired result.
Collapse
Affiliation(s)
- L Salazar-Quiñones
- Unidad de Superficie e inflamación ocular, Departamento de Oftalmología, Hospital Clínico San Carlos, Madrid, España; Departamento de Oftalmología, Hospital General Universitario de Ciudad Real, Castilla la Mancha, España.
| | - M Molero-Senosiáin
- Unidad de Superficie e inflamación ocular, Departamento de Oftalmología, Hospital Clínico San Carlos, Madrid, España
| | - S Aguilar-Munoa
- Unidad de Superficie e inflamación ocular, Departamento de Oftalmología, Hospital Clínico San Carlos, Madrid, España; Moorfields Eye Hospital NHS Foundation Trust, Londres, Reino Unido
| | - J A Gegúndez-Fernández
- Unidad de Superficie e inflamación ocular, Departamento de Oftalmología, Hospital Clínico San Carlos, Madrid, España
| | - D Díaz-Valle
- Unidad de Superficie e inflamación ocular, Departamento de Oftalmología, Hospital Clínico San Carlos, Madrid, España
| | - A M Muñoz-Hernández
- Unidad de Superficie e inflamación ocular, Departamento de Oftalmología, Hospital Clínico San Carlos, Madrid, España
| | - J M Benítez-Del-Castillo
- Unidad de Superficie e inflamación ocular, Departamento de Oftalmología, Hospital Clínico San Carlos, Madrid, España
| |
Collapse
|
5
|
Bremond-Gignac D, Daruich A, Robert MP, Chiambaretta F. Recent innovations with drugs in clinical trials for neurotrophic keratitis and refractory corneal ulcers. Expert Opin Investig Drugs 2019; 28:1013-1020. [PMID: 31596151 DOI: 10.1080/13543784.2019.1677605] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Corneal ulcers normally resolve spontaneously because of the proliferative ability of the corneal epithelium; however, sometimes, epithelial healing is diminished, even when standard treatments are administered. Hence, the treatment of refractory corneal ulcers is challenging and is the subject of ongoing efforts in preclinical and clinical development. Emerging treatment approaches include thymosine β4, CODA001, and topical insulin. Cenegermin eye drops, containing recombinant human nerve growth factor and ReGenerating Agent, a matrix therapy agent, have recently been commercialized for the treatment of moderate to severe neurotrophic keratitis in adults.Areas covered: We describe emerging therapeutic approaches for the management of refractory corneal ulcers and treatments recently introduced to the market. Pubmed and Clinicaltrial.gov databases were first searched including the terms: "corneal ulcer" or "neurotrophic keratopathy" and "treatment." Each treatment was searched in the same databases separately.Expert opinion: Affections of the sensory corneal nerves are the main factor contributing to the pathophysiology of neurotrophic keratopathy; this explains the healing difficulties of this form of ulcer. Cenegermin is a promising therapy acting as a neurotrophic agent for corneal healing. ReGenerating Agent has led to rapid pain relief and corneal healing, but randomized clinical trials are still necessary for further assessment.
Collapse
Affiliation(s)
- Dominique Bremond-Gignac
- Ophthalmology Department, University Hospital Necker-Enfants malades, Paris, France.,INSERM UMRS 1138, Team 17, From physiopathology of ocular diseases to clinical development, Université Sorbonne Paris Cité, Centre de Recherche des Cordeliers, Paris, France
| | - Alejandra Daruich
- Ophthalmology Department, University Hospital Necker-Enfants malades, Paris, France.,INSERM UMRS 1138, Team 17, From physiopathology of ocular diseases to clinical development, Université Sorbonne Paris Cité, Centre de Recherche des Cordeliers, Paris, France
| | - Matthieu P Robert
- Ophthalmology Department, University Hospital Necker-Enfants malades, Paris, France
| | - Frederic Chiambaretta
- Ophthalmology Department, University Hospital Gabriel Monpied, Clermont-Ferrand, France
| |
Collapse
|
6
|
Carmen L, Maria V, Morales-Medina JC, Vallelunga A, Palmieri B, Iannitti T. Role of proteoglycans and glycosaminoglycans in Duchenne muscular dystrophy. Glycobiology 2019; 29:110-123. [PMID: 29924302 DOI: 10.1093/glycob/cwy058] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 06/18/2018] [Indexed: 12/25/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an inherited fatal X-linked myogenic disorder with a prevalence of 1 in 3500 male live births. It affects voluntary muscles, and heart and breathing muscles. DMD is characterized by continuous degeneration and regeneration cycles resulting in extensive fibrosis and a progressive reduction in muscle mass. Since the identification of a reduction in dystrophin protein as the cause of this disorder, numerous innovative and experimental therapies, focusing on increasing the levels of dystrophin, have been proposed, but the clinical improvement has been unsatisfactory. Dystrophin forms the dystrophin-associated glycoprotein complex and its proteins have been studied as a promising novel therapeutic target to treat DMD. Among these proteins, cell surface glycosaminoglycans (GAGs) are found almost ubiquitously on the surface and in the extracellular matrix (ECM) of mammalian cells. These macromolecules interact with numerous ligands, including ECM constituents, adhesion molecules and growth factors that play a crucial role in muscle development and maintenance. In this article, we have reviewed in vitro, in vivo and clinical studies focused on the functional role of GAGs in the pathophysiology of DMD with the final aim of summarizing the state of the art of GAG dysregulation within the ECM in DMD and discussing future therapeutic perspectives.
Collapse
Affiliation(s)
- Laurino Carmen
- Department of General Surgery and Surgical Specialties, University of Modena and Reggio Emilia Medical School, Surgical Clinic, Modena, Italy
| | - Vadala' Maria
- Department of General Surgery and Surgical Specialties, University of Modena and Reggio Emilia Medical School, Surgical Clinic, Modena, Italy
| | - Julio Cesar Morales-Medina
- Centro de Investigación en Reproducción Animal, CINVESTAV-Universidad Autónoma de Tlaxcala, CP, AP 62, Mexico
| | - Annamaria Vallelunga
- Department of Medicine and Surgery, Centre for Neurodegenerative Diseases (CEMAND), University of Salerno, Salerno, Italy
| | - Beniamino Palmieri
- Department of General Surgery and Surgical Specialties, University of Modena and Reggio Emilia Medical School, Surgical Clinic, Modena, Italy
| | | |
Collapse
|
7
|
Diabetic endothelial colony forming cells have the potential for restoration with glycomimetics. Sci Rep 2019; 9:2309. [PMID: 30783159 PMCID: PMC6381138 DOI: 10.1038/s41598-019-38921-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 01/11/2019] [Indexed: 12/18/2022] Open
Abstract
Endothelial colony forming progenitor cell (ECFC) function is compromised in diabetes, leading to poor vascular endothelial repair, which contributes to impaired diabetic foot ulcer healing. We have generated novel glycomimetic drugs with protective effects against endothelial dysfunction. We investigated the effect of glycomimetic C3 on the functional capacity of diabetic ECFCs. ECFCs were isolated from healthy controls and patients with diabetes with neuroischaemic (NI) or neuropathic (NP) foot ulcers. Functionally, diabetic ECFCs demonstrated delayed colony formation (p < 0.02), differential proliferative capacity (p < 0.001) and reduced NO bioavailability (NI ECFCs; p < 0.05). Chemokinetic migration and angiogenesis were also reduced in diabetic ECFCs (p < 0.01 and p < 0.001), and defects in wound closure and tube formation were apparent in NP ECFCs (p < 0.01). Differential patterns in mitochondrial activity were pronounced, with raised activity in NI and depressed activity in NP cells (p < 0.05). The application of glycomimetic improved scratch wound closure in vitro in patient ECFCs (p < 0.01), most significantly in NI cells (p < 0.001), where tube formation (p < 0.05) was also improved. We demonstrate restoration of the deficits in NI cells but not NP cells, using a novel glycomimetic agent, which may be advantageous for therapeutic cell transplantation or as a localised treatment for NI but not NP patients.
Collapse
|