1
|
Parvin A, Erabi G, Saboohi Tasooji MR, Sadeghpour S, Mellatyar H, Rezaei Arablouydareh S, Navapour L, Taheri-Anganeh M, Ghasemnejad-Berenji H. The effects of photobiomodulation on the improvement of sperm parameters: A review study. Photochem Photobiol 2024. [PMID: 38623963 DOI: 10.1111/php.13941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/27/2024] [Accepted: 03/18/2024] [Indexed: 04/17/2024]
Abstract
The prevalence of male infertility has become a significant clinical concern worldwide, with a noticeable upward trend in recent times. The rates of fertilization and subsequent development of embryos are dependent on many parameters associated with the quality and viability of sperm. Photobiomodulation (PBM) is a promising approach with a great potential for translational applications in the treatment of spermatozoa exhibiting low quality and motility. In this study, a comprehensive analysis of the existing literature, specifically examining the mechanisms of action of PBM has been presented. Our objective was to enhance knowledge in the field of laser light therapy in order to promote the usage of irradiation in clinical settings in a more effective way. Within the realm of reproductive science, the utilization of PBM has been employed to enhance the metabolic processes, motility, and viability of spermatozoa. This is attributed to its advantageous effects on mitochondria, resulting in the activation of the mitochondrial respiratory chain and subsequent synthesis of ATP. This therapeutic approach can be highly advantageous in circumventing the reliance on chemical substances within the culture medium for spermatozoa while also facilitating the viability and motility of spermatozoa, particularly in circumstances involving thawing or samples with significant immotility.
Collapse
Affiliation(s)
- Ali Parvin
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Gisou Erabi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Sonia Sadeghpour
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Sahar Rezaei Arablouydareh
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Leila Navapour
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Hojat Ghasemnejad-Berenji
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
2
|
Catalán J, Llavanera M, Bonilla-Correal S, Papas M, Gacem S, Rodríguez-Gil JE, Yeste M, Miró J. Irradiating frozen-thawed stallion sperm with red-light increases their resilience to withstand post-thaw incubation at 38 °C. Theriogenology 2020; 157:85-95. [PMID: 32805646 DOI: 10.1016/j.theriogenology.2020.07.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 07/23/2020] [Accepted: 07/25/2020] [Indexed: 01/31/2023]
Abstract
The aim of this study was to evaluate whether red-light stimulation increases the longevity and resilience of cryopreserved stallion sperm to withstand post-thaw incubation for 120 min. Sixteen frozen straws of 0.5 mL from eight stallions were used. Samples were cryopreserved, thawed through incubation at 38 °C for 30 s and divided into the control and samples exposed to red-light using a triple LED photo-activation system (wavelength: 620-630 nm). Three irradiation protocols consisting of different light-dark-light intervals (1-1-1, 2-2-2 and 3-3-3 min) were tested. Sperm quality parameters were analyzed immediately after light-stimulation (0 min) and after 120 min of incubation at 38 °C. Sperm motility was evaluated using a Computerized Semen Analysis System (CASA), and flow cytometry and different fluorochromes were used to evaluate the integrity and lipid disorder of plasma membrane, mitochondrial membrane potential and intracellular levels of peroxides and superoxides. Irradiation significantly increased the percentages of spermatozoa with high mitochondrial membrane potential (1-1-1 pattern) and the intracellular levels of peroxides (2-2-2 pattern) at 0 min. In addition, sperm kinematic parameters (2-2-2 and 3-3-3 patterns) and percentages of viable spermatozoa with low membrane lipid disorder (3-3-3 pattern) were significantly higher in irradiated samples than in the control at 120 min. Our results indicate that red-light stimulation could help increase the resilience of frozen-thawed stallion sperm to withstand post-thaw incubation at 38 °C for 120 min and that these effects rely on the irradiation pattern. Further research should evaluate whether light-stimulation could also have a positive on fertility rates after artificial insemination.
Collapse
Affiliation(s)
- Jaime Catalán
- Unit of Animal Reproduction, Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Autonomous University of Barcelona, Spain; Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain; Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain
| | - Marc Llavanera
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain; Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain
| | - Sebastián Bonilla-Correal
- Unit of Animal Reproduction, Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Autonomous University of Barcelona, Spain; Faculty of Veterinary Medicine, Antonio Nariño University, Bogotá, Colombia
| | - Marion Papas
- Unit of Animal Reproduction, Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Autonomous University of Barcelona, Spain
| | - Sabrina Gacem
- Unit of Animal Reproduction, Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Autonomous University of Barcelona, Spain
| | - Joan E Rodríguez-Gil
- Unit of Animal Reproduction, Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Autonomous University of Barcelona, Spain
| | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain; Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain.
| | - Jordi Miró
- Unit of Animal Reproduction, Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Autonomous University of Barcelona, Spain
| |
Collapse
|