1
|
Brunning H, Sallach JB, Boxall A. Emissions of water-soluble polymers from household products to the environment: a prioritization study. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2025; 44:563-588. [PMID: 39919236 DOI: 10.1093/etojnl/vgae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/17/2024] [Accepted: 10/01/2024] [Indexed: 02/09/2025]
Abstract
Water-soluble polymers (WSPs) are widely used in household products, including cleaning and personal care products. However, unlike insoluble plastic polymers, the environmental risks of WSPs are poorly understood. This study was performed to identify polymers in household use and characterize their emissions to the environment and key data gaps for prioritization. An inventory of polymers was developed and these were broadly grouped based on structure. Information from patents was combined with literature data to estimate down-the-drain emissions for each polymer. For the polymers with the highest emissions, predicted environmental concentrations for surface water and soil were estimated. A total of 339 individual polymers were identified and categorized into 26 groups. The polymers with the highest down-the-drain emissions were sodium laureth sulfate (1.6-3.4 g capita-1 day-1), styrene/acrylates copolymer (0.1-0.8 g capita-1 day-1), and monoethanolamine-laureth sulfate (0.4-0.8 g capita-1 day-1). An analysis of available fate and ecotoxicity data for 30 key high-emission polymers indicated that several are lacking in data. In particular, no data were found for styrene/acrylates copolymer and copolymer of polyethylene glycol/vinyl acetate, and the environmental fate of polyquaterniums and polyol ethoxylate esters has been understudied, particularly in light of their hazard potential. However, a lack of reporting of key polymer properties hinders analysis. We recommend increased transparency in reporting of polymer identities moving forward as well as experimental work determining fate, removal, and hazard of the prioritized high-emission polymers that are lacking in data.
Collapse
Affiliation(s)
- Hattie Brunning
- Department of Environment and Geography, University of York, York, United Kingdom
| | - J Brett Sallach
- Department of Environment and Geography, University of York, York, United Kingdom
| | - Alistair Boxall
- Department of Environment and Geography, University of York, York, United Kingdom
| |
Collapse
|
2
|
Boros BV, Roman DL, Isvoran A. Evaluation of the Aquatic Toxicity of Several Triazole Fungicides. Metabolites 2024; 14:197. [PMID: 38668325 PMCID: PMC11051906 DOI: 10.3390/metabo14040197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/13/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Fungicides play an important role in crop protection, but they have also been shown to adversely affect non-target organisms, including those living in the aquatic environment. The aim of the present study is to combine experimental and computational approaches to evaluate the effects of flutriafol, metconazole, myclobutanil, tebuconazole, tetraconazole and triticonazole on aquatic model organisms and to obtain information on the effects of these fungicides on Lemna minor, a freshwater plant, at the molecular level. The EC50 (the half-maximum effective concentration) values for the growth inhibition of Lemna minor in the presence of the investigated fungicides show that metconazole (EC50 = 0.132 mg/L) and tetraconazole (EC50 = 0.539 mg/L) are highly toxic, tebuconazole (EC50 = 1.552 mg/L), flutriafol (EC50 = 3.428 mg/L) and myclobutanil (EC50 = 9.134 mg/L) are moderately toxic, and triticonazole (EC50 = 11.631 mg/L) is slightly toxic to this plant. The results obtained with the computational tools TEST, ADMETLab2.0 and admetSAR2.0 also show that metconazole and tetraconazole are toxic to other aquatic organisms: Pimephales promelas, Daphnia magna and Tetrahymena pyriformis. A molecular docking study shows that triazole fungicides can affect photosynthesis in Lemna minor because they strongly bind to C43 (binding energies between -7.44 kcal/mol and -7.99 kcal/mol) and C47 proteins (binding energies between -7.44 kcal/mol and -8.28 kcal/mol) in the reaction center of photosystem II, inhibiting the binding of chlorophyll a to these enzymes. In addition, they can also inhibit glutathione S-transferase, an enzyme involved in the cellular detoxification of Lemna minor.
Collapse
Affiliation(s)
- Bianca-Vanesa Boros
- Department of Biology-Chemistry, Faculty of Chemistry, Biology, Geography, West University of Timisoara, 16 Pestalozzi, 300115 Timisoara, Romania; (B.-V.B.); (D.-L.R.)
- Advanced Environmental Research Laboratories (AERL), 4 Oituz, 300086 Timisoara, Romania
| | - Diana-Larisa Roman
- Department of Biology-Chemistry, Faculty of Chemistry, Biology, Geography, West University of Timisoara, 16 Pestalozzi, 300115 Timisoara, Romania; (B.-V.B.); (D.-L.R.)
- Advanced Environmental Research Laboratories (AERL), 4 Oituz, 300086 Timisoara, Romania
| | - Adriana Isvoran
- Department of Biology-Chemistry, Faculty of Chemistry, Biology, Geography, West University of Timisoara, 16 Pestalozzi, 300115 Timisoara, Romania; (B.-V.B.); (D.-L.R.)
- Advanced Environmental Research Laboratories (AERL), 4 Oituz, 300086 Timisoara, Romania
| |
Collapse
|
3
|
Souza SSD, Gomes AR, Guimarães ATB, Matos LPD, Mendonça JDS, Luz TMD, Matos SGDS, Rodrigues ASDL, Senthil-Nathan S, Rakib MRJ, Kamaraj C, Rocha TL, Islam ARMT, Malafaia G. Exposure to microcrystallized cellulose affects the health of tadpoles and sheds light on the threat these materials pose to amphibians. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123236. [PMID: 38160776 DOI: 10.1016/j.envpol.2023.123236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 12/18/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
The increasing use of cellulose-based materials (CBMs) has provided beneficial applications in different sectors. However, its release into environments may represent an ecological risk, therefore demanding that ecotoxicological studies be conducted to understand the risks (current and future) of CBM pollution. Thus, we evaluated the possible effects of microcrystalline cellulose (CMs) in Physalaemus cuvieri tadpoles. After seven days of exposure to CMs (at 58.29 and 100 mg/L), the animals were subjected to behavioral evaluation, and different biomarkers (biometric and biochemical) were evaluated. Although our data do not point to a neurotoxic effect of CMs (inferred by the absence of behavioral changes and changes in AChE and BChE activity), animals exposed to CMs showed differences in body condition. Furthermore, we noticed an increase in the frequency of erythrocyte nuclear abnormalities and DNA damage, which were correlated with the ingestion of CMs. We noticed that the antioxidant activity of tadpoles exposed to CMs (inferred by SOD, CAT, and DPPH radical scavenging activity) was insufficient to control the increase in ROS and MDA production. Furthermore, exposure to CMs induced a predominant Th2-specific immune response, marked by suppressed IFN-γ and increased IL-10 levels, with a consequent reduction in NO levels. Principal component analysis and IBRv-2 indicate, in general, a primarily more toxic response to animals exposed to the highest CM concentration. Therefore, our study evidence that CMs affect the health of P. cuvieri tadpoles and sheds light on the threat these materials pose to amphibians.
Collapse
Affiliation(s)
- Sindoval Silva de Souza
- Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil; Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute - Urutaí Campus, Urutaí, GO, Brazil
| | - Alex Rodrigues Gomes
- Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil; Post-Graduation Program in Ecology, Conservation, And Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | | | - Letícia Paiva de Matos
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute - Urutaí Campus, Urutaí, GO, Brazil
| | - Juliana Dos Santos Mendonça
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute - Urutaí Campus, Urutaí, GO, Brazil
| | - Thiarlen Marinho da Luz
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute - Urutaí Campus, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, And Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | | | - Aline Sueli de Lima Rodrigues
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute - Urutaí Campus, Urutaí, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil
| | - Sengottayan Senthil-Nathan
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu, 627 412, India
| | | | | | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiania, Goiás, Brazil; Post-Graduation Program in Biology of the Parasite-Host Relationship (PPGBRPH), Institute of Tropical Pathology and Public Health, Federal University of Goiás, Brazil
| | | | - Guilherme Malafaia
- Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil; Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute - Urutaí Campus, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, And Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Biology of the Parasite-Host Relationship (PPGBRPH), Institute of Tropical Pathology and Public Health, Federal University of Goiás, Brazil.
| |
Collapse
|
4
|
Boros BV, Dascalu D, Ostafe V, Isvoran A. Assessment of the Effects of Chitosan, Chitooligosaccharides and Their Derivatives on Lemna minor. Molecules 2022; 27:6123. [PMID: 36144862 PMCID: PMC9502776 DOI: 10.3390/molecules27186123] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
Chitosan, chitooligosaccharides and their derivatives’ production and use in many fields may result in their release to the environment, possibly affecting aquatic organisms. Both an experimental and a computational approach were considered for evaluating the effects of these compounds on Lemna minor. Based on the determined EC50 values against L. minor, only D-glucosamine hydrochloride (EC50 = 11.55 mg/L) was considered as “slightly toxic” for aquatic environments, while all the other investigated compounds, having EC50 > 100 mg/L, were considered as “practically non-toxic”. The results obtained in the experimental approach were in good agreement with the predictions obtained using the admetSAR2.0 computational tool, revealing that the investigated compounds were not considered toxic for crustacean, fish and Tetrahymena pyriformis aquatic microorganisms. The ADMETLab2.0 computational tool predicted the values of IGC50 for Tetrahymena pyriformis and the LC50 for fathead minnow and Daphnia magna, with the lowest values of these parameters being revealed by totally acetylated chitooligosaccharides in correlation with their lowest solubility. The effects of the chitooligosaccharides and chitosan on L. minor decreased with increased molecular weight, increased with the degree of deacetylation and were reliant on acetylation patterns. Furthermore, the solubility mainly influenced the effects on the aqueous environment, with a higher solubility conducted to lower toxicity.
Collapse
Affiliation(s)
- Bianca-Vanesa Boros
- Department of Biology-Chemistry, Faculty of Chemistry, Biology, Geography, West University of Timisoara, 16 Pestalozzi, 300115 Timisoara, Romania
- Advanced Environmental Research Laboratories (AERL), 4 Oituz, 300086 Timisoara, Romania
| | - Daniela Dascalu
- Department of Biology-Chemistry, Faculty of Chemistry, Biology, Geography, West University of Timisoara, 16 Pestalozzi, 300115 Timisoara, Romania
- Advanced Environmental Research Laboratories (AERL), 4 Oituz, 300086 Timisoara, Romania
| | - Vasile Ostafe
- Department of Biology-Chemistry, Faculty of Chemistry, Biology, Geography, West University of Timisoara, 16 Pestalozzi, 300115 Timisoara, Romania
- Advanced Environmental Research Laboratories (AERL), 4 Oituz, 300086 Timisoara, Romania
| | - Adriana Isvoran
- Department of Biology-Chemistry, Faculty of Chemistry, Biology, Geography, West University of Timisoara, 16 Pestalozzi, 300115 Timisoara, Romania
- Advanced Environmental Research Laboratories (AERL), 4 Oituz, 300086 Timisoara, Romania
| |
Collapse
|