1
|
Shi Y, Chen W, Yang R, Lei M, Xie S, Ahmed T, Zhou D, Chen B, Tu H. Unravelling pharmacological mechanisms and effects of Tianma Siwu Decoction-derived compounds on ischemic stroke by multidimensional network pharmacological analysis. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118979. [PMID: 39442827 DOI: 10.1016/j.jep.2024.118979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/18/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ischemic stroke (IS) a complex pathological event emerging as one of the most serious threats with huge economic impact in the 21st century. Following IS, multiple cascades and pathways are stimulated, culminating in long term consequences. One of Chinese Traditional Medicine, Tianma Siwu Decoction (TSD), is known to have sedative-hypnotic, anticonvulsant and anti-inflammatory effects, which is usually used to treat migraine and ischemic stroke, but its potential pharmacological mechanism remains unclear. AIM OF THE STUDY This study is aimed to identify the active principles from TSD that has strong pharmacological effect on the treatment of IS. MATERIALS AND METHODS Based on liquid chromatography-triple quadrupole mass spectrometry (LC-Q-MS/MS) technology, a new three-step-based approach integrating concentration parameters and Quality marker (Q-marker) with network pharmacology and bioactivity evaluation to explore the therapeutic effects and mechanisms of TSD on ischemic stroke. Ultimately, as the main herb of the TSD, high-concentration compounds from Gastrodia elata Blume (GEB) were identified and collected by LC-Q-MS/MS, and an optimized analytical model in multidimensional network pharmacology was introduced to more accurately explore the potential mechanisms by which TSD affects IS. RESULTS The results showed that 280 overlapping targets of TSD were obtained after the introduction of compound concentration parameters into the multidimensional network pharmacology analysis. Additionally, TSD might regulate IS through the AGE-RAGE and Rap1 signaling pathways. Through an in vitro hypoxia-reoxygenation injury cell model, it was discovered that as the Q-markers of GEB, gastrodin and parishin could effectively reduce neuronal hypoxic injury by modulating the expression levels of p-JNK and p-p38 proteins. According to the results of molecular docking, gastrodin and baicalin exhibits strong binding affinity to GAPDH and MAPK3, respectively (≦-7 kcal/mol). CONCLUSION We discovered that compound concentration is a key factor that influence the activity of substances, affects the accuracy and reliability of predictive outcomes. Consequently, the study enhances the network pharmacology model by incorporating concentration factors, aiming for a more accurate understanding of the potential mechanisms behind TSD anti-ischemic stroke actions.
Collapse
Affiliation(s)
- Yang Shi
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan, 410082, China
| | - Wei Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan, 410082, China
| | - Rong Yang
- Key Laboratory of Phytochemical R&D of Hunan Province and Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry & Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Ming Lei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan, 410082, China
| | - Shuting Xie
- Key Laboratory of Phytochemical R&D of Hunan Province and Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry & Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Touqeer Ahmed
- Department of Biomedicine, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Desheng Zhou
- Department of Neurology, First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410007, China.
| | - Bo Chen
- Key Laboratory of Phytochemical R&D of Hunan Province and Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry & Chemical Engineering, Hunan Normal University, Changsha, 410081, China.
| | - Haijun Tu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan, 410082, China.
| |
Collapse
|
2
|
Zhu T, Wang L, Wang LP, Wan Q. Therapeutic targets of neuroprotection and neurorestoration in ischemic stroke: Applications for natural compounds from medicinal herbs. Biomed Pharmacother 2022; 148:112719. [DOI: 10.1016/j.biopha.2022.112719] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 12/13/2022] Open
|
3
|
Vieira AC, Alemañ N, Cifuentes JM, Bermúdez R, Peña ML, Botana LM. Brain Pathology in Adult Rats Treated With Domoic Acid. Vet Pathol 2015; 52:1077-86. [DOI: 10.1177/0300985815584074] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Domoic acid (DA) is a neurotoxin reported to produce damage to the hippocampus, which plays an important role in memory. The authors inoculated rats intraperitoneally with an effective toxic dose of DA to study the distribution of the toxin in major internal organs by using immunohistochemistry, as well as to evaluate the induced pathology by means of histopathologic and immunohistochemical methods at different time points after toxin administration (6, 10, and 24 hours; 5 and 54 days). DA was detected by immunohistochemistry exclusively in pyramidal neurons of the hippocampus at 6 and 10 hours after dosing. Lesions induced by DA were prominent at 5 days following treatment in selected regions of the brain: hippocampus, amygdala, piriform and perirhinal cortices, olfactory tubercle, septal nuclei, and thalamus. The authors found 2 types of lesions: delayed death of selective neurons and large areas of necrosis, both accompanied by astrocytosis and microgliosis. At 54 days after DA exposure, the pathology was characterized by still-distinguishable dying neurons, calcified lesions in the thalamus, persistent astrocytosis, and pronounced microgliosis. The expression of nitric oxide synthases suggests a role for nitric oxide in the pathogenesis of neuronal degeneration and chronic inflammation induced by DA in the brain.
Collapse
Affiliation(s)
- A. C. Vieira
- Departamento de Farmacología, Facultad de Veterinaria, Lugo, Spain
| | - N. Alemañ
- Anatomía y Producción Animal, Facultad de Veterinaria, Lugo, Spain
| | - J. M. Cifuentes
- Anatomía y Producción Animal, Facultad de Veterinaria, Lugo, Spain
| | - R. Bermúdez
- Anatomía y Producción Animal, Facultad de Veterinaria, Lugo, Spain
| | - M. López Peña
- Ciencias Clínicas Veterinarias, Facultad de Veterinaria, Lugo, Spain
| | - L. M. Botana
- Departamento de Farmacología, Facultad de Veterinaria, Lugo, Spain
| |
Collapse
|
4
|
Abd El-Aal SA, El-Sawalhi MM, Seif-El-Nasr M, Kenawy SA. Effect of celecoxib and L-NAME on global ischemia-reperfusion injury in the rat hippocampus. Drug Chem Toxicol 2013; 36:385-95. [PMID: 23298270 DOI: 10.3109/01480545.2012.749270] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transient global ischemia continues to be an important clinical problem with limited treatment options. The present study aimed to investigate the possible protective effects of celecoxib [a selective cyclooxygenase (COX-2) inhibitor] and N-omega-nitro-L-arginine methyl ester (L-NAME) [a nonselective nitric oxide synthase (NOS) inhibitor] against global ischemia-reperfusion (IR) induced biochemical and histological alterations in the rat hippocampus. Global ischemia was induced by bilateral clamping of the common carotid arteries for 60 minutes. Hippocampal cysteinyl aspartate-specific protease-3 (caspase-3) activity, nitrite/nitrate contents (NOX), as well as COX-2 immunoreactivity in the hippocampal Cornu Ammonis 1 (CA1) subregion were dramatically increased 24 hours after global ischemia. After 72-hour of reperfusion, ischemia induced a selective, extensive neuronal loss in the hippocampus CA1 subregion. Celecoxib (3 and 5 mg/kg, intraperitoneally; i.p.), administered 30 minutes before ischemia and at 6, 12, and 22 hours of 24-hour reperfusion, caused significant reductions in hippocampal caspase-3 activity as well as the number of COX-2 immunoreactive (COX-2 ir) neurons in the CA1 subregion. Further, celecoxib (3 or 5 mg/kg, i.p.), administered 30 minutes before ischemia and at 6, 12, 22, and 48 hours of 72-hour reperfusion, provided a notable histological protection of hippocampal CA1 neurons. Meanwhile, L-NAME (3 mg/kg, i.p.), administered twice (immediately after ischemia and 45 minutes after starting the reperfusion period), effectively reduced the elevated NOX level, decreased hippocampal caspase-3 activity and COX-2 immumoreactivity, and ameliorated ischemia-induced damage in the hippocampal CA1 subregion. The present study indicates that celecoxib and L-NAME might be neuroprotective agents of potential benefit in the treatment of cerebral ischemia.
Collapse
Affiliation(s)
- Sarah A Abd El-Aal
- Pharmacology and Toxicology Department, Faculty of Pharmacy, October 6 University, Sixth of October, Egypt
| | | | | | | |
Collapse
|
5
|
Danielisova V, Burda J, Nemethova M, Gottlieb M. Aminoguanidine administration ameliorates hippocampal damage after middle cerebral artery occlusion in rat. Neurochem Res 2011; 36:476-86. [PMID: 21203836 DOI: 10.1007/s11064-010-0366-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2010] [Indexed: 11/26/2022]
Abstract
The effects of a selective inducible nitric oxide synthase inhibitor aminoguanidine (AG) on neuronal cells survival in hippocampal CA1 region after middle cerebral artery occlusion (MCAO) were examined. Transient focal cerebral ischemia was induced in rats by 60 or 90 min of MCAO, followed by 7 days of reperfusion. AG treatment (150 mg/kg i.p.) significantly reduced total infarct volumes: by 70% after 90 min MCAO and by 95% after 60 min MCAO, compared with saline-treated ischemic group. The number of degenerating neurons in hippocampal CA1 region was also markedly lower in aminoguanidine-treated ischemic groups compared to ischemic groups without AG-treatment. The number of iNOS-positive cells significantly increased in the hippocampal CA1 region of ischemic animals, whereas it was reduced in AG-treated rats. Our findings demonstrate that aminoguanidine decreases ischemic brain damage and improves neurological recovery after transient focal ischemia induced by MCAO.
Collapse
Affiliation(s)
- Viera Danielisova
- Department of Neurochemistry, Institute of Neurobiology, Slovak Academy of Sciences, Soltesovej 4-6, 040 01, Košice, Slovak Republic.
| | | | | | | |
Collapse
|
6
|
Adachi M, Abe M, Sasaki T, Kato H, Kasahara J, Araki T. Role of inducible or neuronal nitric oxide synthase in neurogenesis of the dentate gyrus in aged mice. Metab Brain Dis 2010; 25:419-24. [PMID: 21082337 DOI: 10.1007/s11011-010-9224-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2010] [Accepted: 10/19/2010] [Indexed: 10/18/2022]
Abstract
We evaluated mainly the iNOS (inducible nitric oxide synthase) and nNOS (neuronal NOS) expression in the subgranular zone (SGZ) of the dentate gyrus of the hippocampus in young adult (8-week-old) and aged (60-week-old) mice. The present study demonstrates that the expression of nNOS was more pronounced than that of iNOS expression in the dentate gyrus of aged mice. Our study also suggests that aged mice exhibited a significant loss of motor activity as compared with young adult animals. Furthermore, our results provide that no significant change in the number of Neu N (Neuronal nuclei)-immunopositive neurons and GFAP (glial fibrillary acidic protein)-immunopositive astrocytes was observed in the dentate gyrus between young adult and aged mice. In contrast, a significant change in the number of Iba 1(ionized calcium-binding adaptor molecule 1)-immunopositive microglia in aged mice was observed in the dentate gyrus as compared to young adult animals. These results provide the novel evidence showing that the expression of nNOS may be crucial for the role of neurogenesis of the SGZ of the dentate gyrus in aged mice. Furthermore, our present findings demonstrate that the inhibition of nNOS expression in the SGZ of the dentate gyrus during aging processes may offer novel therapeutic strategies for anti-aging in humans.
Collapse
Affiliation(s)
- Minami Adachi
- Department of Neurobiology and Therapeutics, Institute of Health Biosciences, The University of Tokushima Graduate School, 1-78, Sho-machi, Tokushima, 770-8505, Japan
| | | | | | | | | | | |
Collapse
|
7
|
Ozden H, Durmaz R, Kanbak G, Uzuner K, Aral E, Kartkaya K, Kabay SC, Atasoy MA. Erythropoietin prevents nitric oxide and cathepsin-mediated neuronal death in focal brain ischemia. Brain Res 2010; 1370:185-93. [PMID: 21108937 DOI: 10.1016/j.brainres.2010.11.045] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 11/06/2010] [Accepted: 11/10/2010] [Indexed: 11/27/2022]
Abstract
We examined the preventive effect of human recombinant erythropoietin (HrEPO) on nitric oxide (NO)-mediated toxicity to neurons and cysteine protease release into cytoplasm, which is attributed to neuronal death in brain ischemia. Focal cerebral ischemia was induced by permanent occlusion of middle cerebral artery in two sets of rat. The first set was used to monitor NO concentration and cathepsin activity, while the second was used for histological examination with hematoxylin and eosin, and TUNEL staining. A group in both set was administered human recombinant erythropoietin (HrEPO). NO content, cathepsins B and L activity increased significantly in the post-ischemic cerebral tissue (p<0.05). HrEPO treatment reduced NO concentration and cathepsin activity to control level (p>0.05). A significant increase in the number of necrotic and apoptotic neurons was observed in the post-ischemic cerebral cortex (p<0.05). HrEPO treatment was markedly lowered both of these (p<0.05). It is concluded that HrEPO prevents neuronal death by protecting neuronal liposomes from NO-mediated toxicity and suppressing the release of cathepsins.
Collapse
Affiliation(s)
- Hilmi Ozden
- Department of Anatomy, Eskişehir Osmangazi University School of Medicine, 26480 Eskişehir, Turkey.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Corsani L, Bizzoco E, Pedata F, Gianfriddo M, Faussone-Pellegrini MS, Vannucchi MG. Inducible nitric oxide synthase appears and is co-expressed with the neuronal isoform in interneurons of the rat hippocampus after transient ischemia induced by middle cerebral artery occlusion. Exp Neurol 2008; 211:433-40. [DOI: 10.1016/j.expneurol.2008.02.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Revised: 02/05/2008] [Accepted: 02/16/2008] [Indexed: 11/25/2022]
|
9
|
The Protective Effect of Dexanabinol (HU-211) on Nitric Oxide and Cysteine Protease-Mediated Neuronal Death in Focal Cerebral Ischemia. Neurochem Res 2008; 33:1683-91. [DOI: 10.1007/s11064-008-9605-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Accepted: 01/23/2008] [Indexed: 11/26/2022]
|
10
|
Richards EM, Rosenthal RE, Kristian T, Fiskum G. Postischemic hyperoxia reduces hippocampal pyruvate dehydrogenase activity. Free Radic Biol Med 2006; 40:1960-70. [PMID: 16716897 PMCID: PMC2570699 DOI: 10.1016/j.freeradbiomed.2006.01.022] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2005] [Revised: 01/20/2006] [Accepted: 01/23/2006] [Indexed: 01/04/2023]
Abstract
The pyruvate dehydrogenase complex (PDHC) is a mitochondrial matrix enzyme that catalyzes the oxidative decarboxylation of pyruvate and represents the sole bridge between anaerobic and aerobic cerebral energy metabolism. Previous studies demonstrating loss of PDHC enzyme activity and immunoreactivity during reperfusion after cerebral ischemia suggest that oxidative modifications are involved. This study tested the hypothesis that hyperoxic reperfusion exacerbates loss of PDHC enzyme activity, possibly due to tyrosine nitration or S-nitrosation. We used a clinically relevant canine ventricular fibrillation cardiac arrest model in which, after resuscitation and ventilation on either 100% O2 (hyperoxic) or 21-30% O2 (normoxic), animals were sacrificed at 2 h reperfusion and the brains removed for enzyme activity and immunoreactivity measurements. Animals resuscitated under hyperoxic conditions exhibited decreased PDHC activity and elevated 3-nitrotyrosine immunoreactivity in the hippocampus but not the cortex, compared to nonischemic controls. These measures were unchanged in normoxic animals. In vitro exposure of purified PDHC to peroxynitrite resulted in a dose-dependent loss of activity and increased nitrotyrosine immunoreactivity. These results support the hypothesis that oxidative stress contributes to loss of hippocampal PDHC activity during cerebral ischemia and reperfusion and suggest that PDHC is a target of peroxynitrite.
Collapse
Affiliation(s)
- Erica M. Richards
- Department of Anesthesiology, University of Maryland, Baltimore, MD 21201, USA
- Program in Neuroscience, University of Maryland, Baltimore, MD 21201, USA
| | - Robert E. Rosenthal
- Program in Trauma, Department of Surgery, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Tibor Kristian
- Department of Anesthesiology, University of Maryland, Baltimore, MD 21201, USA
| | - Gary Fiskum
- Department of Anesthesiology, University of Maryland, Baltimore, MD 21201, USA
- Program in Neuroscience, University of Maryland, Baltimore, MD 21201, USA
- Corresponding author. Department of Anesthesiology, University of Maryland, Baltimore, MD 21201, USA. Fax: +1 410 706 2550. E-mail address: (G. Fiskum)
| |
Collapse
|
11
|
Galvão RIM, Diógenes JPL, Maia GCL, Filho EAS, Vasconcelos SMM, de Menezes DB, Cunha GMA, Viana GSB. Tenoxicam Exerts a Neuroprotective Action after Cerebral Ischemia in Rats. Neurochem Res 2005; 30:39-46. [PMID: 15756931 DOI: 10.1007/s11064-004-9684-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
In this study we investigated the effects of Tenoxicam, a type 2 cyclooxygenase (COX-2) inhibitor, on brain damage induced by ischemia-reperfusion. Male Wistar rats (18-month old average) were anesthetized and submitted to ischemia occlusion of both common carotid arteries (BCAO) for 45 min. After 24 h of reperfusion, rats were decapitated and hippocampi removed for further assays. Animals were divided into sham-operated, ischemia, ischemia + Tenoxicam 2.5 mg/kg, and ischemia + Tenoxicam 10 mg/kg groups. Tenoxicam was administered intraperitoneally immediately after BCAO. Histological analyses show that ischemia produced significant striatal as well as hippocampal lesions which were reversed by the Tenoxicam treatment. Tenoxicam also significantly reduced, to control levels, the increased myeloperoxidase activity in hippocampus homogenates observed after ischemia. However, nitrite concentrations showed only a tendency to decrease in the ischemia + Tenoxicam groups, as compared to that of ischemia alone. On the other hand, hippocampal glutamate and aspartate levels were not altered by Tenoxicam. In conclusion, we showed that ischemia is certainly related to inflammation and to increased free radical production, and selective COX-2 inhibitors might be neuroprotective agents of potential benefit in the treatment of cerebral brain ischemia.
Collapse
Affiliation(s)
- Rita I M Galvão
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Wong D, Prameya R, Dorovini-Zis K, Vincent SR. Nitric oxide regulates interactions of PMN with human brain microvessel endothelial cells. Biochem Biophys Res Commun 2004; 323:142-8. [PMID: 15351713 DOI: 10.1016/j.bbrc.2004.08.062] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2004] [Indexed: 11/20/2022]
Abstract
The hypothesis that the NO/cGMP pathway modulates PMN adhesion to human brain microvessel endothelial cells (HBMEC) was examined. Human PMN were incubated with resting or TNF-alpha-treated endothelial monolayers, and adhesion was quantified by light microscopy. TNF-alpha upregulated PMN adhesion in a time-dependent manner. Treatment of HBMEC with the NO donors SNP and DETA NONOate for 4 or 24 h decreased PMN adhesion. This was completely reversed by the guanylyl cyclase inhibitor ODQ, while addition of a cGMP agonist (8-Br-cGMP) decreased PMN adhesion. NO donors did not affect the levels of E-selectin or ICAM-1 in HBMEC. However, pre-treatment of PMN with NO donors or 8-Br-cGMP decreased their adhesion to recombinant E-selectin and ICAM-1, suggesting an effect of NO on PMN. These findings indicate that NO modulates PMN-HBMEC interactions through cGMP and decreases the binding of PMN to the adhesion molecules E-selectin and ICAM-1.
Collapse
Affiliation(s)
- Donald Wong
- Department of Psychiatry and The Brain Research Centre, Section of Neuropathology, Vancouver Hospital, The University of British Columbia, Vancouver, BC, Canada
| | | | | | | |
Collapse
|
13
|
Sasaki T, Hamada J, Shibata M, Gotoh J, Araki N, Fukuuchi Y. FK506 abrogates delayed neuronal death via suppression of nitric oxide production in rats. Brain Res 2004; 1009:34-9. [PMID: 15120581 DOI: 10.1016/j.brainres.2004.01.088] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2004] [Indexed: 11/19/2022]
Abstract
BACKGROUND AND PURPOSE The mechanism of the neuroprotective effect of FK506 in relation to nitric oxide (NO) production has not been clarified in vivo. We have investigated the effect of FK506 on ischemia-induced NO production in association with the pathogenesis of delayed neuronal death (DND) in rats. METHODS In vivo microdialysis was performed in the hippocampus of male Sprague-Dawley rats (250-350 g). Dialysate samples were collected every 3 min. In the ischemia group (n=16), global ischemia was induced for 21 min and reperfusion was achieved. In the FK506 treatment group (n=25), FK506 (1 mg/kg, i.v.) was administered 21 min prior to the onset of global ischemia. Sham operations were done (n=15). The levels of NO(2)(-) in the dialysate samples were determined by the Griess reaction. The animals were decapitated 7 days after ischemia. Coronal brain sections were stained with hematoxylin and eosin. RESULTS In the ischemia group, the NO(2)(-) level significantly increased during ischemia. In the FK506 treatment group, there was no significant change in the NO(2)(-) level during ischemia. In histological examinations, FK506 treatment showed a neuroprotective effect against DND. CONCLUSIONS The effect of FK506 inhibiting NO production contributes to the neuro-protective effect of FK506 on DND in the hippocampus.
Collapse
Affiliation(s)
- Takahiro Sasaki
- Department of Neurology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan.
| | | | | | | | | | | |
Collapse
|
14
|
Encinas JM, Serrano J, Bentura ML, Castro-Blanco S, Fernández AP, Rodrigo J. Nitric Oxide System and Protein Nitration are Modified by an Acute Hypobaric Hypoxia in the Adult Rat Hippocampus. J Neuropathol Exp Neurol 2003; 62:863-77. [PMID: 14503642 DOI: 10.1093/jnen/62.8.863] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Changes in the nitric oxide system of the hippocampus from rats submitted to hypobaric hypoxia were investigated. Adult rats were exposed to a simulated altitude of 8,325 m (27,000 ft) for 7 h and killed after 0 h, 1, 3, 5, 10 and 20 days of reoxygenation. The number of neuronal nitric oxide synthase immunoreactive neurons and their dendritic plexus, as well as neuronal nitric oxide synthase immunoblotting densitometry and calcium-dependent activity increased from 0 h to 3 days of reoxygenation. In addition, endothelial nitric oxide synthase immunoreactivity peaked after 7 h of hypobaric hypoxia. Nitrotyrosine immunoreactivity showed an increase in the pyramidal cells of CA2-CA3 and in glial cells surrounding the blood vessels after 0 h, 1 and 3 days of reoxygenation. Immunoblotting densitometry of 1 of the 2 nitrotyrosine-immunoreactive bands detected also increased after 0 h and 1 day of reoxygenation. Inducible nitric oxide synthase immunoreactivity was found only in some blood vessels after 0 h, 1 and 3 days of reoxygenation, but no changes in inducible nitric oxide synthase activity or immunoblotting were detected. We conclude that transient activation of the nitric oxide system constitutes a hippocampal response to hypobaric hypoxia.
Collapse
Affiliation(s)
- Juan Manuel Encinas
- Department of Neuroanatomy and Cell Biology of the Instituto de Neurobiología Ramón y Cajal, CSIC, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
15
|
Serrano J, Encinas JM, Salas E, Fernández AP, Castro-Blanco S, Fernández-Vizarra P, Bentura ML, Rodrigo J. Hypobaric hypoxia modifies constitutive nitric oxide synthase activity and protein nitration in the rat cerebellum. Brain Res 2003; 976:109-19. [PMID: 12763628 DOI: 10.1016/s0006-8993(03)02691-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Ischemic hypoxia provokes alterations in the production system of nitric oxide in the cerebellum. We hypothesize that the nitric oxide system may undergo modifications due to hypobaric hypoxia and that may play a role in high altitude pathophysiology. Therefore, changes in the nitric oxide system of the cerebellum of rats submitted to acute hypobaric hypoxia were investigated. Adult rats were exposed for 7 h to a simulated altitude of 8235 m (27000 ft.) and then killed after 0 h or 1, 3, 5 and 10 days of reoxygenation. Nitric oxide synthase calcium-dependent and -independent activity, immunoblotting and immunohistochemistry of neuronal, endothelial, and inducible nitric oxide synthase, and nitrotyrosine were evaluated. Immunoreactivity for neuronal nitric oxide synthase slightly increased in the baskets of the Purkinje cell layer and in the granule cells, after 0 h of reoxygenation, although no changes in neuronal nitric oxide synthase immunoblotting densitometry were detected. Calcium-dependent activity significantly rose after 0 h of reoxygenation, reaching control levels in the following points, and being coincident with a peak of eNOS expression. Nitrotyrosine formation showed significant increments after 0 h and 1 day of reoxygenation. Nitrotyrosine immunoreactivity showed an intracellular location change in the neurons of the cerebellar nuclei and in addition, an appearance of nitration in the soma of the Purkinje cells was detected. No changes in inducible nitric oxide synthase activity, immunoblotting or immunohistochemistry were detected. We conclude that at least part of the nitric oxide system is involved in cerebellum responses to hypobaric hypoxia.
Collapse
Affiliation(s)
- Julia Serrano
- Department of Neuroanatomy and Cell Biology, Instituto Cajal, CSIC, Doctor Arce Av. 37, E-28002 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|