1
|
Jönsson M, Morin M, Wang CK, Craik DJ, Degnan SM, Degnan BM. Sex-specific expression of pheromones and other signals in gravid starfish. BMC Biol 2022; 20:288. [PMID: 36528687 PMCID: PMC9759900 DOI: 10.1186/s12915-022-01491-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Many echinoderms form seasonal aggregations prior to spawning. In some fecund species, a spawning event can lead to population outbreaks with detrimental ecosystem impacts. For instance, outbreaks of crown-of-thorns starfish (COTS), a corallivore, can destroy coral reefs. Here, we examine the gene expression in gravid male and female COTS prior to spawning in the wild, to identify genome-encoded factors that may regulate aggregation and spawning. This study is informed by a previously identified exoproteome that attracts conspecifics. To capture the natural gene expression profiles, we isolated RNAs from gravid female and male COTS immediately after they were removed from the Great Barrier Reef. RESULTS: Sexually dimorphic gene expression is present in all seven somatic tissues and organs that we surveyed and in the gonads. Approximately 40% of the exoproteome transcripts are differentially expressed between sexes. Males uniquely upregulate an additional 68 secreted factors in their testes. A suite of neuropeptides in sensory organs, coelomocytes and gonads is differentially expressed between sexes, including the relaxin-like gonad-stimulating peptide and gonadotropin-releasing hormones. Female sensory tentacles-chemosensory organs at the distal tips of the starfish arms-uniquely upregulate diverse receptors and signalling molecules, including chemosensory G-protein-coupled receptors and several neuropeptides, including kisspeptin, SALMFamide and orexin. CONCLUSIONS Analysis of 103 tissue/organ transcriptomes from 13 wild COTS has revealed genes that are consistently differentially expressed between gravid females and males and that all tissues surveyed are sexually dimorphic at the molecular level. This finding is consistent with female and male COTS using sex-specific pheromones to regulate reproductive aggregations and synchronised spawning events. These pheromones appear to be received primarily by the sensory tentacles, which express a range of receptors and signalling molecules in a sex-specific manner. Furthermore, coelomocytes and gonads differentially express signalling and regulatory factors that control gametogenesis and spawning in other echinoderms.
Collapse
Affiliation(s)
- Mathias Jönsson
- Centre for Marine Science, School of Biological Sciences, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Marie Morin
- Centre for Marine Science, School of Biological Sciences, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Conan K Wang
- Institute for Molecular Bioscience, ARC Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - David J Craik
- Institute for Molecular Bioscience, ARC Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Sandie M Degnan
- Centre for Marine Science, School of Biological Sciences, University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Bernard M Degnan
- Centre for Marine Science, School of Biological Sciences, University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
2
|
Culling corallivores improves short-term coral recovery under bleaching scenarios. Nat Commun 2022; 13:2520. [PMID: 35534497 PMCID: PMC9085818 DOI: 10.1038/s41467-022-30213-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 04/21/2022] [Indexed: 12/02/2022] Open
Abstract
Management of coral predators, corallivores, is recommended to improve coral cover on tropical coral reefs under projected increasing levels of accumulated thermal stress, but whether corallivore management can improve coral cover, which is necessary for large-scale operationalisation, remains equivocal. Here, using a multispecies ecosystem model, we investigate intensive management of an invertebrate corallivore, the Crown-of-Thorns Starfish (Acanthaster cf. solaris), and show that culling could improve coral cover at sub-reef spatial scales, but efficacy varied substantially within and among reefs. Simulated thermal stress events attenuated management-derived coral cover improvements and was dependent on the level of accumulated thermal stress, the thermal sensitivity of coral communities and the rate of corallivore recruitment at fine spatial scales. Corallivore management was most effective when accumulated thermal stress was low, coral communities were less sensitive to heat stress and in areas of high corallivore recruitment success. Our analysis informs how to manage a pest species to promote coral cover under future thermal stress events. This study uses multispecies modelling to show that the management of a coral predator, the crown-of-thorns starfish, could help corals recover following bleaching events. They show that management was most effective when heat stress severity for corals was low to moderate, when corals had lower heat sensitivity and when the recruitment rate of starfish was high.
Collapse
|
3
|
Genetic variation in released gametes produces genetic diversity in the offspring of the broadcast spawning coral Acropora tenuis. Sci Rep 2022; 12:5026. [PMID: 35322111 PMCID: PMC8943061 DOI: 10.1038/s41598-022-08995-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 03/02/2022] [Indexed: 11/23/2022] Open
Abstract
All coral species in the genus Acropora are broadcast-spawning hermaphrodites. Fertilization in the ocean requires sufficient numbers of gametes from conspecifics and the contact time for fertilization is thought to be limited by the rapid diffusion of sperm. Many studies have reported a positive correlation between sperm concentration and fertilization success, but it is not clear how gametes diffuse in seawater to produce mixtures of gametes from many colonies, leading to fertilization that improves genetic diversity. To elucidate this, we analyzed the changes in sperm concentration of A.tenuis in situ after spawning and genotyped sperm and fertilized eggs from seawater using seven microsatellite (MS) markers. Results showed that most of the eggs were fertilized at below 106 sperm/mL in situ. MS genotyping showed that the alleles of released sperm were diverse and those alleles also appeared in the fertilized eggs. The MS fragment peak height in released sperm, which presumably reflects the allele frequency of the sperm, was positively correlated with the allele frequencies of the fertilized eggs. Collectively, synchronous spawning populations composed of highly fecund and genetically diverse colonies potentially increases genetic diversity and the number of descendants.
Collapse
|
4
|
Matthews SA, Mellin C, Pratchett MS. Larval connectivity and water quality explain spatial distribution of crown-of-thorns starfish outbreaks across the Great Barrier Reef. ADVANCES IN MARINE BIOLOGY 2020; 87:223-258. [PMID: 33293012 DOI: 10.1016/bs.amb.2020.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Outbreaks of the coral eating crown-of-thorns starfish (COTS; Acanthasts cf. solaris) occur in cyclical waves along the Great Barrier Reef (GBR), contributing significantly to the decline in hard coral cover over the past 30 years. One main difficulty faced by scientists and managers alike, is understanding the relative importance of contributing factors to COTS outbreaks such as increased nutrients and water quality, larval connectivity, fishing pressure, and abiotic conditions. We analysed COTS abundances from the most recent outbreak (2010-2018) using both boosted regression trees and generalised additive models to identify key predictors of COTS outbreaks. We used this approach to predict the suitability of each reef on the GBR for COTS outbreaks at three different levels: (1) reefs with COTS present intermittently (Presence); (2) reefs with COTS widespread and present in most samples and (Prevalence) (3) reefs experiencing outbreak levels of COTS (Outbreak). We also compared the utility of two auto-covariates accounting for spatial autocorrelation among observations, built using weighted inverse distance and weighted larval connectivity to reefs supporting COTS populations, respectively. Boosted regression trees (BRT) and generalised additive mixed models (GAMM) were combined in an ensemble model to reduce the effect of model uncertainty on predictions of COTS presence, prevalence and outbreaks. Our results from best performing models indicate that temperature (Degree Heating Week exposure: relative importance=13.1%) and flood plume exposure (13.0%) are the best predictors of COTS presence, variability in chlorophyll concentration (12.6%) and flood plume exposure (8.2%) best predicted COTS prevalence and larval connectivity potential (22.7%) and minimum sea surface temperature (8.0%) are the best predictors of COTS outbreaks. Whether the reef was open or closed to fishing, however, had no significant effect on either COTS presence, prevalence or outbreaks in BRT results (<0.5%). We identified major hotspots of COTS activity primarily on the mid shelf central GBR and on the southern Swains reefs. This study provides the first empirical comparison of the major hypotheses of COTS outbreaks and the first validated predictions of COTS outbreak potential at the GBR scale incorporating connectivity, nutrients, biophysical and spatial variables, providing a useful aid to management of this pest species on the GBR.
Collapse
Affiliation(s)
- S A Matthews
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia; Australian Institute of Marine Science, Townsville, QLD, Australia.
| | - C Mellin
- The Environment Institute and School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Morgan S Pratchett
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia
| |
Collapse
|
5
|
Matthews SA, Shoemaker K, Pratchett MS, Mellin C. COTSMod: A spatially explicit metacommunity model of outbreaks of crown-of-thorns starfish and coral recovery. ADVANCES IN MARINE BIOLOGY 2020; 87:259-290. [PMID: 33293013 DOI: 10.1016/bs.amb.2020.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Outbreaks of the Pacific crown-of-thorns starfish (COTS; Acanthaster cf. solaris) have been responsible for 40% of the decline in coral cover on the GBR over the last 35 years. With the intensity and frequency of bleaching and cyclonic disturbances increasing, effectively managing these outbreaks may allow reefs an opportunity to recover from these cumulative impacts. Significant research effort has been directed toward developing regional scale models for COTS outbreaks, but these have yet to be fit explicitly to long term time series at the scale of the entire GBR, nor do previous research efforts incorporate explicit estimates of cumulative disturbance history. We developed a stage-based metapopulation model for COTS at a 1×1km resolution using long-term time series and modelled estimates of COTS larval connectivity, nutrient concentrations and important vital rates estimated from the literature. We coupled this metapopulation model to an existing spatially explicit model of coral cover growth, disturbance and recovery across the GBR from 1996 to 2017 to create a metacommunity model. Our results were validated against a spatially and temporally extensive dataset of COTS and coral cover across the GBR, predicting an average coral decline of 1.3% p.a. across the GBR, and accurately recreating coral cover trajectories (mean prediction error=7.1%) and COTS outbreak classification (accuracy=80%). Sensitivity analyses revealed that overall model accuracy was most sensitive to larval predation (boosted regression tree; relative importance=46.7%) and two parameters defining juvenile density dependent mortality (21.5% and 17.5%). The COTS model underestimated peak COTS densities particularly in the Swains and Townsville sectors of the reef, while overestimating COTS density during non-outbreak years. A better understanding of inter-annual variability in larval connectivity, and regionally variable density dependence for adult COTS life stages may improve model fit during these extreme outbreak events. Our model provides a platform to develop upon, and with improvements to estimates of larval connectivity and larval predation could be used to simulate the effects of implementing varying combinations of COTS interventions. This research highlights the importance of the early life history stages of COTS as drivers of outbreak dynamics, emphasizing the need for further empirical research to estimate these parameters.
Collapse
Affiliation(s)
- S A Matthews
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia; Australian Institute of Marine Science, Townsville, QLD, Australia.
| | - K Shoemaker
- Department of Natural Resources and Environmental Science, University of Nevada Reno, Reno, NV, United States
| | - Morgan S Pratchett
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia
| | - C Mellin
- The Environment Institute and School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
6
|
Guerra V, Haynes G, Byrne M, Yasuda N, Adachi S, Nakamura M, Nakachi S, Hart MW. Nonspecific expression of fertilization genes in the crown-of-thorns Acanthaster cf. solaris: Unexpected evidence of hermaphroditism in a coral reef predator. Mol Ecol 2019; 29:363-379. [PMID: 31837059 DOI: 10.1111/mec.15332] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/28/2019] [Accepted: 12/10/2019] [Indexed: 01/04/2023]
Abstract
The characterization of gene expression in gametes has advanced our understanding of the molecular basis for ecological variation in reproductive success and the evolution of reproductive isolation. These advances are especially significant for ecologically important keystone predators such as the coral-eating crown-of-thorns sea stars (COTS, Acanthaster) which are the most influential predator species in Indo-Pacific coral reef ecosystems and the focus of intensive management efforts. We used RNA-seq and transcriptome assemblies to characterize the expression of genes in mature COTS gonads. We described the sequence and domain organization of eight genes with sex-specific expression and well known functions in fertilization in other echinoderms. We found unexpected expression of genes in one ovary transcriptome that are characteristic of males and sperm, including genes that encode the sperm-specific guanylate cyclase receptor for an egg pheromone, and the sperm acrosomal protein bindin. In a reassembly of previously published RNA-seq data from COTS testes, we found a complementary pattern: strong expression of four genes that are otherwise well known to encode egg-specific fertilization proteins, including the egg receptor for bindin (EBR1) and the acrosome reaction-inducing substance in the egg coat (ARIS1, ARIS2, ARIS3). We also found histological evidence of both eggs and sperm developing in the same gonad in several COTS individuals from a parallel study. These results suggest the occurrence of hermaphrodites, and the potential for reproductive assurance via self-fertilization. Our findings have implications for management of COTS populations, especially in consideration of the large size and massive fecundity of these sea stars.
Collapse
Affiliation(s)
- Vanessa Guerra
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada.,Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Gwilym Haynes
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada.,Department of Biology, Langara College, Vancouver, British Columbia, Canada
| | - Maria Byrne
- Schools of Medical and Biological Sciences, The University of Sydney, Sydney, Australia
| | - Nina Yasuda
- Department of Marine Biology and Environmental Science, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Souta Adachi
- School of Marine Science and Technology, Tokai University, Shimizu, Shizuoka, Japan
| | - Masako Nakamura
- School of Marine Science and Technology, Tokai University, Shimizu, Shizuoka, Japan
| | | | - Michael W Hart
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
7
|
Lehtonen J, Dardare L. Mathematical Models of Fertilization—An Eco-Evolutionary Perspective. THE QUARTERLY REVIEW OF BIOLOGY 2019. [DOI: 10.1086/703633] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Wilmes JC, Caballes CF, Cowan ZL, Hoey AS, Lang BJ, Messmer V, Pratchett MS. Contributions of pre- versus post-settlement processes to fluctuating abundance of crown-of-thorns starfishes (Acanthaster spp.). MARINE POLLUTION BULLETIN 2018; 135:332-345. [PMID: 30301045 DOI: 10.1016/j.marpolbul.2018.07.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 06/27/2018] [Accepted: 07/02/2018] [Indexed: 06/08/2023]
Abstract
Numerous hypotheses have been put forward to account for population outbreaks of crown-of-thorns starfishes (CoTS, Acanthaster spp.), which place specific importance on either pre- or post-settlement mechanisms. The purpose of this review is to specifically assess the contributions of pre- versus post-settlement processes in the population dynamics of CoTS. Given the immense reproductive potential of CoTS (>100 million eggs per female), persistent high densities would appear inevitable unless there were significant constraints on larval development, settlement success, and/or early post-settlement growth and survival. In terms of population constraints, pre- and post-settlement processes are both important and have additive effects to suppress densities of juvenile and adult CoTS within reef ecosystems. It is difficult, however, to assess the relative contributions of pre- versus post-settlement processes to population outbreaks, especially given limited data on settlement rates, as well as early post-settlement growth and mortality. Prioritising this research is important to resolve potential effects of anthropogenic activities (e.g., fishing) and habitat degradation on changing population dynamics of CoTS, and will also improve management effectiveness.
Collapse
Affiliation(s)
- Jennifer C Wilmes
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia; Red Fish Blue Fish Marine, Cairns, QLD 4870, Australia
| | - Ciemon F Caballes
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia; Ultra Coral Australia, Paget, QLD 4740, Australia
| | - Zara-Louise Cowan
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia; School of Marine Science and Policy, University of Delaware, Lewes, DE 19958, USA
| | - Andrew S Hoey
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
| | - Bethan J Lang
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
| | - Vanessa Messmer
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
| | - Morgan S Pratchett
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia.
| |
Collapse
|
9
|
Bayer SR, Wahle RA, Brady DC, Jumars PA, Stokesbury KDE, Carey JD. Fertilization success in scallop aggregations: reconciling model predictions and field measurements of density effects. Ecosphere 2018. [DOI: 10.1002/ecs2.2359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- S. R. Bayer
- Darling Marine Center University of Maine Walpole Maine 04573 USA
| | - R. A. Wahle
- Darling Marine Center University of Maine Walpole Maine 04573 USA
| | - D. C. Brady
- Darling Marine Center University of Maine Walpole Maine 04573 USA
| | - P. A. Jumars
- Darling Marine Center University of Maine Walpole Maine 04573 USA
| | - K. D. E. Stokesbury
- Department of Fisheries Oceanography School for Marine Science and Technology University of Massachusetts Dartmouth Fairhaven Massachusetts 02719 USA
| | | |
Collapse
|
10
|
Thirty Years of Research on Crown-of-Thorns Starfish (1986–2016): Scientific Advances and Emerging Opportunities. DIVERSITY-BASEL 2017. [DOI: 10.3390/d9040041] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
11
|
Environmental and biological cues for spawning in the crown-of-thorns starfish. PLoS One 2017; 12:e0173964. [PMID: 28355236 PMCID: PMC5371309 DOI: 10.1371/journal.pone.0173964] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 03/01/2017] [Indexed: 11/22/2022] Open
Abstract
Sporadic outbreaks of the coral-eating crown-of-thorns starfish are likely to be due, at least in part, to spatial and temporal variation in reproductive and settlement success. For gonochoric and broadcast spawning species such as crown-of-thorns starfish, spawning synchrony is fundamental for achieving high rates of fertilization. Highly synchronized gamete release within and among distinct populations is typically the result of the entrainment of neurohormonal endogenous rhythms by cues from the environment. In this study, we conducted multiple spawning assays to test the effects of temperature change, reduced salinity and nutrient enrichment of seawater, phytoplankton, gametes (sperm and eggs), and the combined effect of sperm and phytoplankton on the likelihood of spawning in male and female crown-of-thorns starfish. We also investigated sex-specific responses to each of these potential spawning cues. We found that (1) abrupt temperature change (an increase of 4°C) induced spawning in males, but less so in females; (2) males often spawned in response to the presence of phytoplankton, but none of the females spawned in response to these cues; (3) the presence of sperm in the water column induced males and females to spawn, although additive and synergistic effects of sperm and phytoplankton were not significant; and (4) males are more sensitive to the spawning cues tested and most likely spawn prior to females. We propose that environmental cues act as spawning ‘inducers’ by causing the release of hormones (gonad stimulating substance) in sensitive males, while biological cues (pheromones) from released sperm, in turn, act as spawning ‘synchronizers’ by triggering a hormonal cascade resulting in gamete shedding by conspecifics. Given the immediate temporal linkage between the timing of spawning and fertilization events, variability in the extent and synchronicity of gamete release will significantly influence reproductive success and may account for fluctuations in the abundance of crown-of-thorns starfish.
Collapse
|
12
|
Environmental Tipping Points for Sperm Motility, Fertilization, and Embryonic Development in the Crown-of-Thorns Starfish. DIVERSITY-BASEL 2017. [DOI: 10.3390/d9010010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Rapuano H, Brickner I, Shlesinger T, Meroz-Fine E, Tamir R, Loya Y. Reproductive strategies of the coral Turbinaria reniformis in the northern Gulf of Aqaba (Red Sea). Sci Rep 2017; 7:42670. [PMID: 28195203 PMCID: PMC5307385 DOI: 10.1038/srep42670] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 01/13/2017] [Indexed: 02/07/2023] Open
Abstract
Here we describe for the first time the reproductive biology of the scleractinian coral Turbinaria reniformis studied during three years at the coral reefs of Eilat and Aqaba. We also investigated the possibility of sex change in individually tagged colonies followed over a period of 12 years. T. reniformis was found to be a stable gonochorist (no detected sex change) that reproduces by broadcast spawning 5-6 nights after the full moon of June and July. Spawning was highly synchronized between individuals in the field and in the lab. Reproduction of T. reniformis is temporally isolated from the times at which most other corals reproduce in Eilat. Its relatively long reproductive cycle compared to other hermaphroditic corals may be due to the high reproductive effort associated with the production of eggs by gonochoristic females. Sex ratio in both the Aqaba and Eilat coral populations deviated significantly from a 1:1 ratio. The larger number of males than of females may provide a compensation for sperm limitation due to its dilution in the water column. We posit that such sex allocation would facilitate adaptation within gonochoristic species by increasing fertilization success in low density populations, constituting a phenomenon possibly regulated by chemical communication.
Collapse
Affiliation(s)
- Hanna Rapuano
- Department of Zoology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Itzchak Brickner
- Department of Zoology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Tom Shlesinger
- Department of Zoology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Efrat Meroz-Fine
- The Interuniversity Institute for Marine Sciences, P.O. Box 469, Eilat 8810369, Israel
| | - Raz Tamir
- Department of Zoology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel
- The Interuniversity Institute for Marine Sciences, P.O. Box 469, Eilat 8810369, Israel
| | - Yossi Loya
- Department of Zoology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel
| |
Collapse
|
14
|
Babcock RC, Dambacher JM, Morello EB, Plagányi ÉE, Hayes KR, Sweatman HPA, Pratchett MS. Assessing Different Causes of Crown-of-Thorns Starfish Outbreaks and Appropriate Responses for Management on the Great Barrier Reef. PLoS One 2016; 11:e0169048. [PMID: 28036360 PMCID: PMC5201292 DOI: 10.1371/journal.pone.0169048] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 12/09/2016] [Indexed: 11/22/2022] Open
Abstract
The crown-of-thorns starfish Acanthaster planci (COTS) has contributed greatly to declines in coral cover on Australia's Great Barrier Reef, and remains one of the major acute disturbances on Indo-Pacific coral reefs. Despite uncertainty about the underlying causes of outbreaks and the management responses that might address them, few studies have critically and directly compared competing hypotheses. This study uses qualitative modelling to compare hypotheses relating to outbreak initiation, explicitly considering the potential role of positive feedbacks, elevated nutrients, and removal of starfish predators by fishing. When nutrients and fishing are considered in isolation, the models indicate that a range of alternative hypotheses are capable of explaining outbreak initiation with similar levels of certainty. The models also suggest that outbreaks may be caused by multiple factors operating simultaneously, rather than by single proximal causes. As the complexity and realism of the models increased, the certainty of outcomes decreased, but key areas that require further research to improve the structure of the models were identified. Nutrient additions were likely to result in outbreaks only when COTS larvae alone benefitted from nutrients. Similarly, the effects of fishing on the decline of corals depended on the complexity of interactions among several categories of fishes. Our work suggests that management approaches which seek to be robust to model structure uncertainty should allow for multiple potential causes of outbreaks. Monitoring programs can provide tests of alternative potential causes of outbreaks if they specifically monitor all key taxa at reefs that are exposed to appropriate combinations of potential causal factors.
Collapse
Affiliation(s)
- Russell C. Babcock
- CSIRO Oceans and Atmosphere, Brisbane, Qld, Australia
- School of Plant Biology, University of Western Australia, Crawley, WA, Australia
| | | | | | | | - Keith R. Hayes
- CSIRO Computational Informatics, Castray Esplanade, Hobart, TAS, Australia
| | - Hugh P. A. Sweatman
- Australian Institute of Marine Science, PMB 3, Townsville MC, Qld, Australia
| | - Morgan S. Pratchett
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia
| |
Collapse
|
15
|
Espinosa F, Rivera-Ingraham GA. Biological Conservation of Giant Limpets: The Implications of Large Size. ADVANCES IN MARINE BIOLOGY 2016; 76:105-155. [PMID: 28065294 DOI: 10.1016/bs.amb.2016.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Patellogastropods, also known as true limpets, are distributed throughout the world and constitute key species in coastal ecosystems. Some limpet species achieve remarkable sizes, which in the most extreme cases can surpass 35cm in shell length. In this review, we focus on giant limpets, which are defined as those with a maximum shell size surpassing 10cm. According to the scientific literature, there are a total of 14 species across five genera that reach these larger sizes. Four of these species are threatened or in danger of extinction. Inhabiting the intertidal zones, limpets are frequently affected by anthropogenic impacts, namely collection by humans, pollution and habitat fragmentation. In the case of larger species, their conspicuous size has made them especially prone to human collection since prehistoric times. Size is not phylogeny-dependent among giant limpets, but is instead related to behavioural traits instead. Larger-sized species tend to be nonmigratory and territorial compared to those that are smaller. Collection by humans has been cited as the main cause behind the decline and/or extinction of giant limpet populations. Their conspicuously large size makes them the preferred target of human collection. Because they are protandric species, selectively eliminating larger specimens of a given population seriously compromises their viability and has led to local extinction events in some cases. Additionally, sustained collection over time may lead to microevolutionary responses that result in genetic changes. The growing presence of artificial structures in coastal ecosystems may cause population fragmentation and isolation, limiting the genetic flow and dispersion capacity of many limpet species. However, when they are necessitated, artificial structures could be managed to establish marine artificial microreserves and contribute to the conservation of giant limpet species that naturally settle on them.
Collapse
Affiliation(s)
- F Espinosa
- Laboratorio de Biología Marina, Universidad de Sevilla, Sevilla, Spain.
| | - G A Rivera-Ingraham
- UMR 9190 MARBEC, Groupe fonctionnel AEO, Université de Montpellier 2, Montpellier, France
| |
Collapse
|
16
|
Eldon B, Riquet F, Yearsley J, Jollivet D, Broquet T. Current hypotheses to explain genetic chaos under the sea. Curr Zool 2016; 62:551-566. [PMID: 29491945 PMCID: PMC5829445 DOI: 10.1093/cz/zow094] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 08/27/2016] [Indexed: 01/07/2023] Open
Abstract
Chaotic genetic patchiness (CGP) refers to surprising patterns of spatial and temporal genetic structure observed in some marine species at a scale where genetic variation should be efficiently homogenized by gene flow via larval dispersal. Here we review and discuss 4 mechanisms that could generate such unexpected patterns: selection, sweepstakes reproductive success, collective dispersal, and temporal shifts in local population dynamics. First, we review examples where genetic differentiation at specific loci was driven by diversifying selection, which was historically the first process invoked to explain CGP. Second, we turn to neutral demographic processes that may drive genome-wide effects, and whose effects on CGP may be enhanced when they act together. We discuss how sweepstakes reproductive success accelerates genetic drift and can thus generate genetic structure, provided that gene flow is not too strong. Collective dispersal is another mechanism whereby genetic structure can be maintained regardless of dispersal intensity, because it may prevent larval cohorts from becoming entirely mixed. Theoretical analyses of both the sweepstakes and the collective dispersal ideas are presented. Finally, we discuss an idea that has received less attention than the other ones just mentioned, namely temporal shifts in local population dynamics.
Collapse
Affiliation(s)
- Bjarki Eldon
- Museum für Naturkunde Berlin, Leibniz Institut für Evolutions- und
Biodiversitätsforschung, Berlin 10115, Germany
| | - Florentine Riquet
- Université Montpellier 2, Place Eugène Bataillon, 34095 Montpellier Cedex 5,
France
- ISEM - CNRS, UMR 5554, SMEL, 2 rue des Chantiers, Sète 34200, France
| | - Jon Yearsley
- School of Biology and Environmental Science and UCD Earth Institute,
University College Dublin, Belfield, Dublin 4, Ireland
| | - Didier Jollivet
- Centre National de la Recherche Scientifique, Team Adaptation and Biology of
Invertebrates in Extreme Environments, Station Biologique de Roscoff, Roscoff 29680,
France
- Sorbonne Universités, Université Pierre et Marie Curie, Unité Mixte de
Recherche 7144, Station Biologique de Roscoff, Roscoff 29680, France
| | - Thomas Broquet
- Sorbonne Universités, Université Pierre et Marie Curie, Unité Mixte de
Recherche 7144, Station Biologique de Roscoff, Roscoff 29680, France
- Centre National de la Recherche Scientifique, Team Diversity and
Connectivity of Coastal Marine Landscapes, Station Biologique de Roscoff, Roscoff 29680,
France
| |
Collapse
|
17
|
Teo A, Guest JR, Neo ML, Vicentuan K, Todd PA. Quantification of coral sperm collected during a synchronous spawning event. PeerJ 2016; 4:e2180. [PMID: 27478697 PMCID: PMC4950549 DOI: 10.7717/peerj.2180] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 06/06/2016] [Indexed: 11/22/2022] Open
Abstract
Most studies of coral reproductive biology to date have focused on oocyte numbers and sizes. Only one (ex situ) study has enumerated sperm numbers, even though these data have multiple potential applications. We quantified total coral sperm and eggs per gamete bundle collected from six species in situ during a synchronous spawning event in Singapore. Egg-sperm bundles were captured midwater as they floated towards the surface after being released by the colony. For each sample, a semi-transparent soft plastic bottle was squeezed and released to create a small suction force that was used to ‘catch’ the bundles. This technique provided several advantages over traditional methods, including low cost, ease of use, no diving prior to the night of collection needed, and the ability to target specific areas of the colony. The six species sampled were Echinophyllia aspera, Favites abdita, F. chinensis, Merulina ampliata, M. scabricula and Platygyra pini. The mean number of sperm packaged within one egg-sperm bundle ranged from 2.04 × 106 to 1.93 × 107. The mean number of eggs per egg-sperm bundle ranged from 26.67 (SE ± 3.27) to 85.33 (SE ± 17.79). These data are critical for fertilisation success models, but the collection technique described could also be applied to studies requiring in situ spawning data at the polyp level.
Collapse
Affiliation(s)
- Aaron Teo
- Department of Biological Sciences, National University of Singapore , Singapore
| | | | - Mei Lin Neo
- Tropical Marine Science Institute, National University of Singapore, Singapore; St John's Island Marine Laboratory, National University of Singapore, Singapore
| | - Kareen Vicentuan
- Tropical Marine Science Institute, National University of Singapore , Singapore
| | - Peter A Todd
- Department of Biological Sciences, National University of Singapore , Singapore
| |
Collapse
|
18
|
The Role of Maternal Nutrition on Oocyte Size and Quality, with Respect to Early Larval Development in The Coral-Eating Starfish, Acanthaster planci. PLoS One 2016; 11:e0158007. [PMID: 27327627 PMCID: PMC4915722 DOI: 10.1371/journal.pone.0158007] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 06/08/2016] [Indexed: 11/19/2022] Open
Abstract
Variation in local environmental conditions can have pronounced effects on the population structure and dynamics of marine organisms. Previous studies on crown-of-thorns starfish, Acanthaster planci, have primarily focused on effects of water quality and nutrient availability on larval growth and survival, while the role of maternal nutrition on reproduction and larval development has been overlooked. To examine the effects of maternal nutrition on oocyte size and early larval development in A. planci, we pre-conditioned females for 60 days on alternative diets of preferred coral prey (Acropora abrotanoides) versus non-preferred coral prey (Porites rus) and compared resulting gametes and progeny to those produced by females that were starved over the same period. Females fed ad libitum with Acropora increased in weight, produced heavier gonads and produced larger oocytes compared to Porites-fed and starved females. Fed starfish (regardless of whether it was Acropora or Porites) produced bigger larvae with larger stomachs and had a higher frequency of normal larvae that reached the late bipinnaria / early brachiolaria stage compared to starved starfish. Females on Acropora diet also produced a higher proportion of larvae that progressed to more advanced stages faster compared to Porites-fed starfish, which progressed faster than starved starfish. These results suggest that maternal provisioning can have important consequences for the quality and quantity of progeny. Because food quality (coral community structure) and quantity (coral abundance) varies widely among reef locations and habitats, local variation in maternal nutrition of A. planci is likely to moderate reproductive success and may explain temporal and spatial fluctuations in abundance of this species.
Collapse
|
19
|
Bidegain G, Powell EN, Klinck JM, Ben‐Horin T, Hofmann EE. Marine infectious disease dynamics and outbreak thresholds: contact transmission, pandemic infection, and the potential role of filter feeders. Ecosphere 2016. [DOI: 10.1002/ecs2.1286] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Gorka Bidegain
- Gulf Coast Research LaboratoryUniversity of Southern Mississippi 703 East Beach Drive Ocean Springs Mississippi 39564 USA
| | - Eric N. Powell
- Gulf Coast Research LaboratoryUniversity of Southern Mississippi 703 East Beach Drive Ocean Springs Mississippi 39564 USA
| | - John M. Klinck
- Center of Coastal Physical OceanographyOld Dominon University 4111 Monarch Way Norfolk Virginia 23529 USA
| | - Tal Ben‐Horin
- Haskin Shellfish Research LaboratoryRutgers University 6959 Miller Avenue Port Norris New Jersey 08349 USA
- Department of Fisheries, Animal and Veterinary ScienceUniversity of Rhode Island 20A Woodward Hall, 9 East Alumni Avenue Kingston Rhode Island 02881 USA
| | - Eileen E. Hofmann
- Center of Coastal Physical OceanographyOld Dominon University 4111 Monarch Way Norfolk Virginia 23529 USA
| |
Collapse
|
20
|
Warner PA, Willis BL, Oppen MJH. Sperm dispersal distances estimated by parentage analysis in a brooding scleractinian coral. Mol Ecol 2016; 25:1398-415. [DOI: 10.1111/mec.13553] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 12/27/2015] [Accepted: 01/04/2016] [Indexed: 12/25/2022]
Affiliation(s)
- Patricia A. Warner
- AIMS@JCU and Australian Research Council (ARC) Centre of Excellence for Coral Reef Studies James Cook University Townsville Qld 4811 Australia
- College of Marine and Environmental Sciences James Cook University Townsville Qld 4811 Australia
| | - Bette L. Willis
- AIMS@JCU and Australian Research Council (ARC) Centre of Excellence for Coral Reef Studies James Cook University Townsville Qld 4811 Australia
- College of Marine and Environmental Sciences James Cook University Townsville Qld 4811 Australia
| | - Madeleine J. H. Oppen
- AIMS@JCU and Australian Research Council (ARC) Centre of Excellence for Coral Reef Studies James Cook University Townsville Qld 4811 Australia
- Australian Institute of Marine Science PMB3, Townsville MC Townsville Qld 4810 Australia
- School of BioSciences The University of Melbourne Parkville Vic. 23010 Australia
| |
Collapse
|
21
|
Wooldridge SA, Brodie JE. Environmental triggers for primary outbreaks of crown-of-thorns starfish on the Great Barrier Reef, Australia. MARINE POLLUTION BULLETIN 2015; 101:805-815. [PMID: 26460182 DOI: 10.1016/j.marpolbul.2015.08.049] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 08/28/2015] [Accepted: 08/31/2015] [Indexed: 06/05/2023]
Abstract
In this paper, we postulate a unique environmental triggering sequence for primary outbreaks of crown-of-thorns starfish (COTS, Acanthaster planci) on the central Great Barrier Reef (GBR, Australia). Notably, we extend the previous terrestrial runoff hypothesis, viz. nutrient-enriched terrestrial runoff → elevated phytoplankton 'bloom' concentrations → enhanced COTS larval survival, to include the additional importance of strong larvae retention around reefs or within reef groups (clusters) that share enhanced phytoplankton concentrations. For the central GBR, this scenario is shown to occur when El Niño-Southern Oscillation (ENSO) linked hydrodynamic conditions cause the 'regional' larval connectivity network to fragment into smaller 'local' reef clusters due to low ocean current velocities. As inter-annual variations in hydrodynamic circulation patterns are not amenable to direct management intervention, the ability to reduce the future frequency of COTS outbreaks on the central GBR is shown to be contingent on reducing terrestrial bioavailable nutrient loads ~20-40%.
Collapse
Affiliation(s)
- Scott A Wooldridge
- Centre for Tropical Water and Aquatic Ecosystem Research, JCU, Townsville, QLD 4811, Australia; Australian Institute of Marine Science, PMB 3, Townsville MC, QLD 4810, Australia.
| | - Jon E Brodie
- Centre for Tropical Water and Aquatic Ecosystem Research, JCU, Townsville, QLD 4811, Australia
| |
Collapse
|
22
|
Outbreak of coral-eating Crown-of-Thorns creates continuous cloud of larvae over 320 km of the Great Barrier Reef. Sci Rep 2015; 5:16885. [PMID: 26592431 PMCID: PMC4655354 DOI: 10.1038/srep16885] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 10/21/2015] [Indexed: 01/11/2023] Open
Abstract
Coral reefs are in decline worldwide due to a combination of local and global causes. Over 40% of the recent coral loss on Australia's Great Barrier Reef (GBR) has been attributed to outbreaks of the coral-eating Crown-of-Thorns Seastar (CoTS). Testing of the hypotheses explaining these outbreaks is hampered by an inability to investigate the spatio-temporal distribution of larvae because they resemble other planktotrophic echinoderm larvae. We developed a genetic marker and tested it on 48 plankton samples collected during the 2014 spawning season in the northern GBR, and verified the method by PCR amplification of single larva. Surprisingly, most samples collected contained CoTS larvae. Larvae were detected 100 km south of current outbreaks of adult seastars, highlighting the potential for rapid expansion of the outbreak. A minimum estimate suggested that larvae numbers in the outbreak area (>10(10)) are about 4 orders of magnitude higher than adults (~10(6)) in the same area, implying that attempts to halt outbreaks by removing adults may be futile.
Collapse
|
23
|
Climate change as an unexpected co-factor promoting coral eating seastar (Acanthaster planci) outbreaks. Sci Rep 2015; 5:8402. [PMID: 25672480 PMCID: PMC4325318 DOI: 10.1038/srep08402] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 01/16/2015] [Indexed: 11/08/2022] Open
Abstract
Coral reefs face a crisis due to local and global anthropogenic stressors. A large proportion of the ~50% coral loss on the Great Barrier Reef has been attributed to outbreaks of the crown-of-thorns-seastar (COTS). A widely assumed cause of primary COTS outbreaks is increased larval survivorship due to higher food availability, linked with anthropogenic runoff . Our experiment using a range of algal food concentrations at three temperatures representing present day average and predicted future increases, demonstrated a strong influence of food concentration on development is modulated by temperature. A 2°C increase in temperature led to a 4.2-4.9 times (at Day 10) or 1.2-1.8 times (Day 17) increase in late development larvae. A model indicated that food was the main driver, but that temperature was an important modulator of development. For instance, at 5000 cells ml(-1) food, a 2°C increase may shorten developmental time by 30% and may increase the probability of survival by 240%. The main contribution of temperature is to 'push' well-fed larvae faster to settlement. We conclude that warmer sea temperature is an important co-factor promoting COTS outbreaks.
Collapse
|
24
|
Peterson ML, Kay KM. Mating System Plasticity Promotes Persistence and Adaptation of Colonizing Populations of Hermaphroditic Angiosperms. Am Nat 2015; 185:28-43. [DOI: 10.1086/679107] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
25
|
Kamya PZ, Dworjanyn SA, Hardy N, Mos B, Uthicke S, Byrne M. Larvae of the coral eating crown-of-thorns starfish, Acanthaster planci in a warmer-high CO2 ocean. GLOBAL CHANGE BIOLOGY 2014; 20:3365-76. [PMID: 24615941 DOI: 10.1111/gcb.12530] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 01/06/2014] [Indexed: 05/14/2023]
Abstract
Outbreaks of crown-of-thorns starfish (COTS), Acanthaster planci, contribute to major declines of coral reef ecosystems throughout the Indo-Pacific. As the oceans warm and decrease in pH due to increased anthropogenic CO2 production, coral reefs are also susceptible to bleaching, disease and reduced calcification. The impacts of ocean acidification and warming may be exacerbated by COTS predation, but it is not known how this major predator will fare in a changing ocean. Because larval success is a key driver of population outbreaks, we investigated the sensitivities of larval A. planci to increased temperature (2-4 °C above ambient) and acidification (0.3-0.5 pH units below ambient) in flow-through cross-factorial experiments (3 temperature × 3 pH/pCO2 levels). There was no effect of increased temperature or acidification on fertilization or very early development. Larvae reared in the optimal temperature (28 °C) were the largest across all pH treatments. Development to advanced larva was negatively affected by the high temperature treatment (30 °C) and by both experimental pH levels (pH 7.6, 7.8). Thus, planktonic life stages of A. planci may be negatively impacted by near-future global change. Increased temperature and reduced pH had an additive negative effect on reducing larval size. The 30 °C treatment exceeded larval tolerance regardless of pH. As 30 °C sea surface temperatures may become the norm in low latitude tropical regions, poleward migration of A. planci may be expected as they follow optimal isotherms. In the absence of acclimation or adaptation, declines in low latitude populations may occur. Poleward migration will be facilitated by strong western boundary currents, with possible negative flow-on effects on high latitude coral reefs. The contrasting responses of the larvae of A. planci and those of its coral prey to ocean acidification and warming are considered in context with potential future change in tropical reef ecosystems.
Collapse
Affiliation(s)
- Pamela Z Kamya
- National Marine Science Centre, Southern Cross University, Coffs Harbour, New South Wales, Australia
| | | | | | | | | | | |
Collapse
|
26
|
Uthicke S, Pecorino D, Albright R, Negri AP, Cantin N, Liddy M, Dworjanyn S, Kamya P, Byrne M, Lamare M. Impacts of ocean acidification on early life-history stages and settlement of the coral-eating sea star Acanthaster planci. PLoS One 2013; 8:e82938. [PMID: 24358240 PMCID: PMC3865153 DOI: 10.1371/journal.pone.0082938] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 11/07/2013] [Indexed: 12/14/2022] Open
Abstract
Coral reefs are marine biodiversity hotspots, but their existence is threatened by global change and local pressures such as land-runoff and overfishing. Population explosions of coral-eating crown of thorns sea stars (COTS) are a major contributor to recent decline in coral cover on the Great Barrier Reef. Here, we investigate how projected near-future ocean acidification (OA) conditions can affect early life history stages of COTS, by investigating important milestones including sperm motility, fertilisation rates, and larval development and settlement. OA (increased pCO2 to 900-1200 µatm pCO2) significantly reduced sperm motility and, to a lesser extent, velocity, which strongly reduced fertilization rates at environmentally relevant sperm concentrations. Normal development of 10 d old larvae was significantly lower under elevated pCO2 but larval size was not significantly different between treatments. Settlement of COTS larvae was significantly reduced on crustose coralline algae (known settlement inducers of COTS) that had been exposed to OA conditions for 85 d prior to settlement assays. Effect size analyses illustrated that reduced settlement may be the largest bottleneck for overall juvenile production. Results indicate that reductions in fertilisation and settlement success alone would reduce COTS population replenishment by over 50%. However, it is unlikely that this effect is sufficient to provide respite for corals from other negative anthropogenic impacts and direct stress from OA and warming on corals.
Collapse
Affiliation(s)
- Sven Uthicke
- Australian Institute of Marine Science, Townsville, Queensland, Australia
- * E-mail:
| | - Danilo Pecorino
- Department of Marine Biology, University of Otago, Dunedin, Otago, New Zealand
| | - Rebecca Albright
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - Andrew Peter Negri
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - Neal Cantin
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - Michelle Liddy
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - Symon Dworjanyn
- National Marine Science Centre, Southern Cross University, Coffs Harbour, New South Wales, Australia
| | - Pamela Kamya
- National Marine Science Centre, Southern Cross University, Coffs Harbour, New South Wales, Australia
| | - Maria Byrne
- Schools of Medical and Biological Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Miles Lamare
- Department of Marine Biology, University of Otago, Dunedin, Otago, New Zealand
| |
Collapse
|
27
|
Effects of oscillatory flow on fertilization in the green sea urchin Strongylocentrotus droebachiensis. PLoS One 2013; 8:e76082. [PMID: 24098766 PMCID: PMC3786907 DOI: 10.1371/journal.pone.0076082] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 08/23/2013] [Indexed: 12/29/2022] Open
Abstract
Broadcast spawning invertebrates that live in shallow, high-energy coastal habitats are subjected to oscillatory water motion that creates unsteady flow fields above the surface of animals. The frequency of the oscillatory fluctuations is driven by the wave period, which will influence the stability of local flow structures and may affect fertilization processes. Using an oscillatory water tunnel, we quantified the percentage of eggs fertilized on or near spawning green sea urchins, Strongylocentrotus droebachiensis. Eggs were sampled in the water column, wake eddy, substratum and aboral surface under a range of different periods (T = 4.5 – 12.7 s) and velocities of oscillatory flow. The root-mean-square wave velocity (rms(uw)) was a good predictor of fertilization in oscillatory flow, although the root-mean-square of total velocity (rms(u)), which incorporates all the components of flow (current, wave and turbulence), also provided significant predictions. The percentage of eggs fertilized varied between 50 – 85% at low flows (rms(uw) <0.02 m s−1), depending on the location sampled, but declined to below 10% for most locations at higher rms(uw). The water column was an important location for fertilization with a relative contribution greater than that of the aboral surface, especially at medium and high rms(uw) categories. We conclude that gametes can be successfully fertilized on or near the parent under a range of oscillatory flow conditions.
Collapse
|
28
|
Crimaldi JP, Zimmer RK. The physics of broadcast spawning in benthic invertebrates. ANNUAL REVIEW OF MARINE SCIENCE 2013; 6:141-165. [PMID: 23957600 DOI: 10.1146/annurev-marine-010213-135119] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Most benthic invertebrates broadcast their gametes into the sea, whereupon successful fertilization relies on the complex interaction between the physics of the surrounding fluid flow and the biological properties and behavior of eggs and sperm. We present a holistic overview of the impact of instantaneous flow processes on fertilization across a range of scales. At large scales, transport and stirring by the flow control the distribution of gametes. Although mean dilution of gametes by turbulence is deleterious to fertilization, a variety of instantaneous flow phenomena can aggregate gametes before dilution occurs. We argue that these instantaneous flow processes are key to fertilization efficiency. At small scales, sperm motility and taxis enhance contact rates between sperm and chemoattractant-releasing eggs. We argue that sperm motility is a biological adaptation that replaces molecular diffusion in conventional mixing processes and enables gametes to bridge the gap that remains after aggregation by the flow.
Collapse
Affiliation(s)
- John P Crimaldi
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado, Boulder, Colorado 80309-0428;
| | | |
Collapse
|
29
|
Neo ML, Erftemeijer PLA, van Beek JKL, van Maren DS, Teo SLM, Todd PA. Recruitment constraints in Singapore's fluted giant clam (Tridacna squamosa) population--a dispersal model approach. PLoS One 2013; 8:e58819. [PMID: 23555597 PMCID: PMC3596324 DOI: 10.1371/journal.pone.0058819] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Accepted: 02/07/2013] [Indexed: 11/18/2022] Open
Abstract
Recruitment constraints on Singapore's dwindling fluted giant clam, Tridacna squamosa, population were studied by modelling fertilisation, larval transport, and settlement using real-time hydrodynamic forcing combined with knowledge of spawning characteristics, larval development, behaviour, and settlement cues. Larval transport was simulated using a finite-volume advection-diffusion model coupled to a three-dimensional hydrodynamic model. Three recruitment constraint hypotheses were tested: 1) there is limited connectivity between Singapore's reefs and other reefs in the region, 2) there is limited exchange within Singapore's Southern Islands, and 3) there exist low-density constraints to fertilisation efficacy (component Allee effects). Results showed that connectivity among giant clam populations was primarily determined by residual hydrodynamic flows and spawning time, with greatest chances of successful settlement occurring when spawning and subsequent larval dispersal coincided with the period of lowest residual flow. Simulations suggested poor larval transport from reefs located along the Peninsular Malaysia to Singapore, probably due to strong surface currents between the Andaman Sea and South China Sea combined with a major land barrier disrupting larval movement among reefs. The model, however, predicted offshore coral reefs to the southeast of Singapore (Bintan and Batam) may represent a significant source of larvae. Larval exchange within Singapore's Southern Islands varied substantially depending on the locations of source and sink reefs as well as spawning time; but all simulations resulted in low settler densities (2.1-68.6 settled individuals per 10,000 m(2)). Poor fertilisation rates predicted by the model indicate that the low density and scattered distribution of the remaining T. squamosa in Singapore are likely to significantly inhibit any natural recovery of local stocks.
Collapse
Affiliation(s)
- Mei Lin Neo
- Experimental Marine Ecology Laboratory, Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Tropical Marine Science Institute, National University of Singapore, Singapore, Singapore
| | - Paul L. A. Erftemeijer
- Sinclair Knight Merz (SKM), Perth, Australia
- The UWA Oceans Institute, University of Western Australia, Crawley, Australia
| | | | | | - Serena L-M. Teo
- Tropical Marine Science Institute, National University of Singapore, Singapore, Singapore
| | - Peter A. Todd
- Experimental Marine Ecology Laboratory, Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
30
|
Schlegel P, Havenhand JN, Gillings MR, Williamson JE. Individual variability in reproductive success determines winners and losers under ocean acidification: a case study with sea urchins. PLoS One 2012; 7:e53118. [PMID: 23300876 PMCID: PMC3531373 DOI: 10.1371/journal.pone.0053118] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 11/28/2012] [Indexed: 11/18/2022] Open
Abstract
Background Climate change will lead to intense selection on many organisms, particularly during susceptible early life stages. To date, most studies on the likely biotic effects of climate change have focused on the mean responses of pooled groups of animals. Consequently, the extent to which inter-individual variation mediates different selection responses has not been tested. Investigating this variation is important, since some individuals may be preadapted to future climate scenarios. Methodology/Principal Findings We examined the effect of CO2-induced pH changes (“ocean acidification”) in sperm swimming behaviour on the fertilization success of the Australasian sea urchin Heliocidaris erythrogramma, focusing on the responses of separate individuals and pairs. Acidification significantly decreased the proportion of motile sperm but had no effect on sperm swimming speed. Subsequent fertilization experiments showed strong inter-individual variation in responses to ocean acidification, ranging from a 44% decrease to a 14% increase in fertilization success. This was partly explained by the significant relationship between decreases in percent sperm motility and fertilization success at ΔpH = 0.3, but not at ΔpH = 0.5. Conclusions and Significance The effects of ocean acidification on reproductive success varied markedly between individuals. Our results suggest that some individuals will exhibit enhanced fertilization success in acidified oceans, supporting the concept of ‘winners’ and ‘losers’ of climate change at an individual level. If these differences are heritable it is likely that ocean acidification will lead to selection against susceptible phenotypes as well as to rapid fixation of alleles that allow reproduction under more acidic conditions. This selection may ameliorate the biotic effects of climate change if taxa have sufficient extant genetic variation upon which selection can act.
Collapse
Affiliation(s)
- Peter Schlegel
- Department of Biological Sciences, Macquarie University, Sydney, Australia.
| | | | | | | |
Collapse
|
31
|
Wainwright BJ, Arlyza IS, Karl SA. Eighteen microsatellite loci for the crown-of-thorns starfish, Acanthaster planci. CONSERV GENET RESOUR 2012. [DOI: 10.1007/s12686-012-9659-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
32
|
Ling SD, Johnson CR, Mundy CN, Morris A, Ross DJ. Hotspots of exotic free-spawning sex: man-made environment facilitates success of an invasive seastar. J Appl Ecol 2012. [DOI: 10.1111/j.1365-2664.2012.02133.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
Crimaldi JP. The role of structured stirring and mixing on gamete dispersal and aggregation in broadcast spawning. J Exp Biol 2012; 215:1031-9. [DOI: 10.1242/jeb.060145] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Summary
Broadcast-spawning benthic invertebrates synchronously release sperm and eggs from separate locations into the surrounding flow, whereupon the process depends on structured stirring by the flow field (at large scales), and sperm motility and taxis (at small scales) to bring the gametes together. The details of the relevant physical and biological aspects of the problem that result in successful and efficient fertilization are not well understood. This review paper includes relevant work from both the physical and biological communities to synthesize a more complete understanding of the processes that govern fertilization success; the focus is on the role of structured stirring on the dispersal and aggregation of gametes. The review also includes a summary of current trends and approaches for numerical and experimental simulations of broadcast spawning.
Collapse
|
34
|
Powell EN, Klinck JM, Hofmann EE. Generation time and the stability of sex-determining alleles in oyster populations as deduced using a gene-based population dynamics model. J Theor Biol 2011; 271:27-43. [PMID: 21056580 DOI: 10.1016/j.jtbi.2010.11.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 11/01/2010] [Accepted: 11/02/2010] [Indexed: 10/18/2022]
Abstract
Crassostrea oysters are protandrous hermaphrodites. Sex is thought to be determined by a single gene with a dominant male allele M and a recessive protandrous allele F, such that FF animals are protandrous and MF animals are permanent males. We investigate the possibility that a reduction in generation time, brought about for example by disease, might jeopardize retention of the M allele. Simulations show that MF males have a significantly lessened lifetime fecundity when generation time declines. The allele frequency of the M allele declines and eventually the M allele is lost. The probability of loss is modulated by population abundance. As abundance increases, the probability of M allele loss declines. Simulations suggest that stabilization of the female-to-male ratio when generation time is long is the dominant function of the M allele. As generation time shortens, the raison d'être for the M allele also fades as mortality usurps the stabilizing role. Disease and exploitation have shortened oyster generation time: one consequence may be to jeopardize retention of the M allele. Two alternative genetic bases for protandry also provide stable sex ratios when generation time is long; an F-dominant protandric allele and protandry restricted to the MF heterozygote. In both cases, simulations show that FF individuals become rare in the population at high abundance and/or long generation time. Protandry restricted to the MF heterozygote maintains sex ratio stability over a wider range of generation times and abundances than the alternatives, suggesting that sex determination based on a male-dominant allele (MM/MF) may not be the optimal solution to the genetic basis for protandry in Crassostrea.
Collapse
Affiliation(s)
- Eric N Powell
- Haskin Shellfish Research Laboratory, Rutgers University, 6959 Miller Avenue, Port Norris, NJ 08349, United States
| | - John M Klinck
- Center for Coastal Physical Oceanography, Old Dominion University, 4111 Monarch Way, Norfolk, VA 23529, United States
| | - Eileen E Hofmann
- Center for Coastal Physical Oceanography, Old Dominion University, 4111 Monarch Way, Norfolk, VA 23529, United States
| |
Collapse
|
35
|
Simon TN, Levitan DR. Measuring fertilization success of broadcast-spawning marine invertebrates within seagrass meadows. THE BIOLOGICAL BULLETIN 2011; 220:32-38. [PMID: 21385955 DOI: 10.1086/bblv220n1p32] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Increasing current velocity has been negatively correlated with the fertilization success of marine broadcast-spawning invertebrates. Seagrass has been shown to affect seawater hydrodynamics by slowing the movement of water. In this study we aimed to tease apart the relationship between fertilization success in sea urchins inside and outside of seagrass beds in St. Joseph Bay, Florida. Fluorescein dye diffusion, as a proxy for gamete diffusion, indicated higher rates of diffusion in sand habitats outside of seagrass beds. We quantified the proportion of eggs that remained on a female compared to being advected off a female over a 2-min interval in and out of grass beds. More eggs were collected inside of seagrass beds than over sand habitats, suggesting increased residence time of gametes within the beds. We induced sea urchins to spawn in experimental arrays in and out of grass beds and measured the fertilization success of eggs released from females and captured in the water column with a plankton pump. The fertilization success of eggs was significantly higher in grass beds. We concluded that seagrasses have the potential to mitigate gamete diffusion and increase the reproductive success of broadcast-spawning species that spawn in them.
Collapse
Affiliation(s)
- Troy N Simon
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | | |
Collapse
|
36
|
Pre-zygotic factors best explain reproductive isolation between the hybridizing species of brittle-stars Acrocnida brachiata and A. spatulispina (Echinodermata: Ophiuroidea). Genetica 2010; 138:667-79. [DOI: 10.1007/s10709-010-9441-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Accepted: 02/08/2010] [Indexed: 10/19/2022]
|
37
|
Abstract
The emerging field of marine ecomechanics provides an explicit physical framework for exploring interactions among marine organisms and between these organisms and their environments. It exhibits particular utility through its construction of predictive, mechanistic models, a number of which address responses to changing climatic conditions. Examples include predictions of (a) the change in relative abundance of corals as a function of colony morphology, ocean acidity, and storm intensity; (b) the rate of disturbance and patch formation in beds of mussels, a competitive dominant on many intertidal shores; (c) the dispersal and recruitment patterns of giant kelps, an important nearshore foundation species; (d) the effects of turbulence on external fertilization, a widespread method of reproduction in the sea; and (e) the long-term incidence of extreme ecological events. These diverse examples emphasize the breadth of marine ecomechanics. Indeed, its principles can be applied to any ecological system.
Collapse
Affiliation(s)
- Mark W Denny
- Hopkins Marine Station, Stanford University, Pacific Grove, California 93950, USA.
| | | |
Collapse
|
38
|
Gascoigne J, Berec L, Gregory S, Courchamp F. Dangerously few liaisons: a review of mate-finding Allee effects. POPUL ECOL 2009. [DOI: 10.1007/s10144-009-0146-4] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
39
|
Uthicke S, Schaffelke B, Byrne M. A boom–bust phylum? Ecological and evolutionary consequences of density variations in echinoderms. ECOL MONOGR 2009. [DOI: 10.1890/07-2136.1] [Citation(s) in RCA: 258] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
40
|
LOYA Y, SAKAI K, HEYWARD A. Reproductive patterns of fungiid corals in Okinawa, Japan. ACTA ACUST UNITED AC 2009. [DOI: 10.3755/galaxea.11.119] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
41
|
Mating system variation in the hermaphroditic brooding coral, Seriatopora hystrix. Heredity (Edinb) 2007; 100:296-303. [PMID: 17987054 DOI: 10.1038/sj.hdy.6801076] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Self-compatible, hermaphroditic marine invertebrates have the potential to self-fertilize in the absence of mates or under sperm-limited conditions, and outcross when sperm is available from a variety of males. Hence, many hermaphroditic marine invertebrates may have evolved mixed-mating systems that involve facultative self-fertilization. Such mixed-mating strategies are well documented for plants but have rarely been investigated in animals. Here, I use allozyme markers to make estimates of selfing from population surveys of reef slope and reef flat sites, and contrast this with direct estimates of selfing from progeny-array analysis, for the brooding coral Seriatopora hystrix. Consistent heterozygote deficits previously reported for S. hystrix suggests that inbreeding (including the extreme of selfing) may be common in this species. I detected significant levels of inbreeding within populations (F(IS)=0.48) and small but significant differentiation among all sites (F(ST)=0.04). I detected no significant differentiation among habitats (F(HT)=0.009) though among site differentiation did occur within the reef slope habitat (F(SH)=0.06), but not within the reef flat habitat (F(SH)=0.015). My direct estimates of outcrossing for six colonies and their progeny from a single reef flat site revealed an intermediate value (t(m) (+/-s.d.)=0.53+/-0.20). Inbreeding coefficients calculated from progeny arrays (F(e)=0.31) were similar to indirect estimates based on adult genotype frequencies for that site (F(IS)=0.38). This study confirms that the mating system of this brooding coral is potentially variable, with both outcrossing and selfing.
Collapse
|
42
|
Lauzon-Guay JS, Scheibling RE. Importance of spatial population characteristics on the fertilization rates of sea urchins. THE BIOLOGICAL BULLETIN 2007; 212:195-205. [PMID: 17565109 DOI: 10.2307/25066602] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
We show that inclusion of population characteristics in coupled advection-diffusion and fertilization-kinetics models results in higher fertilization rates than those previously reported in theoretical studies. We incorporate parameters related to both individuals and populations by running simulations over a large spatial scale and incorporating sperm contribution from multiple males. We compare predictions for three subpopulations of the sea urchin Strongylocentrotus droebachiensis (those occupying kelp beds, barrens, and grazing fronts) to observations from small-scale experiments, and estimate effects of population size and current velocity in each subpopulation. Model outputs suggest that fertilization rates are low in kelp beds, intermediate in barrens, and high in grazing fronts. In all populations, increasing current velocity has a negative effect on the relationship between fertilization rate and downstream distance of gametes after release, but no effect on the relationship between fertilization rate and elapsed time since gamete release. Our model output was most sensitive to changes in the number of spawning males and the sperm release rate, suggesting that spawning synchrony and high gonadic index could greatly increase the fertilization success in sea urchins.
Collapse
Affiliation(s)
- Jean-Sébastien Lauzon-Guay
- Biology Department, University of New Brunswick, Bag Service 45111, Fredericton, New Brunswick E3B 6E1, Canada.
| | | |
Collapse
|
43
|
Marshall DJ, Keough MJ. The evolutionary ecology of offspring size in marine invertebrates. ADVANCES IN MARINE BIOLOGY 2007; 53:1-60. [PMID: 17936135 DOI: 10.1016/s0065-2881(07)53001-4] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Intraspecific variation in offspring size is of fundamental ecological and evolutionary importance. The level of provisioning an organism receives from its mother can have far reaching consequences for subsequent survival and performance. In marine systems, the traditional focus was on the remarkable variation in offspring size among species but there is increasing focus on variation in offspring size within species. Here we review the incidence and consequences of intraspecific offspring-size variation for marine invertebrates. Offspring size is remarkably variable within and among marine invertebrate populations. We examined patterns of variation in offspring size within populations using a meta-analysis of the available data for 102 species across 7 phyla. The average coefficient of variation in offspring size within populations is 9%, while some groups (e.g., direct developers) showed much more variation (15%), reflecting a fourfold difference between the largest and smallest offspring in any population. Offspring-size variation can have for reaching consequences. Offspring size affects every stage of a marine invertebrate's life history, even in species in which maternal provisioning accounts for only a small proportion of larval nutrition (i.e., planktotrophs). In species with external fertilization, larger eggs are larger targets for sperm and as such, the sperm environment may select for different egg sizes although debate continues over the evolutionary importance of such effects. Offspring size affects the planktonic period in many species with planktotrophic and lecithotrophic development, but we found that this effect is not universal. Indeed, much of the evidence for the effects of offspring size on the planktonic period is limited to the echinoids and in this group and other taxa there is variable evidence, suggesting further work is necessary. Post-metamorphic effects of offspring size were strong in species with non-feeding larvae and direct development: bigger offspring generally have higher post-metamorphic survival, higher growth rates and sometimes greater fecundity. Although there is limited evidence for the mechanisms underlying these effects, the size of post-metamorphic feeding structures and resistance to low-food availability appear to be good candidates. There was limited evidence to assess the effects of offspring size on post-metamorphic performance in planktotrophs but surprisingly, initial indications suggest that such effects do exist and in the same direction as for species with other developmental modes. Overall, we suggest that for direct developers and species with non-feeding larvae, the post-metamorphic effects of offspring size will be greatest source of selection. Offspring-size variation can arise through a variety of sources, both within and among populations. Stress, maternal size and nutrition, and habitat quality all appear to be major factors affecting the size of offspring, but more work on sources of variation is necessary. While theoretical considerations of offspring size can now account for variation in offspring size among mothers, they struggle to account for within-brood variation. We suggest alternative approaches such as game theoretic models that may be useful for reconciling within-clutch variation. While some of the first theoretical considerations of offspring size were based on marine invertebrates, many of the assumptions of these models have not been tested, and we highlight some of the important gaps in understanding offspring-size effects. We also discuss the advantages of using offspring size as a proxy for maternal investment and review the evidence used to justify this step. Overall, offspring size is likely to be an important source of variation in the recruitment of marine invertebrates. The quality of offspring entering a population could be as important as the quantity and further work on the ecological role of offspring size is necessary. From an evolutionary standpoint, theoretical models that consider every life-history stage, together with the collection of more data on the relationship between offspring size and performance at each stage, should bring us closer to understanding the evolution of such a wide array of offspring sizes and developmental modes among species.
Collapse
Affiliation(s)
- Dustin J Marshall
- School of Integrative Biology/Centre for Marine Studies, University of Queensland, Queensland, Australia
| | | |
Collapse
|
44
|
ESPINOSA FREE, GUERRA-GARCÍA JOSEM, FA DARREN, GARCÍA-GÓMEZ JCARLOS. Aspects of reproduction and their implications for the conservation of the endangered limpet,Patella ferruginea. INVERTEBR REPROD DEV 2006. [DOI: 10.1080/07924259.2006.9652197] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
45
|
Levitan DR. Sex‐Specific Spawning Behavior and Its Consequences in an External Fertilizer. Am Nat 2005; 165:682-94. [PMID: 15937748 DOI: 10.1086/429733] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2004] [Accepted: 02/11/2005] [Indexed: 11/03/2022]
Abstract
Identifying the target of sexual selection in externally fertilizing taxa has been problematic because species in these taxa often lack sexual dimorphism. However, these species often show sex differences in spawning behavior; males spawn before females. I investigated the consequences of spawning order and time intervals between male and female spawning in two field experiments. The first involved releasing one female sea urchin's eggs and one or two males' sperm in discrete puffs from syringes; the second involved inducing males to spawn at different intervals in situ within a population of spawning females. In both, fertilization success was measured as the fraction of eggs fertilized and the paternity share of each male. The results indicate that spawning after females imposes a cost on males but only during sperm competition. Further, the optimal interval between the initiations of male and female spawning depends on degree of sperm competition, distance between males and females, and water velocity. The results show that sex differences in spawning timing of marine invertebrates can be explained on the basis of the differential costs and benefits of spawning out of synchrony with the other sex and that the result of sexual selection on external fertilizers may be behavioral rather than morphological differentiation of the sexes.
Collapse
Affiliation(s)
- Don R Levitan
- Department of Biological Science, Florida State University, Tallahassee, Florida 32306-1100, USA.
| |
Collapse
|
46
|
Phillippi A, Hamann E, Yund PO. Fertilization in an egg-brooding colonial ascidian does not vary with population density. THE BIOLOGICAL BULLETIN 2004; 206:152-160. [PMID: 15198941 DOI: 10.2307/1543639] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The possibility that free-spawning marine organisms may be subject to fertilization failure at low population density (due to the effects of sperm dilution) has sparked much interest, but these effects have been demonstrated only in a few species that broadcast their eggs. Some egg-brooding species may overcome dilution effects by filtering low concentrations of sperm from seawater and fertilizing eggs throughout an extended period of time. We examined the effects of population density and size on fertilization in Botryllus schlosseri, a hermaphroditic colonial ascidian that free-spawns sperm, but broods eggs. We experimentally manipulated the size and density of mating groups and surveyed fertilization levels in natural populations that varied in density. Fertilization was not affected by variation in population size or density in either the experimental or natural populations. Near the end of the reproductive season, some eggs may have been fertilized too late to complete development, suggesting a temporal form of sperm limitation that has not been considered in other systems. We also detected greater variability in fertilization levels at lower population density. Nevertheless, these results suggest that caution must be used in extrapolating reported density effects on fertilization to all taxa of free-spawners; density effects may be reduced in brooders that have efficient sperm collection mechanisms.
Collapse
Affiliation(s)
- Aimee Phillippi
- School of Marine Sciences, Darling Marine Center, University of Maine, Walpole, ME 04573, USA.
| | | | | |
Collapse
|
47
|
Podolsky RD. Life‐History Consequences of Investment in Free‐Spawned Eggs and Their Accessory Coats. Am Nat 2004; 163:735-53. [PMID: 15122491 DOI: 10.1086/382791] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2003] [Accepted: 10/28/2003] [Indexed: 11/03/2022]
Abstract
The optimal trade-off between offspring size and number can depend on details of the mode of reproduction or development. In marine organisms, broadcast spawning is widespread, and external coats are a common feature of spawned eggs. Egg jelly coats are thought to influence several aspects of fertilization and early development, including the size of the target for sperm, fertilization efficiency, egg suspension time, polyspermy, embryo survival, and fecundity. These costs and benefits of investment in jelly result in trade-offs that can influence optimal reproductive allocation and the evolution of egg size. I develop an optimization model that sequentially incorporates assumptions about the function of egg coats in fertilization. The model predicts large variation in coat size and limited variation in ovum size under a broad range of conditions. Heterogeneity among spawning events further limits the range of ovum sizes predicted to evolve under sperm limitation. In contrast, variation in larval mortality predicts a broad range of optimal ovum sizes that more closely reflects natural variation among broadcast-spawning invertebrates. By decoupling physical and energetic size, egg coats can enhance fertilization, maintain high fecundity, and buffer the evolution of ovum size from variation in spawning conditions.
Collapse
Affiliation(s)
- Robert D Podolsky
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA.
| |
Collapse
|
48
|
Minchin D, Gollasch S. Fouling and ships' hulls: how changing circumstances and spawning events may result in the spread of exotic species. BIOFOULING 2003; 19 Suppl:111-22. [PMID: 14618712 DOI: 10.1080/0892701021000057891] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Organisms fouling ships' hulls are continually in transit worldwide. Although effective antifouling paints incorporating organotins have considerably reduced fouling biomass these paints have a limited period of effectiveness, which may be less than the ships' inter-docking period, depending on sea temperature and abrasion. Vessels immersed over several years can allow fouling communities to develop and spread beyond their native distribution. This process of establishment is not fully understood. This review proposes that short rapid turn-around of vessels with mature attached biota can result in synchronized spawnings and production of sufficient zygotes to form a founder population. Spawning may be induced by changes in temperature or salinity on entry into a port, according to season. The diversity of taxa in transit on ships' hulls includes commercial molluscs, which have the potential to transmit their diseases or pests to port regions. Several factors may act in the further enhancement of exotic species establishment including changes of in-port berthing regions to more marine conditions. Ships today are generally larger, and faster, and have a high frequency of port visits thereby increasing the number of spawning opportunities, perhaps with a larger inoculum size. With trade expansion, new trading routes, political events and changes in climate, new pathways for invasion will emerge. Greater controls on industrial discharges, improved treatments of urban wastes and better management of waste runoff into rivers as well as a phasing out of organotin antifoulants will mean a reduced toxicity in port regions. This may enable a smaller inoculum to colonize by creating opportunities for establishment not present in the previous 25 years. Some invaders will have unwanted consequences for the environment, economies and human health.
Collapse
Affiliation(s)
- Dan Minchin
- Marine Organism Investigations, Ballina, Killaloe, Ireland.
| | | |
Collapse
|
49
|
Farley GS. Helical nature of sperm swimming affects the fit of fertilization-kinetics models to empirical data. THE BIOLOGICAL BULLETIN 2002; 203:51-57. [PMID: 12200255 DOI: 10.2307/1543457] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Models of fertilization kinetics rely upon estimates of the swimming velocity of sperm to predict collision rates between egg and sperm. Most investigators measure sperm swimming velocity without accounting for the helical motion of sperm, thereby obtaining an inflated estimate of the velocity with which sperm approach eggs. In turn, models of fertilization predict inflated rates of sperm/egg collision. I observed sea urchin sperm colliding with eggs, quantified the rate of sperm/egg collision, and measured sperm velocity as a component of the helix through which they swim. I also adjusted the "target size" of eggs to reflect the diameter of the helix. My estimate of sperm swimming velocity is an order of magnitude lower than other estimates for the same species. By using helical parameters in fertilization kinetics models and accounting for dead sperm in laboratory trials, I was able to accurately predict lower rates of sperm/egg collision. Moreover, making these adjustments in the model increased the estimated proportion of sperm that initiate fertilization by 6- to 7-fold, suggesting that a better understanding of sperm swimming might lead to a more complete understanding of fertilization biology and natural selection on gamete traits.
Collapse
Affiliation(s)
- Gregory S Farley
- Department of Biological Science, The Florida State University, Tallahassee, Florida 32306, USA.
| |
Collapse
|
50
|
Podolsky RD. Fertilization ecology of egg coats: physicalversuschemical contributions to fertilization success of free-spawned eggs. J Exp Biol 2002; 205:1657-68. [PMID: 12000810 DOI: 10.1242/jeb.205.11.1657] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYFree-spawned eggs are typically enclosed within accessory structures that are shed early in development. Most research on the role of these structures in fertilization has focused on chemical constituents and their influence on sperm—egg interaction. Here I test an alternative hypothesis that accessory structures play an important physical role in fertilization by increasing the size and buoyancy of the egg, making it a better target for sperm. In the sand dollar Dendraster excentricus, the jelly coat increases egg target size sixfold. At nonsaturating sperm concentrations,fertilization declined consistently following jelly coat removal by two independent methods. Regression analysis using a standard fertilization kinetics model found that 54-73% of this decline on average was predicted by changes in the rate of sperm—egg collision, resulting from changes in egg target size and density. Sperm swimming speed, a key parameter in the model, did not vary as a function of sperm concentration or exposure to egg-water. The organic cost of jelly is a fraction of that of the ovum,providing an efficient means of extending target size beyond the ovum size that is optimal for larval or juvenile development. These results support the hypothesis that physical attributes of jelly coats can account for a significant portion of their contribution to fertilization, and may help to explain why coats and other accessory structures are often substantially larger than expected from the nature of chemical interactions between egg and sperm.
Collapse
Affiliation(s)
- Robert D Podolsky
- University of North Carolina, Department of Biology, Chapel Hill, NC 27599, USA.
| |
Collapse
|