1
|
Perillo M, Sepe RM, Paganos P, Toscano A, Annunziata R. Sea cucumbers: an emerging system in evo-devo. EvoDevo 2024; 15:3. [PMID: 38368336 PMCID: PMC10874539 DOI: 10.1186/s13227-023-00220-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 12/24/2023] [Indexed: 02/19/2024] Open
Abstract
A challenge for evolutionary developmental (evo-devo) biology is to expand the breadth of research organisms used to investigate how animal diversity has evolved through changes in embryonic development. New experimental systems should couple a relevant phylogenetic position with available molecular tools and genomic resources. As a phylum of the sister group to chordates, echinoderms extensively contributed to our knowledge of embryonic patterning, organ development and cell-type evolution. Echinoderms display a variety of larval forms with diverse shapes, making them a suitable group to compare the evolution of embryonic developmental strategies. However, because of the laboratory accessibility and the already available techniques, most studies focus on sea urchins and sea stars mainly. As a comparative approach, the field would benefit from including information on other members of this group, like the sea cucumbers (holothuroids), for which little is known on the molecular basis of their development. Here, we review the spawning and culture methods, the available morphological and molecular information, and the current state of genomic and transcriptomic resources on sea cucumbers. With the goal of making this system accessible to the broader community, we discuss how sea cucumber embryos and larvae can be a powerful system to address the open questions in evo-devo, including understanding the origins of bilaterian structures.
Collapse
Affiliation(s)
- Margherita Perillo
- Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, 7 MBL St., Woods Hole, MA, 02543, USA.
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy.
| | - Rosa Maria Sepe
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Periklis Paganos
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Alfonso Toscano
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | | |
Collapse
|
2
|
Pagowski V. A description of the bat star nervous system throughout larval ontogeny. Evol Dev 2024; 26:e12468. [PMID: 38108150 DOI: 10.1111/ede.12468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/13/2023] [Accepted: 12/05/2023] [Indexed: 12/19/2023]
Abstract
Larvae represent a distinct life history stage in which animal morphology and behavior contrast strongly to adult organisms. This life history stage is a ubiquitous aspect of animal life cycles, particularly in the marine environment. In many species, the structure and function of the nervous system differ significantly between metamorphosed juveniles and larvae. However, the distribution and diversity of neural cell types in larval nervous systems remains incompletely known. Here, the expression of neurotransmitter and neuropeptide synthesis and transport genes in the bat star Patiria miniata is examined throughout larval development. This characterization of nervous system structure reveals three main neural regions with distinct but overlapping territories. These regions include a densely innervated anterior region, an enteric neural plexus, and neurons associated with the ciliary band. In the ciliary band, cholinergic cells are pervasive while dopaminergic, noradrenergic, and GABAergic cells show regional differences in their localization patterns. Furthermore, the distribution of some neural subtypes changes throughout larval development, suggesting that changes in nervous system structure align with shifting ecological priorities during different larval stages, before the development of the adult nervous system. While past work has described aspects of P. miniata larval nervous system structure, largely focusing on early developmental timepoints, this work provides a comprehensive description of neural cell type localization throughout the extensive larval period.
Collapse
Affiliation(s)
- Veronica Pagowski
- Hopkins Marine Station of Stanford University, Pacific Grove, California, USA
| |
Collapse
|
3
|
Zheng Y, Cong X, Liu H, Wang Y, Storey KB, Chen M. Nervous System Development and Neuropeptides Characterization in Embryo and Larva: Insights from a Non-Chordate Deuterostome, the Sea Cucumber Apostichopus japonicus. BIOLOGY 2022; 11:1538. [PMID: 36290441 PMCID: PMC9598280 DOI: 10.3390/biology11101538] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022]
Abstract
Here, we described the complex nervous system at five early developmental stages (blastula, gastrula, auricularia, doliolaria and pentactula) of a holothurian species with highly economic value, Apostichopus japonicus. The results revealed that the nervous system of embryos and larvae is mainly distributed in the anterior apical region, ciliary bands or rings, and the feeding and attachment organs, and that serotonergic immunoreactivity was not observed until the embryo developed into the late gastrula; these are evolutionarily conserved features of echinoderm, hemichordate and protostome larvae. Furthermore, based on available transcriptome data, we reported the neuropeptide precursors profile at different embryonic and larval developmental stages. This analysis showed that 40 neuropeptide precursors present in adult sea cucumbers were also identified at different developmental stages of embryos and larvae, and only four neuropeptide precursors (SWYG precursor 2, GYWKDLDNYVKAHKT precursor, Neuropeptide precursor 14-like precursor, GLRFAmprecursor-like precursor) predicted in adults were absent in embryos and larvae. Combining the quantitative expression of ten specific neuropeptide precursor genes (NPs) by qRT-PCR, we revealed the potential important roles of neuropeptides in embryo development, feeding and attachment in A. japonicus larvae. In conclusion, this work provides novel perspectives on the diverse physiological functions of neuropeptides and contributes to understanding the evolution of neuropeptidergic systems in echinoderm embryos and larvae.
Collapse
Affiliation(s)
- Yingqiu Zheng
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Xiao Cong
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Huachen Liu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Yixin Wang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Kenneth B. Storey
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Muyan Chen
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
4
|
Carter HF, Thompson JR, Elphick MR, Oliveri P. The Development and Neuronal Complexity of Bipinnaria Larvae of the Sea Star Asterias rubens. Integr Comp Biol 2021; 61:337-351. [PMID: 34048552 PMCID: PMC8427176 DOI: 10.1093/icb/icab103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Free-swimming planktonic larvae are a key stage in the development of many marine phyla, and studies of these organisms have contributed to our understanding of major genetic and evolutionary processes. Although transitory, these larvae often attain a remarkable degree of tissue complexity, with well-defined musculature and nervous systems. Among the best studied are larvae belonging to the phylum Echinodermata, but with work largely focused on the pluteus larvae of sea urchins (class Echinoidea). The greatest diversity of larval strategies among echinoderms is found in the class Asteroidea (sea stars), organisms that are rapidly emerging as experimental systems for genetic and developmental studies. However, the bipinnaria larvae of sea stars have only been studied in detail in a small number of species and although they have been relatively well described neuro-anatomically, they are poorly understood neurochemically. Here, we have analyzed embryonic development and bipinnaria larval anatomy in the common North Atlantic sea star Asterias rubens, using a variety of staining methods in combination with confocal microscopy. Importantly, the chemical complexity of the nervous system of bipinnaria larvae was revealed through use of a diverse set of antibodies, with identification of at least three centers of differing neurochemical signature within the previously described nervous system: the anterior apical organ, oral region, and ciliary bands. Furthermore, the anatomy of the musculature and sites of cell division in bipinnaria larvae was analyzed. Comparisons of developmental progression and molecular anatomy across the Echinodermata provided a basis for hypotheses on the shared evolutionary and developmental processes that have shaped this group of animals. We conclude that bipinnaria larvae appear to be remarkably conserved across ∼200 million years of evolutionary time and may represent a strong evolutionary and/or developmental constraint on species utilizing this larval strategy.
Collapse
Affiliation(s)
- Hugh F Carter
- Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
- Department of Life Sciences, Natural History Museum, Cromwell Road, South Kensington, London SW7 5BD, UK
| | - Jeffrey R Thompson
- Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
- UCL Centre for Life’s Origins and Evolution (CLOE), University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Maurice R Elphick
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Paola Oliveri
- Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
- UCL Centre for Life’s Origins and Evolution (CLOE), University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
5
|
D’Aniello E, Paganos P, Anishchenko E, D’Aniello S, Arnone MI. Comparative Neurobiology of Biogenic Amines in Animal Models in Deuterostomes. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.587036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
6
|
Mercurio S, Gattoni G, Messinetti S, Sugni M, Pennati R. Nervous system characterization during the development of a basal echinoderm, the feather star Antedon mediterranea. J Comp Neurol 2019; 527:1127-1139. [PMID: 30520044 DOI: 10.1002/cne.24596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 11/15/2018] [Accepted: 11/16/2018] [Indexed: 12/25/2022]
Abstract
Neural development of echinoderms has always been difficult to interpret, as larval neurons degenerate at metamorphosis and a tripartite nervous system differentiates in the adult. Despite their key phylogenetic position as basal echinoderms, crinoids have been scarcely studied in developmental research. However, since they are the only extant echinoderms retaining the ancestral body plan of the group, crinoids are extremely valuable models to clarify neural evolution in deuterostomes. Antedon mediterranea is a feather star, endemic to the Mediterranean Sea. Its development includes a swimming lecithotrophic larva, the doliolaria, with basiepithelial nerve plexus, and a sessile filter-feeding juvenile, the pentacrinoid, whose nervous system has never been described in detail. Thus, we characterized the nervous system of both these developmental stages by means of immunohistochemistry and, for the first time, in situ hybridization techniques. The results confirmed previous descriptions of doliolaria morphology and revealed that the larval apical organ contains two bilateral clusters of serotonergic cells while GABAergic neurons are localized under the adhesive pit. This suggested that different larval activities (e.g., attachment and metamorphosis) are under the control of different neural populations. In pentacrinoids, the analysis showed the presence of a cholinergic entoneural system while the ectoneural plexus appeared more composite, displaying different neural populations. The expression of three neural-related microRNAs was described for the first time, suggesting that these are evolutionarily conserved also in basal echinoderms. Overall, our results set the stage for future investigations that will reveal new information on echinoderm evo-devo neurobiology.
Collapse
Affiliation(s)
- Silvia Mercurio
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milan, Italy
| | - Giacomo Gattoni
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milan, Italy
| | - Silvia Messinetti
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milan, Italy
| | - Michela Sugni
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milan, Italy.,Center for Complexity and Biosystems, Università degli Studi di Milano, Milan, Italy
| | - Roberta Pennati
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
7
|
Hinman VF, Burke RD. Embryonic neurogenesis in echinoderms. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2018; 7:e316. [PMID: 29470839 DOI: 10.1002/wdev.316] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 12/20/2017] [Accepted: 12/21/2017] [Indexed: 01/09/2023]
Abstract
The phylogenetic position of echinoderms is well suited to revealing shared features of deuterostomes that distinguish them from other bilaterians. Although echinoderm neurobiology remains understudied, genomic resources, molecular methods, and systems approaches have enabled progress in understanding mechanisms of embryonic neurogenesis. Even though the morphology of echinoderm larvae is diverse, larval nervous systems, which arise during gastrulation, have numerous similarities in their organization. Diverse neural subtypes and specialized sensory neurons have been identified and details of neuroanatomy using neuron-specific labels provide hypotheses for neural function. The early patterning of ectoderm and specification of axes has been well studied in several species and underlying gene regulatory networks have been established. The cells giving rise to central and peripheral neural components have been identified in urchins and sea stars. Neurogenesis includes typical metazoan features of asymmetric division of neural progenitors and in some cases limited proliferation of neural precursors. Delta/Notch signaling has been identified as having critical roles in regulating neural patterning and differentiation. Several transcription factors functioning in pro-neural phases of specification, neural differentiation, and sub-type specification have been identified and structural or functional components of neurons are used as differentiation markers. Several methods for altering expression in embryos have revealed aspects of a regulatory hierarchy of transcription factors in neurogenesis. Interfacing neurogenic gene regulatory networks to the networks regulating ectodermal domains and identifying the spatial and temporal inputs that pattern the larval nervous system is a major challenge that will contribute substantially to our understanding of the evolution of metazoan nervous systems. This article is categorized under: Comparative Development and Evolution > Model Systems Comparative Development and Evolution > Body Plan Evolution Early Embryonic Development > Gastrulation and Neurulation.
Collapse
Affiliation(s)
- Veronica F Hinman
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Robert D Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, Canada
| |
Collapse
|
8
|
Cheatle Jarvela AM, Yankura KA, Hinman VF. A gene regulatory network for apical organ neurogenesis and its spatial control in sea star embryos. Development 2016; 143:4214-4223. [PMID: 27707794 DOI: 10.1242/dev.134999] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 09/23/2016] [Indexed: 01/18/2023]
Abstract
How neural stem cells generate the correct number and type of differentiated neurons in appropriate places remains an important question. Although nervous systems are diverse across phyla, in many taxa the larva forms an anterior concentration of serotonergic neurons, or apical organ. The sea star embryo initially has a pan-neurogenic ectoderm, but the genetic mechanism that directs a subset of these cells to generate serotonergic neurons in a particular location is unresolved. We show that neurogenesis in sea star larvae begins with soxc-expressing multipotent progenitors. These give rise to restricted progenitors that express lhx2/9 soxc- and lhx2/9-expressing cells can undergo both asymmetric divisions, allowing for progression towards a particular neural fate, and symmetric proliferative divisions. We show that nested concentric domains of gene expression along the anterior-posterior (AP) axis, which are observed in a great diversity of metazoans, control neurogenesis in the sea star larva by promoting particular division modes and progression towards becoming a neuron. This work explains how spatial patterning in the ectoderm controls progression of neurogenesis in addition to providing spatial cues for neuron location. Modification to the sizes of these AP territories provides a simple mechanism to explain the diversity of neuron number among apical organs.
Collapse
Affiliation(s)
- Alys M Cheatle Jarvela
- Department of Biological Sciences, Carnegie Mellon University, 4400 5th Ave, Pittsburgh, PA 15213, USA
| | - Kristen A Yankura
- Department of Biological Sciences, Carnegie Mellon University, 4400 5th Ave, Pittsburgh, PA 15213, USA
| | - Veronica F Hinman
- Department of Biological Sciences, Carnegie Mellon University, 4400 5th Ave, Pittsburgh, PA 15213, USA
| |
Collapse
|
9
|
Díaz-Balzac CA, Vázquez-Figueroa LD, García-Arrarás JE. Novel markers identify nervous system components of the holothurian nervous system. INVERTEBRATE NEUROSCIENCE 2014; 14:113-25. [PMID: 24740637 DOI: 10.1007/s10158-014-0169-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 03/28/2014] [Indexed: 10/25/2022]
Abstract
Echinoderms occupy a key position in the evolution of deuterostomes. As such, the study of their nervous system can shed important information on the evolution of the vertebrate nervous system. However, the study of the echinoderm nervous system has lagged behind when compared to that of other invertebrates due to the lack of tools available. In this study, we tested three commercially available antibodies as markers of neural components in holothurians. Immunohistological experiments with antibodies made against the mammalian transcription factors Pax6 and Nurr1, and against phosphorylated histone H3 showed that these markers identified cells and fibers within the nervous system of Holothuria glaberrima. Most of the fibers recognized by these antibodies were co-labeled with the well-known neural marker, RN1. Additional experiments showed that similar immunoreactivity was found in the nervous tissue of three other holothurian species (Holothuria mexicana, Leptosynapta clarki and Sclerodactyla briareus), thus extending our findings to the three orders of Holothuroidea. Furthermore, these markers identified different subdivisions of the holothurian nervous system. Our study presents three additional markers of the holothurian nervous system, expanding the available toolkit to study the anatomy, physiology, development and evolution of the echinoderm nervous system.
Collapse
Affiliation(s)
- Carlos A Díaz-Balzac
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Ave, Ullmann Room 807, Bronx, NY, 10461, USA,
| | | | | |
Collapse
|
10
|
Gene regulatory network for neurogenesis in a sea star embryo connects broad neural specification and localized patterning. Proc Natl Acad Sci U S A 2013; 110:8591-6. [PMID: 23650356 DOI: 10.1073/pnas.1220903110] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A great challenge in development biology is to understand how interacting networks of regulatory genes can direct the often highly complex patterning of cells in a 3D embryo. Here, we detail the gene regulatory network that describes the distribution of ciliary band-associated neurons in the bipinnaria larva of the sea star. This larva, typically for the ancestral deuterostome dipleurula larval type that it represents, forms two loops of ciliary bands that extend across much of the anterior-posterior and dorsal-ventral ectoderm. We show that the sea star first likely uses maternally inherited factors and the Wnt and Delta pathways to distinguish neurogenic ectoderm from endomesoderm. The broad neurogenic potential of the ectoderm persists throughout much of gastrulation. Nodal, bone morphogenetic protein 2/4 (Bmp2/4), and Six3-dependent pathways then sculpt a complex ciliary band territory that is defined by the expression of the forkhead transcription factor, foxg. Foxg is needed to define two molecularly distinct ectodermal domains, and for the formation of differentiated neurons along the edge of these two territories. Thus, significantly, Bmp2/4 signaling in sea stars does not distinguish differentiated neurons from nonneuronal ectoderm as it does in many other animals, but instead contributes to the patterning of an ectodermal territory, which then, in turn, provides cues to permit the final steps of neuronal differentiation. The modularity between specification and patterning likely reflects the evolutionary history of this gene regulatory network, in which an ancient module for specification of a broad neurogenic potential ectoderm was subsequently overlaid with a module for patterning.
Collapse
|
11
|
Bishop CD, MacNeil KE, Patel D, Taylor VJ, Burke RD. Neural development in Eucidaris tribuloides and the evolutionary history of the echinoid larval nervous system. Dev Biol 2013; 377:236-44. [DOI: 10.1016/j.ydbio.2013.03.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 03/07/2013] [Accepted: 03/09/2013] [Indexed: 10/27/2022]
|
12
|
Rieger V, Perez Y, Müller CHG, Lacalli T, Hansson BS, Harzsch S. Development of the nervous system in hatchlings of Spadella cephaloptera (Chaetognatha), and implications for nervous system evolution in Bilateria. Dev Growth Differ 2011; 53:740-59. [PMID: 21671921 DOI: 10.1111/j.1440-169x.2011.01283.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Chaetognaths (arrow worms) play an important role as predators in planktonic food webs. Their phylogenetic position is unresolved, and among the numerous hypotheses, affinities to both protostomes and deuterostomes have been suggested. Many aspects of their life history, including ontogenesis, are poorly understood and, though some aspects of their embryonic and postembryonic development have been described, knowledge of early neural development is still limited. This study sets out to provide new insights into neurogenesis of newly hatched Spadella cephaloptera and their development during the following days, with attention to the two main nervous centers, the brain and the ventral nerve center. These were examined with immunohistological methods and confocal laser-scan microscopic analysis, using antibodies against tubulin, FMRFamide, and synapsin to trace the emergence of neuropils and the establishment of specific peptidergic subsystems. At hatching, the neuronal architecture of the ventral nerve center is already well established, whereas the brain and the associated vestibular ganglia are still rudimentary. The development of the brain proceeds rapidly over the next 6 days to a state that resembles the adult pattern. These data are discussed in relation to the larval life style and behaviors such as feeding. In addition, we compare the larval chaetognath nervous system and that of other bilaterian taxa in order to extract information with phylogenetic value. We conclude that larval neurogenesis in chaetognaths does not suggest an especially close relationship to either deuterostomes or protostomes, but instead displays many apomorphic features.
Collapse
Affiliation(s)
- Verena Rieger
- Zoologisches Institut und Museum, Cytologie und Evolutionsbiologie, Ernst Moritz Arndt Universität Greifswald, Soldmannstraße 23, 17487 Greifswald.
| | | | | | | | | | | |
Collapse
|
13
|
Elia L, Selvakumaraswamy P, Byrne M. Nervous system development in feeding and nonfeeding asteroid larvae and the early juvenile. THE BIOLOGICAL BULLETIN 2009; 216:322-334. [PMID: 19556597 DOI: 10.1086/bblv216n3p322] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Larval and juvenile nervous systems (NS) of three asterinid sea stars with contrasting feeding and nonfeeding modes of development were characterized using the echinoderm-specific synaptotagmin antibody. In the feeding bipinnaria and brachiolaria larvae of Patiriella regularis, the species with ancestral-type development, an extensive NS was associated with the ciliary bands (CBs) and attachment complex. Lecithotrophic planktonic (Meridastra calcar) and benthic (Parvulastra exigua) brachiolariae lacked CBs and the associated NS, but had an extensive NS in the attachment complex. The similarity in the distribution and morphology of synaptotagmin immunoreactive neurons and the anatomy of the NS in the attachment complex of these closely related sea stars suggests conservation of neurogenesis in settlement-stage larvae regardless of larval feeding mode. Nerve cells were prominent on the brachia of all three species. In advanced brachiolariae the larval nervous system was localized to the adhesive disc as the larval body resorbed during metamorphosis. The structures and tissues that contained larval neurons degenerated during metamorphosis. There was no evidence that the larval NS persists through metamorphosis. In juvenile development, synaptotagmin IR was first evident in the NS of the tube feet. As the central nervous system developed, synaptotagmin IR reflected the histological organization of the adult NS. The juvenile NS formed de novo with a temporal lapse between histogenesis and synaptotagmin IR. We evaluated the ontogeny of NS organization in the change in body plan from the bilateral larva to the radial juvenile.
Collapse
Affiliation(s)
- Laura Elia
- Discipline of Anatomy and Histology, Bosch Institute, F13, University of Sydney, NSW 2006, Australia.
| | | | | |
Collapse
|
14
|
Murabe N, Hatoyama H, Hase S, Komatsu M, Burke RD, Kaneko H, Nakajima Y. Neural architecture of the brachiolaria larva of the starfish,Asterina pectinifera. J Comp Neurol 2008; 509:271-82. [DOI: 10.1002/cne.21742] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
15
|
Hirokawa T, Komatsu M, Nakajima Y. Development of the nervous system in the brittle star Amphipholis kochii. Dev Genes Evol 2008; 218:15-21. [PMID: 18087717 DOI: 10.1007/s00427-007-0196-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Accepted: 11/20/2007] [Indexed: 10/22/2022]
Abstract
There are several studies of neural development in various echinoderms, but few on ophiuroids, which develop indirectly via the production of pluteus larvae, as do echinoids. To determine the extent of similarity of neuroanatomy and neural development in the ophiuroids with other echinoderm larvae, we investigated the development of the nervous system in the brittle star Amphipholis kochii (Echinodermata: Ophiuroidea) by immunohistochemistry. Immunoreactive cells first appeared bilaterally in the animal pole at the late gastrula stage, and there was little migration of the neural precursors during A. kochii ontogeny, as is also the case in echinoids and holothuroids. On the other hand, neural specification in the presumptive ciliary band near the base of the arms does occur in ophiuroid larvae and is a feature they share with echinoids and ophiuroids. The ophiopluteus larval nervous system is similar to that of auricularia larvae on the whole, including the lack of a fine network of neurites in the epidermis and the presence of neural connections across the oral epidermis. Ophioplutei possess a pair of bilateral apical organs that differ from those of echinoid echinoplutei in terms of relative position. They also possess coiled cilia, which may possess a sensory function, but in the same location as the serotonergic apical ganglia. These coiled cilia are thought to be a derived structure in pluteus-like larvae. Our results suggest that the neural specification in the animal plate in ophiuroids, holothuroids, and echinoids is a plesiomorphic feature of the Ambulacraria, whereas neural specification at the base of the larval arms may be a more derived state restricted to pluteus-like larvae.
Collapse
Affiliation(s)
- Taiji Hirokawa
- Department of Biology, Graduate School of Science and Engineering, University of Toyama, Toyama, Japan.
| | | | | |
Collapse
|
16
|
Byrne M, Nakajima Y, Chee FC, Burke RD. Apical organs in echinoderm larvae: insights into larval evolution in the Ambulacraria. Evol Dev 2007; 9:432-45. [PMID: 17845515 DOI: 10.1111/j.1525-142x.2007.00189.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The anatomy and cellular organization of serotonergic neurons in the echinoderm apical organ exhibits class-specific features in dipleurula-type (auricularia, bipinnaria) and pluteus-type (ophiopluteus, echinopluteus) larvae. The apical organ forms in association with anterior ciliary structures. Apical organs in dipleurula-type larvae are more similar to each other than to those in either of the pluteus forms. In asteroid bipinnaria and holothuroid auricularia the apical organ spans ciliary band sectors that traverse the anterior-most end of the larvae. The asteroid apical organ also has prominent bilateral ganglia that connect with an apical network of neurites. The simple apical organ of the auricularia is similar to that in the hemichordate tornaria larva. Apical organs in pluteus forms differ markedly. The echinopluteus apical organ is a single structure on the oral hood between the larval arms comprised of two groups of cells joined by a commissure and its cell bodies do not reside in the ciliary band. Ophioplutei have a pair of lateral ganglia associated with the ciliary band of larval arms that may be the ophiuroid apical organ. Comparative anatomy of the serotonergic nervous systems in the dipleurula-type larvae of the Ambulacraria (Echinodermata+Hemichordata) suggests that the apical organ of this deuterostome clade originated as a simple bilaterally symmetric nerve plexus spanning ciliary band sectors at the anterior end of the larva. From this structure, the apical organ has been independently modified in association with the evolution of class-specific larval forms.
Collapse
Affiliation(s)
- Maria Byrne
- Department of Anatomy and Histology, F13, University of Sydney, NSW 2006, Australia.
| | | | | | | |
Collapse
|
17
|
Bishop CD, Burke RD. Ontogeny of the holothurian larval nervous system: evolution of larval forms. Dev Genes Evol 2007; 217:585-92. [PMID: 17622554 DOI: 10.1007/s00427-007-0169-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2006] [Accepted: 06/07/2007] [Indexed: 10/23/2022]
Abstract
Echinoderm larvae share numerous features of neuroanatomy. However, there are substantial differences in specific aspects of neural structure and ontogeny between the dipleurula-like larvae of asteroids and the pluteus larvae of echinoids. To help identify apomorphic features, we have examined the ontogeny of the dipleurula-like auricularia larva of the sea cucumber, Holothuria atra. Neural precursors arise in the apical ectoderm of gastrulae and appear to originate in bilateral clusters of cells. The cells differentiate without extensive migration, and they align with the developing ciliary bands and begin neurogenesis. Neurites project along the ciliary bands and do not appear to extend beneath either the oral or aboral epidermis. Apical serotonergic cells are associated with the preoral loops of the ciliary bands and do not form a substantial commissure. Paired, tripartite connectives form on either side of the larval mouth that connect the pre-oral, post-oral, and lateral ciliary bands. Holothurian larvae share with hemichordates and bipinnariae a similar organization of the apical organ, suggesting that the more highly structured apical organ of the pluteus is a derived feature. However, the auricularia larva shares with the pluteus larva of echinoids several features of neural ontogeny. Both have a bilateral origin of neural precursors in ectoderm adjacent to presumptive ciliary bands, and the presumptive neurons move only a few cell diameters before undergoing neurogenesis. The development of the holothurian nervous systems suggests that the extensive migration of neural precursors in asteroids is a derived feature.
Collapse
Affiliation(s)
- Cory D Bishop
- Kewalo Marine Laboratory, University of Hawaii, Honolulu, HI, USA
| | | |
Collapse
|
18
|
Mashanov VS, Zueva OR, Heinzeller T, Aschauer B, Dolmatov IY. Developmental origin of the adult nervous system in a holothurian: an attempt to unravel the enigma of neurogenesis in echinoderms. Evol Dev 2007; 9:244-56. [PMID: 17501748 DOI: 10.1111/j.1525-142x.2007.00157.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In adult echinoderms, the nervous system includes the ectoneural and hyponeural subsystems. The former has been believed to develop from the ectoderm, whereas the latter is considered to be mesodermal in origin. However, this view has not been substantially supported by embryological examinations. Our study deals with the developmental origin of the nervous system in the direct-developing sea cucumber Eupentacta fraudatrix. The rudiment of the adult nervous system develops from ectodermally derived cells, which ingress into the primary body cavity from the floor of the vestibule. At the earliest stages, only the rudiment of the ectoneural nerve ring is laid down. The radial nerve cords and tentacular nerves grow out from this subcutaneous rudiment. The ectoneural cords do not develop simultaneously but make their appearance in the following order: unpaired mid-ventral cord, paired dorsal lateral cords, and ventral lateral cords. These transitional developmental stages probably recapitulate the evolution of the echinoderm body plan. The holothurian hyponeural subsystem, as other regions of the metazoan nervous system, has an ectodermal origin. It originally appears as a narrow band of tissue, which bulges out of the basal region of the ectoneural neuroepithelium. Our data combined with those of other workers strongly suggest that the adult nervous tissue in echinoderms develops separately from the superficial larval system of ciliary nerves. Therefore, our data are neither in strict accordance with Garstang's hypothesis nor do they allow to refuse it. Nevertheless, in addition to ciliary bands, other areas of neurogenetic epidermis must be taken into account.
Collapse
Affiliation(s)
- Vladimir S Mashanov
- Institute of Marine Biology FEB RAS, Palchevsky 17, 690041 Vladivostok, Russia.
| | | | | | | | | |
Collapse
|
19
|
Strathmann RR. Time and extent of ciliary response to particles in a non-filtering feeding mechanism. THE BIOLOGICAL BULLETIN 2007; 212:93-103. [PMID: 17438202 DOI: 10.2307/25066587] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Mechanisms of suspension feeding are usually described by the physics of inanimate filters. High-speed videorecordings in this study demonstrated that sea urchin larvae concentrate particles without filtration. They actively captured individual particles. At most times and places, the effective strokes of the swimming/feeding ciliary band were away from the circumoral field. Cilia of this band responded to particles by a reversal of beat that redirected the particle toward the circumoral field. A change of beat occurred along approximately 80 micro m of ciliary band during particle capture. Cilia responded 0.02 to 0.06 s after the particle was within reach of effective strokes and reversed beat, usually for about 0.1 to 0.2 s. The whole event (disruption of forward beat) generally lasted between 0.13 and 0.5 s. These observations imply reversed movement of a parcel of water much larger than the included captured particle, but particles are nevertheless greatly concentrated because water is directed toward the circumoral field only when and where a particle is sensed. Thus most of the concentration of particles occurs by a temporarily and locally redirected current, without filtration, and size and quality of particles captured depends on sensory capabilities, not the mechanics of filtration.
Collapse
Affiliation(s)
- Richard R Strathmann
- Friday Harbor Laboratories and Department of Biology, University of Washington, Friday Harbor, WA 98250, USA.
| |
Collapse
|
20
|
Byrne M, Sewell MA, Selvakumaraswamy P, Prowse TAA. The larval apical organ in the holothuroid Chiridota gigas (Apodida): inferences on evolution of the Ambulacrarian larval nervous system. THE BIOLOGICAL BULLETIN 2006; 211:95-100. [PMID: 17062869 DOI: 10.2307/4134584] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Affiliation(s)
- Maria Byrne
- Department of Anatomy and Histology, F13, University of Sydney, NSW 2006, Australia.
| | | | | | | |
Collapse
|
21
|
Nakano H, Murabe N, Amemiya S, Nakajima Y. Nervous system development of the sea cucumber Stichopus japonicus. Dev Biol 2006; 292:205-12. [PMID: 16442090 DOI: 10.1016/j.ydbio.2005.12.038] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2005] [Revised: 11/03/2005] [Accepted: 12/14/2005] [Indexed: 11/19/2022]
Abstract
The nervous system development of the sea cucumber Stichopus japonicus was investigated to explore the development of the bilateral larval nervous system into the pentaradial adult form typical of echinoderms. The first nerve cells were detected in the apical region of epidermis in the late gastrula. In the auricularia larvae, nerve tracts were seen along the ciliary band. There was a pair of bilateral apical ganglia consisted of serotonergic nerve cells lined along the ciliary bands. During the transition to the doliolaria larvae, the nerve tracts rearranged together with the ciliary bands, but they were not segmented and remained continuous. The doliolaria larvae possessed nerves along the ciliary rings but strongly retained the features of auricularia larvae nerve pattern. The adult nervous system began to develop inside the doliolaria larvae before the larval nervous system disappears. None of the larval nervous system was observed to be incorporated into the adult nervous system with immunohistochemistry. Since S. japonicus are known to possess an ancestral mode of development for echinoderms, these results suggest that the larval nervous system and the adult nervous system were probably formed independently in the last common ancestor of echinoderms.
Collapse
Affiliation(s)
- Hiroaki Nakano
- Department of Biology, Keio University, Yokohama 223-8521, Japan.
| | | | | | | |
Collapse
|
22
|
Byrne M, Cisternas P, Elia L, Relf B. Engrailed is expressed in larval development and in the radial nervous system of Patiriella sea stars. Dev Genes Evol 2005; 215:608-17. [PMID: 16163500 DOI: 10.1007/s00427-005-0018-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2005] [Accepted: 08/09/2005] [Indexed: 11/25/2022]
Abstract
We documented expression of the pan-metazoan neurogenic gene engrailed in larval and juvenile Patiriella sea stars to determine if this gene patterns bilateral and radial echinoderm nervous systems. Engrailed homologues, containing conserved En protein domains, were cloned from the radial nerve cord. During development, engrailed was expressed in ectodermal (nervous system) and mesodermal (coeloms) derivatives. In larvae, engrailed was expressed in cells lining the larval and future adult coeloms. Engrailed was not expressed in the larval nervous system. As adult-specific developmental programs were switched on during metamorphosis, engrailed was expressed in the central nervous system and peripheral nervous system (PNS), paralleling the pattern of neuropeptide immunolocalisation. Engrailed was first seen in the developing nerve ring and appeared to be up-regulated as the nervous system developed. Expression of engrailed in the nerve plexus of the tube feet, the lobes of the hydrocoel along the adult arm axis, is similar to the reiterated pattern of expression seen in other animals. Engrailed expression in developing nervous tissue reflects its conserved role in neurogenesis, but its broad expression in the adult nervous system of Patiriella differs from the localised expression seen in other bilaterians. The role of engrailed in patterning repeated PNS structures indicates that it may be important in patterning the fivefold organisation of the ambulacrae, a defining feature of the Echinodermata.
Collapse
Affiliation(s)
- Maria Byrne
- Department of Anatomy and Histology, University of Sydney, New South Wales, Australia.
| | | | | | | |
Collapse
|
23
|
CROLL ROGERP, DICKINSON AMANDAJ. Form and function of the larval nervous system in molluscs. INVERTEBR REPROD DEV 2004. [DOI: 10.1080/07924259.2004.9652620] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
24
|
Nakajima Y, Kaneko H, Murray G, Burke RD. Divergent patterns of neural development in larval echinoids and asteroids. Evol Dev 2004; 6:95-104. [PMID: 15009122 DOI: 10.1111/j.1525-142x.2004.04011.x] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The development and organization of the nervous systems of echinoderm larvae are incompletely described. We describe the development and organization of the larval nervous systems of Strongylocentrotus purpuratus and Asterina pectinifera using a novel antibody, 1E11, that appears to be neuron specific. In the early pluteus, the antibody reveals all known neural structures: apical ganglion, oral ganglia, lateral ganglia, and an array of neurons and neurites in the ciliary band, the esophagus, and the intestine. The antibody also reveals several novel features, such as neurites that extend to the posterior end of the larva and additional neurons in the apical ganglion. Similarly, in asteroid larvae the antibody binds to all known neural structures and identifies novel features, including large numbers of neurons in the ciliary bands, a network of neurites under the oral epidermis, cell bodies in the esophagus, and a network of neurites in the intestine. The 1E11 antigen is expressed during gastrulation and can be used to trace the ontogenies of the nervous systems. In S. purpuratus, a small number of neuroblasts arise in the oral ectoderm in late gastrulae. The cells are adjacent to the presumptive ciliary bands, where they project neurites with growth cone-like endings that interconnect the neurons. In A. pectinifera, a large number of neuroblasts appear scattered throughout the ectoderm of gastrulae. The cells aggregate in the developing ciliary bands and then project neurites under the oral epidermis. Although there are several shared features of the larval nervous systems of echinoids and asteroids, the patterns of development reveal fundamental differences in neural ontogeny.
Collapse
Affiliation(s)
- Yoko Nakajima
- Department of Biology, Keio University, Yokohama 223-8521, Japan
| | | | | | | |
Collapse
|
25
|
Byrne M, Cisternas P. Development and distribution of the peptidergic system in larval and adult Patiriella: comparison of sea star bilateral and radial nervous systems. J Comp Neurol 2002; 451:101-14. [PMID: 12209830 DOI: 10.1002/cne.10315] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Development of the larval peptidergic system in the sea star Patiriella regularis and structure of the adult nervous system in Patiriella species were documented in an immunofluorescence investigation using antisera to the sea star neuropeptide GFNSALMFamide 1 (S1) and confocal microscopy. P. regularis has planktotrophic development through bipinnaria and brachiolaria larvae. In early bipinnaria, two groups of immunoreactive cells appeared on either side of the anterior region and proliferated to form a pair of dorsolateral ganglia. The ganglia gave rise to fine varicose fibres that innervated the preoral and adoral ciliated bands. Peptidergic cells also innervated the postoral ciliated band, and a nerve tract connected the pre- and postoral bands. Fully developed bipinnaria had a well-developed peptidergic system, the organisation of which reflected the bilateral larval body plan. As the brachiolar attachment complex differentiated at the anterior end, the ganglia became positioned on either side of the anterior projection, from which they innervated the complex. It is suggested, based on the distribution of S1-like immunoreactivity in association with ciliary and attachment structures, that the peptidergic system functions in modulation of feeding, swimming, and settlement. The larval peptidergic system degenerates as the larval body is resorbed during metamorphosis. In adults, S1-like immunoreactivity was intense in the axonal region of the ectoneural nervous system and in hyponeural perikarya. Immunoreactive cells in the neuroepithelium connected with the surface and may be sensory. Examination of immunoreactivity in several Patiriella species attests to the highly conserved organisation of the peptidergic system in adult asteroids.
Collapse
Affiliation(s)
- Maria Byrne
- Department of Anatomy and Histology, University of Sydney, New South Wales 2006, Australia.
| | | |
Collapse
|
26
|
Lacalli TC, Kelly SJ. Anterior neural centres in echinoderm bipinnaria and auricularia larvae: cell types and organization. ACTA ZOOL-STOCKHOLM 2002. [DOI: 10.1046/j.1463-6395.2002.00103.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
27
|
Lacalli TC, Gilmour THJ. Locomotory and feeding effectors of the tornaria larva of Balanoglossus biminiensis. ACTA ZOOL-STOCKHOLM 2002. [DOI: 10.1046/j.1463-6395.2001.00075.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Santagata S. Structure and metamorphic remodeling of the larval nervous system and musculature of Phoronis pallida (Phoronida). Evol Dev 2002; 4:28-42. [PMID: 11868656 DOI: 10.1046/j.1525-142x.2002.01055.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The structure of the larval nervous system and the musculature of Phoronis pallida were studied, as well as the remodeling of these systems at metamorphosis. The serotonergic portion of the apical ganglion is a U-shaped field of cell bodies that send projections into a central neuropil. The majority of the serotonergic cells are (at least) bipolar sensory cells, and a few are nonsensory cells. Catecholaminergic cell bodies border the apical ganglion. The second (hood) sense organ develops at competence and is composed of bipolar sensory cells that send projections into a secondary neuropil. Musculature of the competent larva includes circular and longitudinal muscle fibers of the body wall, as well as elevators and depressors of the tentacles and hood. The juvenile nervous system and musculature are developed prior to metamorphosis and are integrated with those of the larva. Components of the juvenile nervous system include a diffuse neural net of serotonergic cell bodies and fibers and longitudinal catecholaminergic fibers. The juvenile body wall musculature consists of longitudinal fibers that overlie circular muscle fibers, except in the cincture regions, where this pattern is reversed. Metamorphosis is initiated by the larval neuromuscular system but is completed by the juvenile neuromuscular system. During metamorphosis, the larval nervous system and the musculature undergo cell death, and the larval tentacles and gut are remodeled into the juvenile arrangement. Although the phoronid nervous system has often been described as deuterostome-like, these data show that several cytological aspects of the larval and juvenile neuromuscular systems also have protostome (lophotrochozoan) characteristics.
Collapse
|
29
|
Kreiling JA, Jessen-Eller K, Miller J, Seegal RF, Reinisch CL. Early development of the serotonergic and dopaminergic nervous system in Spisula solidissima (surf clam) larvae. Comp Biochem Physiol A Mol Integr Physiol 2001; 130:341-51. [PMID: 11544079 DOI: 10.1016/s1095-6433(01)00394-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We have defined the development of the serotonergic and dopaminergic components of the central nervous system in the early Spisula solidissima (surf clam) embryo using HPLC and immunocytochemistry. HPLC analysis reveals norepinephrine, dopamine, and serotonin are present at 24 h post-fertilization. Immunocytochemistry shows that the serotonergic nervous system emerges during the late trochophore stage with the development of a single serotonergic cell, C/A1, in the cerebral/apical ganglion. After 48 h, a second serotonergic cell forms, C/A2, which is connected to C/A1 by two serotonergic processes, and a single serotonergic cell emerges in the visceral ganglion, V1. At 72 h, a new serotonergic cell body develops in the cerebral/apical ganglion, C/A3. After 96 h, the cerebral/apical ganglion and visceral ganglion are connected by a serotonergic process. Expression of the dopamine receptor, D2, begins by 24 h with a generalized expression in the region of the developing gut. D2 expression in the gut ceases by 48 h. At 48 h, a network of fibers forms dorsolateral to the mouth. By 72 h, D2 expressing projections emerge from this network.
Collapse
Affiliation(s)
- J A Kreiling
- Marine Biological Laboratory, 7 MBL St., Woods Hole, MA 02540, USA
| | | | | | | | | |
Collapse
|
30
|
Byrne M, Cisternas P, Koop D. Evolution of larval form in the sea star genus Patiriella: conservation and change in the larval nervous system. Dev Growth Differ 2001; 43:459-68. [PMID: 11473552 DOI: 10.1046/j.1440-169x.2001.00588.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The organization of the peptidergic system in the larvae of Patiriella species with divergent ontogenies was compared to determine which aspects of neurogenesis are conserved and which are altered in the evolution of development in these sea stars. P. regularis has ancestral-type feeding bipinnaria and brachiolaria larvae and the organization of the nervous system, in association with feeding structures, paralleled the bilateral larval body plan. P. calcar and P. exigua have non-feeding planktonic and benthic brachiolariae, respectively, and there was no trace of the neuronal architecture involved with feeding. The nervous system in the attachment stage brachiolaria was similar in all three species and neuronal organization reflected larval symmetry. Delayed expression of peptidergic lineages to the brachiolaria stage in the lecithotrophs indicates heterochronic change in the timing of neurogenesis or deletion of the ancestral early neurogenic program. The bipinnarial program is suggested to be a developmental module autonomous from the brachiolar one. With a divergence time of less than 10 Ma, the evolution of development in Patiriella has resulted in extensive reduction in the complexity of the larval nervous system in parallel with simplification in larval form. There is, however, strong conservation in the morphology and neuronal architecture of structures involved with settlement.
Collapse
Affiliation(s)
- M Byrne
- Department of Anatomy and Histology, F13, University of Sydney, New South Wales 2006, Australia.
| | | | | |
Collapse
|
31
|
Beer AJ, Moss C, Thorndyke M. Development of serotonin-like and SALMFamide-like immunoreactivity in the nervous system of the sea urchin Psammechinus miliaris. THE BIOLOGICAL BULLETIN 2001; 200:268-280. [PMID: 11441970 DOI: 10.2307/1543509] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The present immunocytochemical study utilizes serotonin and SALMFamide antisera, together with confocal laser scanning microscopy, to provide new information about the development of the nervous system in the sea urchin Psammechinus miliaris (Echinodermata: Echinoidea). Special attention is paid to the extent of the nervous system in later larval stages (6-armed pluteus to metamorphic competency), a characteristic that has not been well described in this and other species of sea urchin. An extensive apical ganglion appears by the 6-armed pluteus stage, forming a complex of 10-20 cells and fibers, including discrete populations of both serotonin-like and SALMF-amide-like immunoreactive cells. At metamorphosis this complex is large, comprising at least 40 cells in distinct arrays. Serotonin-like immunoreactivity is also particularly apparent in the lower lip ganglion of 6- to 8-armed plutei; this ganglion consists of 15-18 cells that are distributed around the mouth. The ciliary nerves that lie beneath the ciliary bands in the larval arms, the esophagus, and a hitherto undescribed network associated with the pylorus all show SALMFamide-like immunoreactivity. The network of cells and fibers in the pyloric area develops later in larval life. It first appears as one cell body and fiber, then increases in size and complexity through the 8-armed pluteus stage to form a complex of cells that encircles the pylorus. SALMFamide-like, but not serotonin-like, immunoreactivity is seen in the vestibule wall, tube feet, and developing radial nerve fibers of the sea urchin adult rudiment as the larva gains metamorphic competency.
Collapse
Affiliation(s)
- A J Beer
- School of Biological Sciences, University of London, Egham, Surrey, UK
| | | | | |
Collapse
|