1
|
Garner AM, Moura AJ, Narvaez CA, Stark AY, Russell MP. Repeated Hyposalinity Pulses Immediately and Persistently Impair the Sea Urchin Adhesive System. Integr Comp Biol 2024; 64:257-269. [PMID: 38444171 DOI: 10.1093/icb/icae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/15/2024] [Accepted: 02/20/2024] [Indexed: 03/07/2024] Open
Abstract
Climate change will increase the frequency and intensity of extreme climatic events (e.g., storms) that result in repeated pulses of hyposalinity in nearshore ecosystems. Sea urchins inhabit these ecosystems and are stenohaline (restricted to salinity levels ∼32‰), thus are particularly susceptible to hyposalinity events. As key benthic omnivores, sea urchins use hydrostatic adhesive tube feet for numerous functions, including attachment to and locomotion on the substratum as they graze for food. Hyposalinity severely impacts sea urchin locomotor and adhesive performance but several ecologically relevant and climate change-related questions remain. First, do sea urchin locomotion and adhesion acclimate to repeated pulses of hyposalinity? Second, how do tube feet respond to tensile forces during single and repeated hyposalinity events? Third, do the negative effects of hyposalinity exposure persist following a return to normal salinity levels? To answer these questions, we repeatedly exposed green sea urchins (Strongylocentrotus droebachiensis) to pulses of three different salinities (control: 32‰, moderate hyposalinity: 22‰, severe hyposalinity: 16‰) over the course of two months and measured locomotor performance, adhesive performance, and tube foot tensile behavior. We also measured these parameters 20 h after sea urchins returned to normal salinity levels. We found no evidence that tube feet performance and properties acclimate to repeated pulses of hyposalinity, at least over the timescale examined in this study. In contrast, hyposalinity has severe consequences on locomotion, adhesion, and tube foot tensile behavior, and these impacts are not limited to the hyposalinity exposure. Our results suggest both moderate and severe hyposalinity events have the potential to increase sea urchin dislodgment and reduce movement, which may impact sea urchin distribution and their role in marine communities.
Collapse
Affiliation(s)
- Austin M Garner
- Department of Biology, Villanova University, Villanova, PA 19085, USA
- Department of Biology & BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
| | - Andrew J Moura
- Department of Biology, Villanova University, Villanova, PA 19085, USA
- Department of Biology & BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
| | - Carla A Narvaez
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA 98250, USA
- Department of Biology, Rhode Island College, Providence, RI 02908, USA
| | - Alyssa Y Stark
- Department of Biology, Villanova University, Villanova, PA 19085, USA
| | - Michael P Russell
- Department of Biology, Villanova University, Villanova, PA 19085, USA
| |
Collapse
|
2
|
Po T, Carrillo A, McKee A, Pernet B, McHenry MJ. Gearing in a hydrostatic skeleton: the tube feet of juvenile sea stars (Leptasterias sp.). J Exp Biol 2024; 227:jeb247804. [PMID: 39104305 DOI: 10.1242/jeb.247804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/18/2024] [Indexed: 08/07/2024]
Abstract
Hydrostatic skeletons, such as an elephant trunk or a squid tentacle, permit the transmission of mechanical work through a soft body. Despite the ubiquity of these structures among animals, we generally do not understand how differences in their morphology affect their ability to transmit muscular work. Therefore, the present study used mathematical modeling, morphometrics, and kinematics to understand the transmission of force and displacement in the tube feet of the juvenile six-rayed star (Leptasterias sp.). An inverse-dynamic analysis revealed that the forces generated by the feet during crawling primarily serve to overcome the submerged weight of the body. These forces were disproportionately generated by the feet at more proximal positions along each ray, which were used more frequently for crawling. Owing to a combination of mechanical advantage and muscle mass, these proximal feet exhibited a greater capacity for force generation than the distal feet. However, the higher displacement advantage of the more elongated distal feet offer a superior ability to extend the feet into the environment. Therefore, the morphology of tube feet demonstrates a gradient in gearing along each ray that compliments their role in behavior.
Collapse
Affiliation(s)
- Theodora Po
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Andres Carrillo
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Amberle McKee
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Bruno Pernet
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, USA
| | - Matthew J McHenry
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
3
|
Narvaez CA, Stark AY, Russell MP. Morphological and Mechanical Tube Feet Plasticity among Populations of Sea Urchin ( Strongylocentrotus purpuratus). Integr Org Biol 2024; 6:obae022. [PMID: 38988590 PMCID: PMC11234643 DOI: 10.1093/iob/obae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/14/2024] [Indexed: 07/12/2024] Open
Abstract
Sea urchins rely on an adhesive secreted by their tube feet to cope with the hydrodynamic forces of dislodgement common in nearshore, high wave-energy environments. Tube feet adhere strongly to the substrate and detach voluntarily for locomotion. In the purple sea urchin, Strongylocentrotus purpuratus, adhesive performance depends on both the type of substrate and the population of origin, where some substrates and populations are more adhesive than others. To explore the source of this variation, we evaluated tube foot morphology (disc surface area) and mechanical properties (maximum disc tenacity and stem breaking force) of populations native to substrates with different lithologies: sandstone, mudstone, and granite. We found differences among populations, where sea urchins native to mudstone substrates had higher disc surface area and maximum disc tenacity than sea urchins native to sandstone substrates. In a lab-based reciprocal transplant experiment, we attempted to induce a plastic response in tube foot morphology. We placed sea urchins on nonnative substrates (i.e., mudstone sea urchins were placed on sandstone and vice versa), while keeping a subgroup of both populations on their original substrates as a control. Instead of a reciprocal morphological response, we found that all treatments, including the control, reduced their disc area in laboratory conditions. The results of this study show differences in morphology and mechanical properties among populations, which explains population differences in adhesive performance. Additionally, this work highlights the importance of considering the impact of phenotypic plasticity in response to captivity when interpreting the results of laboratory studies.
Collapse
Affiliation(s)
- C A Narvaez
- Department of Biology, Rhode Island College, 600 Mt Pleasant Ave., Providence, RI 02908, USA
- Department of Biology, Villanova University, 800 E. Lancaster Ave., Villanova, PA 19085, USA
| | - A Y Stark
- Department of Biology, Villanova University, 800 E. Lancaster Ave., Villanova, PA 19085, USA
| | - M P Russell
- Department of Biology, Villanova University, 800 E. Lancaster Ave., Villanova, PA 19085, USA
| |
Collapse
|
4
|
Ellers O, Ellers KI, Johnson AS, Po T, Heydari S, Kanso E, McHenry MJ. Soft skeletons transmit force with variable gearing. J Exp Biol 2024; 227:jeb246901. [PMID: 38738313 PMCID: PMC11177778 DOI: 10.1242/jeb.246901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 04/12/2024] [Indexed: 05/14/2024]
Abstract
A hydrostatic skeleton allows a soft body to transmit muscular force via internal pressure. A human's tongue, an octopus' arm and a nematode's body illustrate the pervasive presence of hydrostatic skeletons among animals, which has inspired the design of soft engineered actuators. However, there is a need for a theoretical basis for understanding how hydrostatic skeletons apply mechanical work. We therefore modeled the shape change and mechanics of natural and engineered hydrostatic skeletons to determine their mechanical advantage (MA) and displacement advantage (DA). These models apply to a variety of biological structures, but we explicitly consider the tube feet of a sea star and the body segments of an earthworm, and contrast them with a hydraulic press and a McKibben actuator. A helical winding of stiff, elastic fibers around these soft actuators plays a critical role in their mechanics by maintaining a cylindrical shape, distributing forces throughout the structure and storing elastic energy. In contrast to a single-joint lever system, soft hydrostats exhibit variable gearing with changes in MA generated by deformation in the skeleton. We found that this gearing is affected by the transmission efficiency of mechanical work (MA×DA) or, equivalently, the ratio of output to input work. The transmission efficiency changes with the capacity to store elastic energy within helically wrapped fibers or associated musculature. This modeling offers a conceptual basis for understanding the relationship between the morphology of hydrostatic skeletons and their mechanical performance.
Collapse
Affiliation(s)
- Olaf Ellers
- Biology Department, Bowdoin College, Brunswick, ME 04011, USA
| | - Kai-Isaak Ellers
- Physics Department, University of California, Berkeley, Berkeley, CA 94720-7300, USA
| | - Amy S. Johnson
- Biology Department, Bowdoin College, Brunswick, ME 04011, USA
| | - Theodora Po
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA 92697-2525, USA
| | - Sina Heydari
- Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Department of Mechanical Engineering, Santa Clara University, Santa Clara, CA 95053, USA
| | - Eva Kanso
- Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Matthew J. McHenry
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA 92697-2525, USA
| |
Collapse
|
5
|
Barrett NJ, Harper EM, Last KS, Reinardy HC, Peck LS. Behavioural and physiological impacts of low salinity on the sea urchin Echinus esculentus. J Exp Biol 2024; 227:jeb246707. [PMID: 38099430 PMCID: PMC10906488 DOI: 10.1242/jeb.246707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/06/2023] [Indexed: 01/17/2024]
Abstract
Reduced seawater salinity as a result of freshwater input can exert a major influence on the ecophysiology of benthic marine invertebrates, such as echinoderms. While numerous experimental studies have explored the physiological and behavioural effects of short-term, acute exposure to low salinity in echinoids, surprisingly few have investigated the consequences of chronic exposure, or compared the two. In this study, the European sea urchin, Echinus esculentus, was exposed to low salinity over the short term (11‰, 16‰, 21‰, 26‰ and 31‰ for 24 h) and longer term (21, 26 and 31‰ for 25 days). Over the short term, oxygen consumption, activity coefficient and coelomic fluid osmolality were directly correlated with reduced salinity, with 100% survival at ≥21‰ and 0% at ≤16‰. Over the longer term at 21‰ (25 days), oxygen consumption was significantly higher, feeding was significantly reduced and activity coefficient values were significantly lower than at control salinity (31‰). At 26‰, all metrics were comparable to the control by the end of the experiment, suggesting acclimation. Furthermore, beneficial functional resistance (righting ability and metabolic capacity) to acute low salinity was observed at 26‰. Osmolality values were slightly hyperosmotic to the external seawater at all acclimation salinities, while coelomocyte composition and concentration were unaffected by chronic low salinity. Overall, E. esculentus demonstrate phenotypic plasticity that enables acclimation to reduced salinity around 26‰; however, 21‰ represents a lower acclimation threshold, potentially limiting its distribution in coastal areas prone to high freshwater input.
Collapse
Affiliation(s)
- Nicholas J. Barrett
- British Antarctic Survey, Natural Environment Research Council, Cambridge CB3 0ET, UK
- Department of Earth Sciences, University of Cambridge, Cambridge CB2 3EQ, UK
| | - Elizabeth M. Harper
- British Antarctic Survey, Natural Environment Research Council, Cambridge CB3 0ET, UK
- Department of Earth Sciences, University of Cambridge, Cambridge CB2 3EQ, UK
| | - Kim S. Last
- The Scottish Association for Marine Science, Oban PA37 1QA, UK
| | - Helena C. Reinardy
- The Scottish Association for Marine Science, Oban PA37 1QA, UK
- Department of Arctic Technology, The University Centre in Svalbard, N-9171 Longyearbyen, Norway
| | - Lloyd S. Peck
- British Antarctic Survey, Natural Environment Research Council, Cambridge CB3 0ET, UK
| |
Collapse
|
6
|
Moura AJ, Garner AM, Narvaez CA, Cucchiara JP, Stark AY, Russell MP. Hyposalinity reduces coordination and adhesion of sea urchin tube feet. J Exp Biol 2023; 226:jeb245750. [PMID: 37326213 PMCID: PMC10323246 DOI: 10.1242/jeb.245750] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/08/2023] [Indexed: 06/17/2023]
Abstract
Climate change will increase the frequency and intensity of low-salinity (hyposalinity) events in coastal marine habitats. Sea urchins are dominant herbivores in these habitats and are generally intolerant of salinity fluctuations. Their adhesive tube feet are essential for survival, effecting secure attachment and locomotion in high wave energy habitats, yet little is known about how hyposalinity impacts their function. We exposed green sea urchins (Strongylocentrotus droebachiensis) to salinities ranging from ambient (32‰) to severe (14‰) and assessed tube feet coordination (righting response, locomotion) and adhesion [disc tenacity (force per unit area)]. Righting response, locomotion and disc tenacity decreased in response to hyposalinity. Severe reductions in coordinated tube foot activities occurred at higher salinities than those that affected adhesion. The results of this study suggest moderate hyposalinities (24-28‰) have little effect on S. droebachiensis dislodgement risk and survival post-dislodgment, while severe hyposalinity (below 24‰) likely reduces movement and prevents recovery from dislodgment.
Collapse
Affiliation(s)
- Andrew J. Moura
- Department of Biology, Villanova University, Villanova, PA 19085, USA
- Department of Biology and BioInspired Syracuse, Syracuse University, Syracuse, NY 13244, USA
| | - Austin M. Garner
- Department of Biology, Villanova University, Villanova, PA 19085, USA
- Department of Biology and BioInspired Syracuse, Syracuse University, Syracuse, NY 13244, USA
| | - Carla A. Narvaez
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA 98250, USA
- Department of Biology, Rhode Island College, Providence, RI 02908, USA
| | - Jack P. Cucchiara
- Department of Biology, Villanova University, Villanova, PA 19085, USA
| | - Alyssa Y. Stark
- Department of Biology, Villanova University, Villanova, PA 19085, USA
| | | |
Collapse
|
7
|
Work TM, Dagenais J, Rameyer B, Breeden R, Weatherby TM. Mass mortality of collector urchins Tripneustes gratilla in Hawai`i. DISEASES OF AQUATIC ORGANISMS 2023; 153:17-29. [PMID: 36727688 DOI: 10.3354/dao03716] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
As grazers, sea urchins are keystone species in tropical marine ecosystems, and their loss can have important ecological ramifications. Die-offs of urchins are frequently described, but their causes are often unclear, in part because systematic examinations of animal tissues at gross and microscopic level are not done. In some areas, urchins are being employed to control invasive marine algae. Here, we describe the pathology of a mortality event in Tripneustes gratilla in Hawai`i where urchins were translocated to control invasive algae. Although we did not determine the cause of the mortality event, our investigation indicates that animals died from inflammation of the test and epidermal ulceration, followed by inability to maintain coelomic fluid volume, colonization of coelomic fluid by opportunists (diatom, algae), and inappetence. Parasites, bacteria, fungi, and viruses were not evident as a primary cause of death. Pathology was suggestive of a toxin or other environmental cause such as lack of food, possibilities that could be pursued in future investigations. These findings highlight the need for caution and additional tools to better assess health when translocating marine invertebrates to ensure maximal biosecurity.
Collapse
Affiliation(s)
- Thierry M Work
- US Geological Survey, National Wildlife Health Center, Honolulu Field Station, Honolulu, Hawai`i, USA
| | | | | | | | | |
Collapse
|
8
|
Changes in podial skeletons during growth in the echinoid Hemicentrotus pulcherrimus. ZOOMORPHOLOGY 2022. [DOI: 10.1007/s00435-022-00585-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
9
|
Manzo S, Schiavo S. Physical and chemical threats posed by micro(nano)plastic to sea urchins. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:152105. [PMID: 34863733 DOI: 10.1016/j.scitotenv.2021.152105] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 06/13/2023]
Abstract
The awareness of the plastic issue is rising in recent years. Our seas and coastal seawaters are investigated with the aim to evaluate the possible fate, behavior and the impact of these novel contaminants upon marine biota. In particular, benthic organisms are exposed to micro(nano)plastics that sink and accumulated on the seabed. Sea urchins can be prone to the plastic impact for all their lifespan with effect that can be extended upon the trophic cascade since their key role as grazer organisms. Moreover, they are largely used in the assessment of contaminant impact both as adult individuals and as early larval stages. This review analyzes the recent literature about the chemical and physical hazards posed by diverse polymers to sea urchins, in relation to their peculiar characteristics and to their size. The search was based on a query of the keyword terms: microplastic _ OR nanoplastic_AND Sea urchins in Web of Science and Google Scholar. The effects provoked by exposure of different sea urchin biological form are highlighted, considering both laboratory exposure and collection in real world. Additional focus has also been given upon the exposure methods utilized in laboratory test and in the existing limitations in the testing procedures. In conclusion, the micro(nano)plastics major impact seemed to be attributable to leaching compounds, however variability and lacking of realisms in the procedures do not allow a full understanding of the hazard posed by micro(nano)plastics for sea urchins. Finally, the work provides insights into the future research strategies to better characterize the actual risk for sea urchins.
Collapse
Affiliation(s)
- Sonia Manzo
- ENEA, Department for Sustainability, Division Protection and Enhancement of the Natural Capital, P. le E. Fermi 1, 80055 Portici, Na, Italy.
| | - Simona Schiavo
- ENEA, Department for Sustainability, Division Protection and Enhancement of the Natural Capital, P. le E. Fermi 1, 80055 Portici, Na, Italy
| |
Collapse
|
10
|
Narvaez CA, Moura AJ, Scutella DF, Cucchiara JP, Stark AY, Russell MP. Plasticity in fluctuating hydrodynamic conditions: Tube feet regeneration in sea urchins. J Exp Biol 2022; 225:274209. [PMID: 35044457 DOI: 10.1242/jeb.242848] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 01/05/2022] [Indexed: 11/20/2022]
Abstract
Regenerating structures critical for survival provide excellent model systems for the study of phenotypic plasticity. These body components must regenerate their morphology and functionality quickly while subjected to different environmental stressors. Sea urchins live in high energy environments where hydrodynamic conditions pose significant challenges. Adhesive tube feet provide secure attachment to the substratum but can be amputated by predation and hydrodynamic forces. Tube feet display functional and morphological plasticity in response to environmental conditions, but regeneration to their pre-amputation status has not been achieved under quiescent laboratory settings. In this study, we assessed the effect of turbulent water movement, periodic emersion, and quiescent conditions on the regeneration process of tube feet morphology (length, disc area) and functionality (maximum disc tenacity, stem breaking force). Disc area showed significant plasticity in response to the treatments; when exposed to emersion and turbulent water movement, disc area was larger than tube feet regenerated in quiescent conditions. However, no treatment stimulated regeneration to pre-amputation sizes. Tube feet length was unaffected by treatments and remained shorter than non-amputated tube feet. Stem breaking force for amputated and not amputated treatments increased in all cases when compared to pre-amputation values. Maximum tenacity (force per unit area) was similar among tube feet subjected to simulated field conditions and amputation treatments. Our results suggest the role of active plasticity of tube feet functional morphology in response to field-like conditions and demonstrate the plastic response of invertebrates to laboratory conditions.
Collapse
Affiliation(s)
- Carla A Narvaez
- Department of Biology, Villanova University, 800 E. Lancaster Ave., Villanova, Pennsylvania 19085, USA
| | - Andrew J Moura
- Department of Biology, Villanova University, 800 E. Lancaster Ave., Villanova, Pennsylvania 19085, USA
| | - Daniel F Scutella
- Department of Biology, Villanova University, 800 E. Lancaster Ave., Villanova, Pennsylvania 19085, USA
| | - Jack P Cucchiara
- Department of Biology, Villanova University, 800 E. Lancaster Ave., Villanova, Pennsylvania 19085, USA
| | - Alyssa Y Stark
- Department of Biology, Villanova University, 800 E. Lancaster Ave., Villanova, Pennsylvania 19085, USA
| | - Michael P Russell
- Department of Biology, Villanova University, 800 E. Lancaster Ave., Villanova, Pennsylvania 19085, USA
| |
Collapse
|
11
|
Feng Z, Wang R, Zhang T, Wang J, Huang W, Li J, Xu J, Gao G. Microplastics in specific tissues of wild sea urchins along the coastal areas of northern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 728:138660. [PMID: 32361354 DOI: 10.1016/j.scitotenv.2020.138660] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 03/19/2020] [Accepted: 04/10/2020] [Indexed: 05/21/2023]
Abstract
Sea urchins serve as an essential niche for benthic ecosystems and are valuable seafood for humans. However, little is known about the microplastics (MPs) accumulation in sea urchins. Here, we investigated the abundances and characteristics of MPs in specific tissues of wild sea urchins for 12 sites across 2, 900 km of coastlines in northern China. Sea urchins from all sites were detected to have MPs, with a total detection rate of 89.52%. The MPs abundance in sea urchins from all sites ranged from 2.20 ± 1.50 to 10.04 ± 8.46 items/individual or 0.16 ± 0.09 to 2.25 ± 1.68 items/g wet weight. The samples from Dalian were found to have the highest value by individual, and samples from Lianyungang had the highest value by gram. Furthermore, MPs were found in different tissues of sea urchins, i.e., gut, coelomic fluid and gonads. The highest abundance of MPs was found in the gut of sea urchins, followed by coelomic fluid and gonads. The size of MPs ranged from 27 to 4742 μm, and the mean size found in gut was bigger than coelomic fluid and gonads. More interestingly, the MPs abundance increased with the decrease of anus size, shell diameter and gonad index (the wet weight ratio of gonad to total soft tissues). The MPs were dominated by fiber in shape, blue-green in colour and cellophane in composition. The high MPs abundance in sea urchins indicates the potential risks to human as they are consumed in many parts of the world, particularly in Asia and Europe.
Collapse
Affiliation(s)
- Zhihua Feng
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China.
| | - Rui Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
| | - Tao Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jiaxuan Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
| | - Wei Huang
- Key Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Ji Li
- School of Oceanography, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Juntian Xu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Guang Gao
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; State Key Laboratory of Marine Environmental Science & College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
12
|
Dodou D, Breedveld P, de Winter JCF, Dankelman J, van Leeuwen JL. Mechanisms of temporary adhesion in benthic animals. Biol Rev Camb Philos Soc 2011; 86:15-32. [PMID: 20233167 DOI: 10.1111/j.1469-185x.2010.00132.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Adhesive systems are ubiquitous in benthic animals and play a key role in diverse functions such as locomotion, food capture, mating, burrow building, and defence. For benthic animals that release adhesives, surface and material properties and external morphology have received little attention compared to the biochemical content of the adhesives. We address temporary adhesion of benthic animals from the following three structural levels: (a) the biochemical content of the adhesive secretions, (b) the micro- and mesoscopic surface geometry and material properties of the adhesive organs, and (c) the macroscopic external morphology of the adhesive organs. We show that temporary adhesion of benthic animals is affected by three structural levels: the adhesive secretions provide binding to the substratum at a molecular scale, whereas surface geometry and external morphology increase the contact area with the irregular and unpredictable profile of the substratum from micro- to macroscales. The biochemical content of the adhesive secretions differs between abiotic and biotic substrata. The biochemistry of the adhesives suitable for biotic substrata differentiates further according to whether adhesion must be activated quickly (e.g. as a defensive mechanism) or more slowly (e.g. during adhesion of parasites). De-adhesion is controlled by additional secretions, enzymes, or mechanically. Due to deformability, the adhesive organs achieve intimate contact by adapting their surface profile to the roughness of the substratum. Surface projections, namely cilia, cuticular villi, papillae, and papulae increase the contact area or penetrate through the secreted adhesive to provide direct contact with the substratum. We expect that the same three structural levels investigated here will also affect the performance of artificial adhesive systems.
Collapse
Affiliation(s)
- D Dodou
- Department of BioMechanical Engineering, Delft University of Technology, The Netherlands.
| | | | | | | | | |
Collapse
|
13
|
Hennebert E, Haesaerts D, Dubois P, Flammang P. Evaluation of the different forces brought into play during tube foot activities in sea stars. ACTA ACUST UNITED AC 2010; 213:1162-74. [PMID: 20228353 DOI: 10.1242/jeb.037903] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Sea star tube feet consist of an enlarged and flattened distal extremity (the disc), which makes contact with the substratum, and a proximal contractile cylinder (the stem), which acts as a tether. In this study, the different forces brought into play during tube foot functioning were investigated in two related species. The tube feet of Asterias rubens and Marthasterias glacialis attach to glass with a similar mean tenacity (0.24 and 0.43 MPa, respectively), corresponding to an estimated maximal attachment force of 0.15 and 0.35 N. The contraction force of their retractor muscle averages 0.017 N. The variation of the retractor muscle contraction with its extension ratio follows a typical bell-shaped length-tension curve in which a maximal contraction of approximately 0.04 N is obtained for an extension ratio of approximately 2.3 in both sea star species. The tensile strength of the tube foot stem was investigated considering the two tissues that could assume a load-bearing function, i.e. the retractor muscle and the connective tissue. The latter is a mutable collagenous tissue presenting a fivefold difference in tensile strength between its soft and stiff state. In our experiments, stiffening was induced by disrupting cell membranes or by modifying the ionic composition of the bathing solution. Finally, the force needed to break the tube foot retractor muscle was found to account for 18-25% of the tube foot total breaking force, showing that, although the connective tissue is the tissue layer that supports most of the load exerted on the stem, the contribution of the retractor muscle cannot be neglected in sea stars. All these forces appear well-balanced for proper functioning of the tube feet during the activities of the sea star. They are discussed in the context of two essential activities: the opening of bivalve shells and the maintenance of position in exposed habitats.
Collapse
Affiliation(s)
- Elise Hennebert
- Université de Mons - UMONS, Académie Universitaire Wallonie-Bruxelles, Laboratoire de Biologie Marine, Mons, Belgium
| | | | | | | |
Collapse
|