1
|
Medina-Feliciano JG, Valentín-Tirado G, Luna-Martínez K, Miranda-Negrón Y, García-Arrarás JE. Single-cell RNA sequencing of the holothurian regenerating intestine reveals the pluripotency of the coelomic epithelium. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.01.601561. [PMID: 39005414 PMCID: PMC11244903 DOI: 10.1101/2024.07.01.601561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
In holothurians, the regenerative process following evisceration involves the development of a "rudiment" or "anlage" at the injured end of the mesentery. This regenerating anlage plays a pivotal role in the formation of a new intestine. Despite its significance, our understanding of the molecular characteristics inherent to the constituent cells of this structure has remained limited. To address this gap, we employed state-of-the-art scRNA-seq and HCR-FISH analyses to discern the distinct cellular populations associated with the regeneration anlage. Through this approach, we successfully identified thirteen distinct cell clusters. Among these, two clusters exhibit characteristics consistent with putative mesenchymal cells, while another four show features akin to coelomocyte cell populations. The remaining seven cell clusters collectively form a large group encompassing the coelomic epithelium of the regenerating anlage and mesentery. Within this large group of clusters, we recognized previously documented cell populations such as muscle precursors, neuroepithelial cells and actively proliferating cells. Strikingly, our analysis provides data for identifying at least four other cellular populations that we define as the precursor cells of the growing anlage. Consequently, our findings strengthen the hypothesis that the coelomic epithelium of the anlage is a pluripotent tissue that gives rise to diverse cell types of the regenerating intestinal organ. Moreover, our results provide the initial view into the transcriptomic analysis of cell populations responsible for the amazing regenerative capabilities of echinoderms.
Collapse
|
2
|
Intestine Explants in Organ Culture: A Tool to Broaden the Regenerative Studies in Echinoderms. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022; 10. [DOI: 10.3390/jmse10020244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The cellular events underlying intestine regrowth in the sea cucumber Holothuria glaberrima have been described by our group. Currently, the molecular and signaling mechanisms involved in this process are being explored. One of the limitations to our investigations has been the absence of suitable cell culture methodologies, required to advance the regeneration studies. An in vitro system, where regenerating intestine explants can be studied in organ culture, was established previously by our group. However, a detailed description of the histological properties of the cultured gut explants was lacking. Here, we used immunocytochemical techniques to study the potential effects of the culture conditions on the histological characteristics of explants, comparing them to the features observed during gut regeneration in our model in vivo. Additionally, the explant outgrowths were morphologically described by phase-contrast microscopy and SEM. Remarkably, intestine explants retain most of their original histoarchitecture for up to 10 days, with few changes as culture time increases. The most evident effects of the culture conditions on explants over culture time were the reduction in the proliferative rate, the loss of the polarity in the localization of proliferating cells, and the appearance of a subpopulation of putative spherulocytes. Finally, cells that migrated from the gut explants could form net-like monolayers, firmly attached to the culture substrate. Overall, regenerating explants in organ culture represent a powerful tool to perform short-term studies of processes associated with gut regeneration in H. glaberrima under controlled conditions.
Collapse
|
3
|
Quesada-Díaz E, Figueroa-Delgado P, García-Rosario R, Sirfa A, García-Arrarás JE. Dedifferentiation of radial glia-like cells is observed in in vitro explants of holothurian radial nerve cord. J Neurosci Methods 2021; 364:109358. [PMID: 34537226 DOI: 10.1016/j.jneumeth.2021.109358] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 08/09/2021] [Accepted: 09/13/2021] [Indexed: 01/25/2023]
Abstract
BACKGROUND Among animal phyla, some of the least studied nervous systems are those of the phylum Echinodermata. Part of the problem lies in that most of their nervous components are embedded in the body wall that has calcareous skeletal components. NEW METHOD We have developed a novel technique for the successful isolation of the radial nerve cords (RNCs) and an in vitro system where the isolated RNCs can be cultured and are amenable to experimental manipulation. Here we use this system to isolate the RNC of the sea cucumber Holothuria glaberrima as a way to extend our studies on its regeneration capabilities. RESULTS The RNCs can be isolated from the surrounding tissues by collagenase treatment. The explants obtained following enzymatic dissociation can be kept in culture for up to 2 weeks. Histological and immunohistochemical studies show that the explants maintain a stable number of cells with little proliferation or apoptosis throughout the culture incubation period. The main change observed in RNCs in vitro is a progressive dedifferentiation of radial glia-like cells. This dedifferentiation corresponds to the first step in the regeneration response to injury that has been described in vivo. COMPARISON WITH EXISTING METHODS There are no existing methods to isolate and culture echinoderm radial nerve cord. CONCLUSIONS The described protocol provides a unique tool to obtain easily accessible RNC from holothurians to perform cellular, biochemical, and genomic experiments in the echinoderm nervous system without interference of adjacent tissues. The technique provides a unique opportunity to study the dedifferentiation response associated with the regeneration of the nervous system in echinoderms.
Collapse
Affiliation(s)
| | | | - Raúl García-Rosario
- Department of Biology, University of Puerto Rico, San Juan, PR 00931-3360, USA
| | - Angel Sirfa
- Department of Biology, University of Puerto Rico, San Juan, PR 00931-3360, USA
| | | |
Collapse
|
4
|
Nieves-Ríos C, Alvarez-Falcón S, Malavez S, Rodriguez-Otero J, García-Arrarás JE. The nervous system component of the mesentery of the sea cucumber Holothuria glaberrima in normal and regenerating animals. Cell Tissue Res 2020; 380:67-77. [PMID: 31865468 PMCID: PMC7073298 DOI: 10.1007/s00441-019-03142-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 11/11/2019] [Indexed: 02/07/2023]
Abstract
The mesenterial tissues play important roles in the interactions between the viscera and the rest of the organism. Among these roles, they serve as the physical substrate for nerves connecting the visceral nervous components to the central nervous system. Although the mesenterial nervous system component has been described in vertebrates, particularly in mammals, a description in other deuterostomes is lacking. Using immunohistochemistry in tissue sections and whole mounts, we describe here the nervous component of the intestinal mesentery in the sea cucumber Holothuria glaberrima. This echinoderm has the ability to regenerate its internal organs in a process that depends on the mesentery. Therefore, we have also explored changes in the mesenterial nervous component during intestinal regeneration. Extensive fiber bundles with associated neurons are found in the mesothelial layer, extending from the body wall to the intestine. Neuron-like cells are also found within a plexus in the connective tissue layer. We also show that most of the cells and nerve fibers within the mesentery remain during the regenerative process, with only minor changes: a general disorganization of the fiber bundles and a retraction of nerve fibers near the tip of the mesentery during the first days of regeneration. Our results provide a basic description of mesenterial nervous component that can be of importance for comparative studies as well as for the analyses of visceral regeneration.
Collapse
Affiliation(s)
- Christian Nieves-Ríos
- Department of Biology, University of Puerto Rico-Río Piedras Campus, San Juan, 00931, Puerto Rico
| | - Samuel Alvarez-Falcón
- Department of Biology, University of Puerto Rico-Río Piedras Campus, San Juan, 00931, Puerto Rico
| | - Sonya Malavez
- Department of Biology, University of Puerto Rico-Río Piedras Campus, San Juan, 00931, Puerto Rico
| | - Jannette Rodriguez-Otero
- Department of Biology, University of Puerto Rico-Río Piedras Campus, San Juan, 00931, Puerto Rico
| | - José E García-Arrarás
- Department of Biology, University of Puerto Rico-Río Piedras Campus, San Juan, 00931, Puerto Rico.
| |
Collapse
|
5
|
Sea Urchins as an Inspiration for Robotic Designs. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2018. [DOI: 10.3390/jmse6040112] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Neuromorphic engineering is the approach to intelligent machine design inspired by nature. Here, we outline possible robotic design principles derived from the neural and motor systems of sea urchins (Echinoida). Firstly, we review the neurobiology and locomotor systems of sea urchins, with a comparative emphasis on differences to animals with a more centralized nervous system. We discuss the functioning and enervation of the tube feet, pedicellariae, and spines, including the limited autonomy of these structures. We outline the design principles behind the sea urchin nervous system. We discuss the current approaches of adapting these principles to robotics, such as sucker-like structures inspired by tube feet and a robotic adaptation of the sea urchin jaw, as well as future directions and possible limitations to using these principles in robots.
Collapse
|
6
|
García-Arrarás JE, Bello SA, Malavez S. The mesentery as the epicenter for intestinal regeneration. Semin Cell Dev Biol 2018; 92:45-54. [PMID: 30193995 DOI: 10.1016/j.semcdb.2018.09.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 09/01/2018] [Accepted: 09/02/2018] [Indexed: 01/17/2023]
Abstract
The mesentery, a newly minted organ, plays various anatomical and physiological roles during animal development. In echinoderms, and particularly in members of the class Holothuroidea (sea cucumbers) the mesentery plays an additional unique role: it is crucial for the process of intestinal regeneration. In these organisms, a complete intestine can form from cells that originate in the mesentery. In this review, we focus on what is known about the changes that take place in the mesentery and what has been documented on the cellular and molecular mechanisms involved. We describe how the events that unfold in the mesentery result in the formation of a new intestine.
Collapse
Affiliation(s)
| | - Samir A Bello
- Biology Department, University of Puerto Rico, Puerto Rico.
| | - Sonya Malavez
- Biology Department, University of Puerto Rico, Puerto Rico.
| |
Collapse
|
7
|
García-Arrarás JE, Lázaro-Peña MI, Díaz-Balzac CA. Holothurians as a Model System to Study Regeneration. Results Probl Cell Differ 2018; 65:255-283. [PMID: 30083924 DOI: 10.1007/978-3-319-92486-1_13] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Echinoderms possess an incredible regenerative capacity. Within this phylum, holothurians, better known as sea cucumbers, can regenerate most of their internal and external organs. While regeneration has been studied in several species, the most recent and extensive studies have been done in the species Holothuria glaberrima, the focus of most of our discussion. This chapter presents the model system and integrates the work that has been done to determine the major steps that take place, during regeneration of the intestinal and nervous system, from wound healing to the reestablishment of original function. We describe the cellular and molecular events associated with the regeneration processes and also describe the techniques that have been used, discuss the results, and explain the gaps in our knowledge that remain. We expect that the information provided here paves the road for new and young investigators to continue the study of the amazing potential of regeneration in members of the Echinodermata and how these studies will shed some light into the mechanisms that are common to many regenerative processes.
Collapse
Affiliation(s)
- José E García-Arrarás
- Department of Biology, University of Puerto Rico - Río Piedras Campus, San Juan, Puerto Rico.
| | - María I Lázaro-Peña
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA
| | - Carlos A Díaz-Balzac
- Department of Medicine, University of Rochester Medical Center, Strong Memorial Hospital, Rochester, NY, USA
| |
Collapse
|
8
|
Rosado-Olivieri EA, Ramos-Ortiz GA, Hernández-Pasos J, Díaz-Balzac CA, Vázquez-Rosa E, Valentín-Tirado G, Vega IE, García-Arrarás JE. A START-domain-containing protein is a novel marker of nervous system components of the sea cucumber Holothuria glaberrima. Comp Biochem Physiol B Biochem Mol Biol 2017; 214:57-65. [PMID: 28864221 DOI: 10.1016/j.cbpb.2017.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/10/2017] [Accepted: 08/19/2017] [Indexed: 12/21/2022]
Abstract
One of the main challenges faced by investigators studying the nervous system of members of the phylum Echinodermata is the lack of markers to identify nerve cells and plexi. Previous studies have utilized an antibody, RN1, that labels most of the nervous system structures of the sea cucumber Holothuria glaberrima and other echinoderms. However, the antigen recognized by RN1 remained unknown. In the present work, the antigen has been characterized by immunoprecipitation, tandem mass spectrometry, and cDNA cloning. The RN1 antigen contains a START lipid-binding domain found in Steroidogenic Acute Regulatory (StAR) proteins and other lipid-binding proteins. Phylogenetic tree assembly showed that the START domain is highly conserved among echinoderms. We have named this antigen HgSTARD10 for its high sequence similarity to the vertebrate orthologs. Gene and protein expression analyses revealed an abundance of HgSTARD10 in most H. glaberrima tissues including radial nerve, intestine, muscle, esophagus, mesentery, hemal system, gonads and respiratory tree. Molecular cloning of HgSTARD10, consequent protein expression and polyclonal antibody production revealed the STARD10 ortholog as the antigen recognized by the RN1 antibody. Further characterization into this START domain-containing protein will provide important insights for the biochemistry, physiology and evolution of deuterostomes.
Collapse
Affiliation(s)
- Edwin A Rosado-Olivieri
- Department of Biology, University of Puerto Rico-Río Piedras Campus, San Juan PR 00931, Puerto Rico.
| | - Gibram A Ramos-Ortiz
- Department of Biology, University of Puerto Rico-Río Piedras Campus, San Juan PR 00931, Puerto Rico.
| | - Josué Hernández-Pasos
- Department of Biology, University of Puerto Rico-Río Piedras Campus, San Juan PR 00931, Puerto Rico
| | - Carlos A Díaz-Balzac
- Department of Biology, University of Puerto Rico-Río Piedras Campus, San Juan PR 00931, Puerto Rico.
| | - Edwin Vázquez-Rosa
- Department of Chemistry, University of Puerto Rico Río Piedras Campus, San Juan PR 00931, Puerto Rico
| | - Griselle Valentín-Tirado
- Department of Biology, University of Puerto Rico-Río Piedras Campus, San Juan PR 00931, Puerto Rico
| | - Irving E Vega
- Translational Science & Molecular Medicine, Michigan State University, Grand Rapids, MI 49503, United States
| | - José E García-Arrarás
- Department of Biology, University of Puerto Rico-Río Piedras Campus, San Juan PR 00931, Puerto Rico.
| |
Collapse
|
9
|
Díaz-Balzac CA, Lázaro-Peña MI, Vázquez-Figueroa LD, Díaz-Balzac RJ, García-Arrarás JE. Holothurian Nervous System Diversity Revealed by Neuroanatomical Analysis. PLoS One 2016; 11:e0151129. [PMID: 26987052 PMCID: PMC4795612 DOI: 10.1371/journal.pone.0151129] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 02/24/2016] [Indexed: 11/19/2022] Open
Abstract
The Echinodermata comprise an interesting branch in the phylogenetic tree of deuterostomes. Their radial symmetry which is reflected in their nervous system anatomy makes them a target of interest in the study of nervous system evolution. Until recently, the study of the echinoderm nervous system has been hindered by a shortage of neuronal markers. However, in recent years several markers of neuronal and fiber subpopulations have been described. These have been used to identify subpopulations of neurons and fibers, but an integrative study of the anatomical relationship of these subpopulations is wanting. We have now used eight commercial antibodies, together with three antibodies produced by our group to provide a comprehensive and integrated description and new details of the echinoderm neuroanatomy using the holothurian Holothuria glaberrima (Selenka, 1867) as our model system. Immunoreactivity of the markers used showed: (1) specific labeling patterns by markers in the radial nerve cords, which suggest the presence of specific nerve tracts in holothurians. (2) Nerves directly innervate most muscle fibers in the longitudinal muscles. (3) Similar to other deuterostomes (mainly vertebrates), their enteric nervous system is composed of a large and diverse repertoire of neurons and fiber phenotypes. Our results provide a first blueprint of the anatomical organization of cells and fibers that form the holothurian neural circuitry, and highlight the fact that the echinoderm nervous system shows unexpected diversity in cell and fiber types and their distribution in both central and peripheral nervous components.
Collapse
Affiliation(s)
- Carlos A. Díaz-Balzac
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Ave, Ullmann Room 709, Bronx, New York, 10461, United States of America
- Department of Biology, University of Puerto Rico–Río Piedras Campus, P.O. Box 23360, University of Puerto Rico, San Juan, PR, 00931–3360, Puerto Rico
| | - María I. Lázaro-Peña
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Ave, Ullmann Room 709, Bronx, New York, 10461, United States of America
- Department of Biology, University of Puerto Rico–Río Piedras Campus, P.O. Box 23360, University of Puerto Rico, San Juan, PR, 00931–3360, Puerto Rico
| | - Lionel D. Vázquez-Figueroa
- Department of Biology, University of Puerto Rico–Río Piedras Campus, P.O. Box 23360, University of Puerto Rico, San Juan, PR, 00931–3360, Puerto Rico
| | - Roberto J. Díaz-Balzac
- Department of Biology, University of Puerto Rico–Río Piedras Campus, P.O. Box 23360, University of Puerto Rico, San Juan, PR, 00931–3360, Puerto Rico
| | - José E. García-Arrarás
- Department of Biology, University of Puerto Rico–Río Piedras Campus, P.O. Box 23360, University of Puerto Rico, San Juan, PR, 00931–3360, Puerto Rico
- * E-mail:
| |
Collapse
|
10
|
Motokawa T, Fuchigami Y. Coordination between catch connective tissue and muscles through nerves in the spine joint of the sea urchin Diadema setosum. ACTA ACUST UNITED AC 2015; 218:703-10. [PMID: 25740901 DOI: 10.1242/jeb.115972] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Echinoderms have catch connective tissues that change their stiffness as a result of nervous control. The coordination between catch connective tissue and muscles was studied in the spine joint of the sea urchin Diadema setosum. Spine joints are equipped with two kinds of effector: spine muscles and a kind of catch connective tissue, which is called the catch apparatus (CA). The former is responsible for spine movements and the latter for maintenance of spine posture. Diadema show a shadow reaction in which they wave spines when a shadow falls on them, which is a reflex involving the radial nerves. Dynamic mechanical tests were performed on the CA in a joint at which the muscles were severed so as not to interfere with the mechanical measurements. The joint was on a piece of the test that contained other spines and a radial nerve. Darkening of the preparation invoked softening of the CA and spine waving (the shadow reaction). Electrical stimulation of the radial nerve invoked a similar response. These responses were abolished after the nerve pathways from the radial nerve to spines had been cut. A touch applied to the CA stiffened it and the adjacent spines inclined toward the touched CA. A touch to the base of the adjacent spine softened the CA and the spines around the touched spine inclined towards it. The softening of the CA can be interpreted as a response that reduces the resistance of the ligaments to spine movements. Our results clearly show coordination between catch connective tissue and muscles through nerves.
Collapse
Affiliation(s)
- Tatsuo Motokawa
- Department of Biological Sciences, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Meguro, Tokyo 152-8551, Japan
| | - Yoshiro Fuchigami
- Department of Biological Sciences, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Meguro, Tokyo 152-8551, Japan
| |
Collapse
|
11
|
Tossas K, Qi-Huang S, Cuyar E, García-Arrarás JE. Temporal and spatial analysis of enteric nervous system regeneration in the sea cucumber Holothuria glaberrima. ACTA ACUST UNITED AC 2014; 1:10-26. [PMID: 27499861 PMCID: PMC4895299 DOI: 10.1002/reg2.15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 06/16/2014] [Accepted: 06/17/2014] [Indexed: 01/18/2023]
Abstract
There is limited information on the regeneration of the enteric nervous system (ENS) following major reconstruction of the digestive tract. We have studied ENS regeneration in the sea cucumber Holothuria glaberrima which undergoes an organogenic process forming a new digestive tract at the tip of the mesentery. Our results show that (1) a degeneration of nerve fibers occurs early in the regeneration process, prior to eventual regeneration; (2) nerve fibers that innervate the regenerating intestine are of extrinsic and intrinsic origin; (3) innervation by extrinsic fibers occurs in a gradient that begins in the proximal area of the regenerate; (4) late events include the appearance of nerve fibers that project from the serosa into the connective tissue and of nerve bundles in the mesothelial layer; (5) neurons and neuroendocrine cells appear early following the formation of the epithelial layers. Our results provide not only a comparative biological approach to study ENS regeneration but also an alternative point of view for the study of enteric neuropathologies and for the innervation of organs made in vitro.
Collapse
Affiliation(s)
- Karen Tossas
- Department of Biology University of Puerto Rico Rio Piedras Puerto Rico 00931
| | - Sunny Qi-Huang
- Department of Biology University of Puerto Rico Rio Piedras Puerto Rico 00931
| | - Eugenia Cuyar
- Department of Biology University of Puerto Rico Rio Piedras Puerto Rico 00931
| | | |
Collapse
|
12
|
Díaz-Balzac CA, Vázquez-Figueroa LD, García-Arrarás JE. Novel markers identify nervous system components of the holothurian nervous system. INVERTEBRATE NEUROSCIENCE 2014; 14:113-25. [PMID: 24740637 DOI: 10.1007/s10158-014-0169-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 03/28/2014] [Indexed: 10/25/2022]
Abstract
Echinoderms occupy a key position in the evolution of deuterostomes. As such, the study of their nervous system can shed important information on the evolution of the vertebrate nervous system. However, the study of the echinoderm nervous system has lagged behind when compared to that of other invertebrates due to the lack of tools available. In this study, we tested three commercially available antibodies as markers of neural components in holothurians. Immunohistological experiments with antibodies made against the mammalian transcription factors Pax6 and Nurr1, and against phosphorylated histone H3 showed that these markers identified cells and fibers within the nervous system of Holothuria glaberrima. Most of the fibers recognized by these antibodies were co-labeled with the well-known neural marker, RN1. Additional experiments showed that similar immunoreactivity was found in the nervous tissue of three other holothurian species (Holothuria mexicana, Leptosynapta clarki and Sclerodactyla briareus), thus extending our findings to the three orders of Holothuroidea. Furthermore, these markers identified different subdivisions of the holothurian nervous system. Our study presents three additional markers of the holothurian nervous system, expanding the available toolkit to study the anatomy, physiology, development and evolution of the echinoderm nervous system.
Collapse
Affiliation(s)
- Carlos A Díaz-Balzac
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Ave, Ullmann Room 807, Bronx, NY, 10461, USA,
| | | | | |
Collapse
|
13
|
Novel insights into the echinoderm nervous system from histaminergic and FMRFaminergic-like cells in the sea cucumber Leptosynapta clarki. PLoS One 2012; 7:e44220. [PMID: 22970182 PMCID: PMC3435416 DOI: 10.1371/journal.pone.0044220] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 08/03/2012] [Indexed: 11/19/2022] Open
Abstract
Understanding of the echinoderm nervous system is limited due to its distinct organization in comparison to other animal phyla and by the difficulty in accessing it. The transparent and accessible, apodid sea cucumber Leptosynapta clarki provides novel opportunities for detailed characterization of echinoderm neural systems. The present study used immunohistochemistry against FMRFamide and histamine to describe the neural organization in juvenile and adult sea cucumbers. Histaminergic- and FMRFaminergic-like immunoreactivity is reported in several distinct cell types throughout the body of L. clarki. FMRFamide-like immunoreactive cell bodies were found in the buccal tentacles, esophageal region and in proximity to the radial nerve cords. Sensory-like cells in the tentacles send processes toward the circumoral nerve ring, while unipolar and bipolar cells close to the radial nerve cords display extensive processes in close association with muscle and other cells of the body wall. Histamine-like immunoreactivity was identified in neuronal somatas located in the buccal tentacles, circumoral nerve ring and in papillae distributed across the body. The tentacular cells send processes into the nerve ring, while the processes of cells in the body wall papillae extend to the surface epithelium and radial nerve cords. Pharmacological application of histamine produced a strong coordinated, peristaltic response of the body wall suggesting the role of histamine in the feeding behavior. Our immunohistochemical data provide evidence for extensive connections between the hyponeural and ectoneural nervous system in the sea cucumber, challenging previously held views on a clear functional separation of the sub-components of the nervous system. Furthermore, our data indicate a potential function of histamine in coordinated, peristaltic movements; consistent with feeding patterns in this species. This study on L. clarki illustrates how using a broader range of neurotransmitter systems can provide better insight into the anatomy, function and evolution of echinoderm nervous sytems.
Collapse
|
14
|
Díaz-Balzac CA, Lázaro-Peña MI, García-Rivera EM, González CI, García-Arrarás JE. Calbindin-D32k is localized to a subpopulation of neurons in the nervous system of the sea cucumber Holothuria glaberrima (Echinodermata). PLoS One 2012; 7:e32689. [PMID: 22412907 PMCID: PMC3296734 DOI: 10.1371/journal.pone.0032689] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 01/29/2012] [Indexed: 11/18/2022] Open
Abstract
Members of the calbindin subfamily serve as markers of subpopulations of neurons within the vertebrate nervous system. Although markers of these proteins are widely available and used, their application to invertebrate nervous systems has been very limited. In this study we investigated the presence and distribution of members of the calbindin subfamily in the sea cucumber Holothuria glaberrima (Selenka, 1867). Immunohistological experiments with antibodies made against rat calbindin 1, parvalbumin, and calbindin 2, showed that these antibodies labeled cells and fibers within the nervous system of H. glaberrima. Most of the cells and fibers were co-labeled with the neural-specific marker RN1, showing their neural specificity. These were distributed throughout all of the nervous structures, including the connective tissue plexi of the body wall and podia. Bioinformatics analyses of the possible antigen recognized by these markers showed that a calbindin 2-like protein present in the sea urchin Strongylocentrotus purpuratus, corresponded to the calbindin-D32k previously identified in other invertebrates. Western blots with anti-calbindin 1 and anti-parvalbumin showed that these markers recognized an antigen of approximately 32 kDa in homogenates of radial nerve cords of H. glaberrima and Lytechinus variegatus. Furthermore, immunoreactivity with anti-calbindin 1 and anti-parvalbumin was obtained to a fragment of calbindin-D32k of H. glaberrima. Our findings suggest that calbindin-D32k is present in invertebrates and its sequence is more similar to the vertebrate calbindin 2 than to calbindin 1. Thus, characterization of calbindin-D32k in echinoderms provides an important view of the evolution of this protein family and represents a valuable marker to study the nervous system of invertebrates.
Collapse
Affiliation(s)
- Carlos A. Díaz-Balzac
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Biology, University of Puerto Rico-Río Piedras Campus, Río Piedras, San Juan, Puerto Rico
| | - María I. Lázaro-Peña
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Biology, University of Puerto Rico-Río Piedras Campus, Río Piedras, San Juan, Puerto Rico
| | - Enrique M. García-Rivera
- Department of Biology, University of Puerto Rico-Río Piedras Campus, Río Piedras, San Juan, Puerto Rico
| | - Carlos I. González
- Department of Biology, University of Puerto Rico-Río Piedras Campus, Río Piedras, San Juan, Puerto Rico
| | - José E. García-Arrarás
- Department of Biology, University of Puerto Rico-Río Piedras Campus, Río Piedras, San Juan, Puerto Rico
- * E-mail:
| |
Collapse
|
15
|
Affiliation(s)
- Robert D Burke
- Department of Biochemistry and Microbiology, University of Victoria, Petch 207, 3800 Finnerty Road, Victoria, BC, Canada V8N 3N5.
| |
Collapse
|
16
|
Díaz-Balzac CA, Mejías W, Jiménez LB, García-Arrarás JE. The catecholaminergic nerve plexus of Holothuroidea. ZOOMORPHOLOGY 2010; 129:99-109. [PMID: 20827375 DOI: 10.1007/s00435-010-0103-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Catecholamines have been extensively reported to be present in most animal groups, including members of Echinodermata. In this study, we investigated the presence and distribution of catecholaminergic nerves in two members of the Holothuroidea, Holothuria glaberrima (Selenka, 1867) (Aspidochirotida, Holothuroidea) and Holothuria mexicana (Ludwig, 1875) (Aspidochirotida, Holothuroidea), by using induced fluorescence for catecholamines on tissue sections and immunohistochemistry with an antibody that recognizes tyrosine hydroxylase. The presence of a catecholaminergic nerve plexus similar in distribution and extension to those previously reported in other members of Echinodermata was observed. This plexus, composed of cells and fibers, is found in the ectoneural component of the echinoderm nervous system and is continuous with the circumoral nerve ring and the radial nerves, tentacular nerves, and esophageal plexus. In addition, fluorescent nerves in the tube feet are continuous with the catecholaminergic components of the radial nerve cords. This is the first comprehensive report on the presence and distribution of catecholamines in the nervous system of Holothuroidea. The continuity and distribution of the catecholaminergic plexus strengthen the notion that the catecholaminergic cells are interneurons, since these do not form part of the known sensory or motor circuits and the fluorescence is confined to organized nervous tissue.
Collapse
Affiliation(s)
- Carlos A Díaz-Balzac
- Department of Biology, University of Puerto Rico, Río Piedras Campus, Box 23360, Río Piedras, PR 00931-3360, USA
| | | | | | | |
Collapse
|
17
|
Kolasinski J, Taddei D, Cuet P, Frouin P. AChE and EROD activities in two echinoderms, Holothuria leucospilota and Holoturia atra (Holothuroidea), in a coral reef (Reunion Island, South-western Indian Ocean). JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2010; 45:699-708. [PMID: 20390918 DOI: 10.1080/10934521003648917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
AChE and EROD activities were investigated in two holothurian species, Holothuria leucospilota and Holoturia atra, from a tropical coral reef. These organisms were collected from 3 back-reef stations, where temperature and salinity were homogeneous. The activity levels of both AChE and EROD varied significantly between the two species, but were in the range of values determined in other echinoderm species. AChE activity levels were higher in the longitudinal muscle than in the tentacle tegument. Among the several tissues tested, the digestive tract wall exhibited higher EROD activity levels. Sex did not influence AChE and EROD activity levels in both species. Animal biomass and EROD activity levels were only correlated in the tegument tissue of H. atra, and we hypothesize a possible influence of age. EROD activity did not show intraspecific variability. A significant relationship was found between AChE activity and Cuvierian tubules time of expulsion in Holothuria leucospilota. Individuals collected at the southern site presented both lower AChE activity levels and Cuvierian tubules time of expulsion, indicating possible neural disturbance. More information on holothurians biology and physiology is needed to further assess biomarkers in these key species. This study is the first of its kind performed in the coastal waters of Reunion Island and data obtained represent reference values.
Collapse
Affiliation(s)
- Joanna Kolasinski
- Laboratoire d'Ecologie Marine, Université de La Réunion, La Réunion, France.
| | | | | | | |
Collapse
|
18
|
Díaz-Balzac CA, Abreu-Arbelo JE, García-Arrarás JE. Neuroanatomy of the tube feet and tentacles in Holothuria glaberrima (Holothuroidea, Echinodermata). ZOOMORPHOLOGY 2009; 129:33-43. [PMID: 20461218 DOI: 10.1007/s00435-009-0098-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Echinoderms are a key group in understanding the evolution of the nervous system in the Metazoa. Remarkably, little is known about echinoderm neurobiology. The echinoderm podia, which are unique echinoderm modifications and comprise structures responsible for locomotion and feeding, have been largely neglected in nervous system studies. Here, we have applied immunohistological approaches using different neuronal markers to describe the neuroanatomy of the holothurian podia and its relation to the muscular component. We show, using the sea cucumber Holothuria glaberrima (Selenka, 1867), the direct innervation of the podia by the ectoneural component of the nervous system, as well as the existence of a connection between the nervous system components in the main nerves, the muscle, and the connective tissue. These findings confirm the ectoneural origin of the tube feet's main nervous system and demonstrate its neuroanatomic complexity. We also show the presence of fibers and neurons within the tube feet mesothelium and connective tissue. The study of these simple structures will help us elucidate the echinoderms' neuromuscular circuit and their evolutionary relationships.
Collapse
Affiliation(s)
- Carlos A Díaz-Balzac
- Department of Biology, University of Puerto Rico, Río Piedras Campus, Box 23360, Río Piedras, Puerto Rico 00931-3360
| | | | | |
Collapse
|
19
|
The research progress of antitumorous effectiveness of Stichopus japonicus acid mucopolysaccharide in north of China. Am J Med Sci 2009; 337:195-8. [PMID: 19174693 DOI: 10.1097/maj.0b013e318182ee45] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The sea cucumbers growing in the estuary of the Pohai of northern China are called Stichopus japonicus and are the orthodox holothurians in traditional Chinese medicine. There are multiple biological active ingredients in S. japonicus, and S. japonicus acid mucopolysaccharide (SJAMP) is one of the important ingredients. SJAMP has multiple pharmacologic actions, such as antitumor, immunologic regulation, anticoagulated blood, and antivirus. The research on antitumor has been carried out by way of animal experiments aiming at studying internal tumor-inhibiting effect of SJAMP, and the route of administration is usually peritoneal or intragastric. Additionally, sea cucumbers have been widely recognized and applied as medicated food or therapeutic prescriptions during and after the treatment of some tumors.
Collapse
|
20
|
San Miguel-Ruiz JE, Maldonado-Soto AR, García-Arrarás JE. Regeneration of the radial nerve cord in the sea cucumber Holothuria glaberrima. BMC DEVELOPMENTAL BIOLOGY 2009; 9:3. [PMID: 19126208 PMCID: PMC2640377 DOI: 10.1186/1471-213x-9-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Accepted: 01/06/2009] [Indexed: 11/23/2022]
Abstract
Background Regeneration of neurons and fibers in the mammalian spinal cord has not been plausible, even though extensive studies have been made to understand the restrictive factors involved. New experimental models and strategies are necessary to determine how new nerve cells are generated and how fibers regrow and connect with their targets in adult animals. Non-vertebrate deuterostomes might provide some answers to these questions. Echinoderms, with their amazing regenerative capacities could serve as model systems; however, very few studies have been done to study the regeneration of their nervous system. Results We have studied nerve cord regeneration in the echinoderm Holothuria glaberrima. These are sea cucumbers or holothurians members of the class Holothuroidea. One radial nerve cord, part of the echinoderm CNS, was completely transected using a scalpel blade. Animals were allowed to heal for up to four weeks (2, 6, 12, 20, and 28 days post-injury) before sacrificed. Tissues were sectioned in a cryostat and changes in the radial nerve cord were analyzed using classical dyes and immmuohistochemistry. In addition, the temporal and spatial distribution of cell proliferation and apoptosis was assayed using BrdU incorporation and the TUNEL assay, respectively. We found that H. glaberrima can regenerate its radial nerve cord within a month following transection. The regenerated cord looks amazingly similar in overall morphology and cellular composition to the uninjured cord. The cellular events associated to radial cord regeneration include: (1) outgrowth of nerve fibers from the injured radial cord stumps, (2) intense cellular division in the cord stumps and in the regenerating radial nerve cords, (3) high levels of apoptosis in the RNC adjacent to the injury and within the regenerating cord and (4) an increase in the number of spherule-containing cells. These events are similar to those that occur in other body wall tissues during wound healing and during regeneration of the intestine. Conclusion Our data indicate that holothurians are capable of rapid and complete regeneration of the main component of their CNS. Regeneration involves both the outgrowth of nerve fibers and the formation of neurons. Moreover, the cellular events employed during regeneration are similar to those involved in other regenerative processes, namely wound healing and intestinal regeneration. Thus, holothurians should be viewed as an alternative model where many of the questions regarding nervous system regeneration in deuterostomes could be answered.
Collapse
|