1
|
Laureano RS, Vanmeerbeek I, Sprooten J, Govaerts J, Naulaerts S, Garg AD. The cell stress and immunity cycle in cancer: Toward next generation of cancer immunotherapy. Immunol Rev 2024; 321:71-93. [PMID: 37937803 DOI: 10.1111/imr.13287] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/05/2023] [Accepted: 10/20/2023] [Indexed: 11/09/2023]
Abstract
The cellular stress and immunity cycle is a cornerstone of organismal homeostasis. Stress activates intracellular and intercellular communications within a tissue or organ to initiate adaptive responses aiming to resolve the origin of this stress. If such local measures are unable to ameliorate this stress, then intercellular communications expand toward immune activation with the aim of recruiting immune cells to effectively resolve the situation while executing tissue repair to ameliorate any damage and facilitate homeostasis. This cellular stress-immunity cycle is severely dysregulated in diseased contexts like cancer. On one hand, cancer cells dysregulate the normal cellular stress responses to reorient them toward upholding growth at all costs, even at the expense of organismal integrity and homeostasis. On the other hand, the tumors severely dysregulate or inhibit various components of organismal immunity, for example, by facilitating immunosuppressive tumor landscape, lowering antigenicity, and increasing T-cell dysfunction. In this review we aim to comprehensively discuss the basis behind tumoral dysregulation of cellular stress-immunity cycle. We also offer insights into current understanding of the regulators and deregulators of this cycle and how they can be targeted for conceptualizing successful cancer immunotherapy regimen.
Collapse
Affiliation(s)
- Raquel S Laureano
- Cell Stress & Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Isaure Vanmeerbeek
- Cell Stress & Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Jenny Sprooten
- Cell Stress & Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Jannes Govaerts
- Cell Stress & Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Stefan Naulaerts
- Cell Stress & Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Abhishek D Garg
- Cell Stress & Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
2
|
Alessio N, Esposito G, Galano G, De Rosa R, Anello P, Peluso G, Tabocchini MA, Galderisi U. Irradiation of Mesenchymal Stromal Cells With Low and High Doses of Alpha Particles Induces Senescence and/or Apoptosis. J Cell Biochem 2017; 118:2993-3002. [PMID: 28252222 DOI: 10.1002/jcb.25961] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 02/28/2017] [Indexed: 12/25/2022]
Abstract
The use of high-linear energy transfer charged particles is gaining attention as a medical tool because of the emission of radiations with an efficient cell-killing ability. Considerable interest has developed in the use of targeted alpha-particle therapy for the treatment of micrometastases. Moreover, the use of helium beams is gaining momentum, especially for treating pediatric tumors. We analyzed the effects of alpha particles on bone marrow mesenchymal stromal cells (MSCs), which have a subpopulation of stem cells capable of generating adipocytes, chondrocytes, and osteocytes. Further, these cells contribute toward maintenance of homeostasis in the body. MSCs were irradiated with low and high doses of alpha particles or X-rays and a comparative biological analysis was performed. At a low dose (40 mGy), alpha particles exhibited a limited negative effect on the biology of MSCs compared with X-rays. No significant perturbation of cell cycle was observed, and a minimal increase in apoptosis or senescence was detected. Self-renewal was preserved as revealed by the CFU assay. On the contrary, with 2000 mGy alpha particles, we observed adverse effects on the vitality, functionality, and stemness of MSCs. These results are the consequence of different proportion of cells targeted by alpha particles or X-rays and the quality of induced DNA damage. The present study suggests that radiotherapy with alpha particles may spare healthy stem cells more efficaciously than X-ray treatments, an observation that should be taken into consideration by physicians while planning irradiation of tumor areas close to stem cell niches, such as bone marrow. J. Cell. Biochem. 118: 2993-3002, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Nicola Alessio
- Department of Experimental Medicine, Campania University "Luigi Vanvitelli", Naples, Italy
| | - Giuseppe Esposito
- Technology and Health Department, National Institute of Health, Rome, Italy.,National Institute of Nuclear Physics, Section Roma 1, Rome, Italy
| | - Giovanni Galano
- PSI Napoli Est - Laboratory UO, ASL Napoli 1 Centro, Naples, Italy
| | - Roberto De Rosa
- PSI Napoli Est - Radiology UO, ASL Napoli 1 Centro, Naples, Italy
| | - Pasquale Anello
- Technology and Health Department, National Institute of Health, Rome, Italy
| | - Gianfranco Peluso
- Institute of Agro-Environmental Biology and Forestry (IBAF), CNR, Naples, Italy
| | - Maria Antonella Tabocchini
- Technology and Health Department, National Institute of Health, Rome, Italy.,National Institute of Nuclear Physics, Section Roma 1, Rome, Italy
| | - Umberto Galderisi
- Department of Experimental Medicine, Campania University "Luigi Vanvitelli", Naples, Italy.,Institute of Agro-Environmental Biology and Forestry (IBAF), CNR, Naples, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
3
|
Niwa O, Barcellos-Hoff MH, Globus RK, Harrison JD, Hendry JH, Jacob P, Martin MT, Seed TM, Shay JW, Story MD, Suzuki K, Yamashita S. ICRP Publication 131: Stem Cell Biology with Respect to Carcinogenesis Aspects of Radiological Protection. Ann ICRP 2016; 44:7-357. [PMID: 26637346 DOI: 10.1177/0146645315595585] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This report provides a review of stem cells/progenitor cells and their responses to ionising radiation in relation to issues relevant to stochastic effects of radiation that form a major part of the International Commission on Radiological Protection's system of radiological protection. Current information on stem cell characteristics, maintenance and renewal, evolution with age, location in stem cell 'niches', and radiosensitivity to acute and protracted exposures is presented in a series of substantial reviews as annexes concerning haematopoietic tissue, mammary gland, thyroid, digestive tract, lung, skin, and bone. This foundation of knowledge of stem cells is used in the main text of the report to provide a biological insight into issues such as the linear-no-threshold (LNT) model, cancer risk among tissues, dose-rate effects, and changes in the risk of radiation carcinogenesis by age at exposure and attained age. Knowledge of the biology and associated radiation biology of stem cells and progenitor cells is more developed in tissues that renew fairly rapidly, such as haematopoietic tissue, intestinal mucosa, and epidermis, although all the tissues considered here possess stem cell populations. Important features of stem cell maintenance, renewal, and response are the microenvironmental signals operating in the niche residence, for which a well-defined spatial location has been identified in some tissues. The identity of the target cell for carcinogenesis continues to point to the more primitive stem cell population that is mostly quiescent, and hence able to accumulate the protracted sequence of mutations necessary to result in malignancy. In addition, there is some potential for daughter progenitor cells to be target cells in particular cases, such as in haematopoietic tissue and in skin. Several biological processes could contribute to protecting stem cells from mutation accumulation: (a) accurate DNA repair; (b) rapidly induced death of injured stem cells; (c) retention of the DNA parental template strand during divisions in some tissue systems, so that mutations are passed to the daughter differentiating cells and not retained in the parental cell; and (d) stem cell competition, whereby undamaged stem cells outcompete damaged stem cells for residence in the niche. DNA repair mainly occurs within a few days of irradiation, while stem cell competition requires weeks or many months depending on the tissue type. The aforementioned processes may contribute to the differences in carcinogenic radiation risk values between tissues, and may help to explain why a rapidly replicating tissue such as small intestine is less prone to such risk. The processes also provide a mechanistic insight relevant to the LNT model, and the relative and absolute risk models. The radiobiological knowledge also provides a scientific insight into discussions of the dose and dose-rate effectiveness factor currently used in radiological protection guidelines. In addition, the biological information contributes potential reasons for the age-dependent sensitivity to radiation carcinogenesis, including the effects of in-utero exposure.
Collapse
|
4
|
Lorimore SA, Rastogi S, Mukherjee D, Coates PJ, Wright EG. The influence of p53 functions on radiation-induced inflammatory bystander-type signaling in murine bone marrow. Radiat Res 2013; 179:406-15. [PMID: 23578188 DOI: 10.1667/rr3158.2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Radiation-induced bystander and abscopal effects, in which DNA damage is produced by inter-cellular communication, indicate mechanisms of generating damage in addition to those observed in directly irradiated cells. In this article, we show that the bone marrow of irradiated p53(+/+) mice, but not p53(-/-) mice, produces the inflammatory pro-apoptotic cytokines FasL and TNF-α able to induce p53-independent apoptosis in vitro in nonirradiated p53(-/-) bone marrow cells. Using a congenic sex-mismatch bone marrow transplantation protocol to generate chimeric mice, p53(-/-) hemopoietic cells functioning in a p53(+/+) bone marrow stromal microenvironment exhibited greater cell killing after irradiation than p53(-/-) hemopoietic cells in a p53(-/-) microenvironment. Cytogenetic analysis demonstrated fewer damaged p53(-/-) cells in a p53(+/+) microenvironment than p53(-/-) cells in a p53(-/-) microenvironment. Using the two different model systems, the findings implicate inflammatory tissue processes induced as a consequence of p53-dependent cellular responses to the initial radiation damage, producing cytokines that subsequently induce ongoing p53-independent apoptosis. As inactivation of the p53 tumor suppressor pathway is a common event in malignant cells developing in a stromal microenvironment that has normal p53 function, the signaling processes identified in the current investigations have potential implications for disease pathogenesis and therapy.
Collapse
Affiliation(s)
- Sally A Lorimore
- University of Dundee, Centre for Oncology and Molecular Medicine, Division of Medical Science, Ninewells Hospital and Medical School, Dundee, Scotland, United Kingdom
| | | | | | | | | |
Collapse
|
5
|
Marusyk A, Porter CC, Zaberezhnyy V, DeGregori J. Irradiation selects for p53-deficient hematopoietic progenitors. PLoS Biol 2010; 8:e1000324. [PMID: 20208998 PMCID: PMC2830447 DOI: 10.1371/journal.pbio.1000324] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Accepted: 01/28/2010] [Indexed: 12/22/2022] Open
Abstract
While disruption of p53 is selectively neutral within non-stressed hematopoiesis, it confers a strong selective advantage upon irradiation, leading to expansion of p53 mutant clones and lymphoma development. Identification and characterization of mutations that drive cancer evolution constitute a major focus of cancer research. Consequently, dominant paradigms attribute the tumorigenic effects of carcinogens in general and ionizing radiation in particular to their direct mutagenic action on genetic loci encoding oncogenes and tumor suppressor genes. However, the effects of irradiation are not limited to genetic loci that encode oncogenes and tumor suppressors, as irradiation induces a multitude of other changes both in the cells and their microenvironment which could potentially affect the selective effects of some oncogenic mutations. P53 is a key tumor suppressor, the loss of which can provide resistance to multiple genotoxic stimuli, including irradiation. Given that p53 null animals develop T-cell lymphomas with high penetrance and that irradiation dramatically accelerates lymphoma development in p53 heterozygous mice, we hypothesized that increased selection for p53-deficient cells contributes to the causal link between irradiation and induction of lymphoid malignancies. We sought to determine whether ionizing irradiation selects for p53-deficient hematopoietic progenitors in vivo using mouse models. We found that p53 disruption does not provide a clear selective advantage within an unstressed hematopoietic system or in previously irradiated BM allowed to recover from irradiation. In contrast, upon irradiation p53 disruption confers a dramatic selective advantage, leading to long-term expansion of p53-deficient clones and to increased lymphoma development. Selection for cells with disrupted p53 appears to be attributable to several factors: protection from acute irradiation-induced ablation of progenitor cells, prevention of irradiation-induced loss of clonogenic capacity for stem and progenitor cells, improved long-term maintenance of progenitor cell fitness, and the disabling/elimination of competing p53 wild-type progenitors. These studies indicate that the carcinogenic effect of ionizing irradiation can in part be explained by increased selection for cells with p53 disruption, which protects progenitor cells both from immediate elimination and from long-term reductions in fitness following irradiation. Cancer progression can be understood through the framework of Darwinian evolution, which involves two major factors: genetic mutation and selection. Random mutations are thought to result in the initiation and phenotypic diversification of tumors, and environmental influences mediate selection for those mutations that increase tumor cell fitness. Since oncogenic mutations are necessary for the development of spontaneous malignancies and since experimental introduction of these mutations often leads to transformation and cancers, the causation of cancers by carcinogens is traditionally attributed to their induction of new mutations that are oncogenic. We instead asked whether selection for oncogenic mutations is affected by ionizing irradiation, an archetypal mutagenic carcinogen, by examining the selective effects of inactivation of the critical tumor suppressor gene p53. While disruption of p53 is selectively neutral in populations of unstressed hematopoietic progenitors, it provides a strong selective advantage upon irradiation. This selection of p53-deficient clones is attributable to protection from irradiation-induced cell death and loss of cellular fitness. Importantly, the selective expansion of irradiated cells bearing p53 disruption is blocked in the presence of non-irradiated wild-type competitors, indicating that the disabling of competing wild-type cells by irradiation is critical for selection of p53-deficient cells. Our results argue that induction of cancers by irradiation involves selection for mutations that confer radioresistance, and suggest that greater focus on how carcinogenic contexts impact on selection is warranted in understanding, preventing and treating cancers.
Collapse
Affiliation(s)
- Andriy Marusyk
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, Colorado, United States of America
- Program in Molecular Biology, University of Colorado Denver School of Medicine, Aurora, Colorado, United States of America
| | - Christopher C. Porter
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, Colorado, United States of America
- Department of Pediatrics, University of Colorado Denver School of Medicine, Aurora, Colorado, United States of America
| | - Vadym Zaberezhnyy
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, Colorado, United States of America
| | - James DeGregori
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, Colorado, United States of America
- Program in Molecular Biology, University of Colorado Denver School of Medicine, Aurora, Colorado, United States of America
- Department of Pediatrics, University of Colorado Denver School of Medicine, Aurora, Colorado, United States of America
- Integrated Department of Immunology, University of Colorado Denver School of Medicine, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
6
|
Sgura A, De Amicis A, Stronati L, Cinelli S, Pacchierotti F, Tanzarella C. Chromosome aberrations and telomere length modulation in bone marrow and spleen cells of melphalan-treated p53+/- mice. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2008; 49:467-475. [PMID: 18481314 DOI: 10.1002/em.20405] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The p53 gene regulates cell cycle and apoptotic pathways after induction of DNA damage. Telomeres, capping chromosome ends, are involved in maintaining chromosome stability; alterations of their length have been related to increased levels of chromosomal aberrations. To study a possible interaction between chromosome aberrations, telomere dysfunction, and p53, we investigated via painting analysis the induction and persistence of chromosome aberrations in bone marrow and spleen cells of p53+/- (and wild type) mice exposed for 4, 13, or 26 weeks to 2 mg/kg melphalan (MLP), a chemotherapeutic agent with carcinogenic potential. In addition, telomere length was evaluated in bone marrow cells by quantitative fluorescence in situ hybridization (Q-FISH). Chromosome aberrations were significantly increased in both tissues after MLP treatment. The p53 genotype did not influence the response of spleen cells, whereas a slight but significant increase of the aberration frequency was measured in the bone marrow of p53+/- mice exposed to MLP for 13 weeks with respect to the level detected in the matched wild-type group. The main finding of our still preliminary results on telomere length modulation was again a difference between the two genotypes. In bone marrow cells of wild-type mice, MLP treatment was associated with telomere shortening, while in p53+/- mice telomere elongation was the prevalent response to MLP exposure. In agreement with previous literature data, our in vivo study suggests that even the lack of a single functional copy of the p53 gene might have an impact on the quantity and quality of chromosome alterations induced in cycling cells by a clastogenic exposure.
Collapse
|
7
|
Ranaldi R, Palma S, Tanzarella C, Lascialfari A, Cinelli S, Pacchierotti F. Effect of p53 haploinsufficiency on melphalan-induced genotoxic effects in mouse bone marrow and peripheral blood. Mutat Res 2006; 615:57-65. [PMID: 17109898 DOI: 10.1016/j.mrfmmm.2006.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2006] [Revised: 10/05/2006] [Accepted: 10/13/2006] [Indexed: 10/23/2022]
Abstract
Mice heterozygous for a p53 null mutation develop tumours induced by genotoxic carcinogens with a shorter latency than wild type mice and have been proposed as an alternate animal model for carcinogenicity testing. Some literature data suggest that p53+/- mice might also be more sensitive to the short-term effects of genotoxic agents and manifest a haploinsufficiency phenotype that could contribute to the higher tumour susceptibility. We have compared the induction of micronuclei in bone marrow and blood of p53+/- and p53+/+ isogenic mice after treatment with a single or multiple doses of melphalan (MLP), a crosslinking genotoxic carcinogen. We have also characterized the mechanism of micronucleus induction with CREST staining of kinetochore proteins to distinguish between chromosome break- and chromosome loss-induced micronuclei. Significant increases of micronucleated bone marrow polychromatic erythrocytes and blood reticulocytes were induced under all MLP exposure conditions. The frequency of micronucleated blood erythrocytes increased linearly with duration of exposure. Micronuclei were essentially a consequence of chromosome break events. After a single MLP dose, a significant reduction of the frequency of polychromatic erythrocytes in bone marrow of p53+/+ animals suggested the induction of cytotoxicity/cell cycle delay. This effect was not observed in p53+/- mice. We believe this finding to provide some evidence of a haploinsufficiency phenotype in the modulation of cell cycle/apoptotic pathways mediated by the p53 protein. In bone marrow of wild type mice, an increased effect of multiple MLP doses was detected over that of a single administration, whereas, in p53+/- mice, no differential effect was found of different exposure durations. Possibly, the probability of micronucleus formation increased under chronic exposure because of increased cell division in response to peripheral anemia and a reduction of p53 protein level had a small effect on cell cycle modulation and on such indirect mechanism of micronucleus induction. However, pairwise comparisons between the frequencies of cells with micronuclei in wild type and p53+/- mice under all exposure conditions did not show statistically significant differences, suggesting that the observed effects of p53 haploinsufficiency were weak and temporary and a higher/faster induction of irreversible chromosome damage could not account for the increased susceptibility of p53+/- mice to MLP-induced tumours.
Collapse
Affiliation(s)
- R Ranaldi
- Section of Toxicology and Biomedical Sciences, ENEA, CR Casaccia, Via Anguillarese 301, 00060 Roma, Italy
| | | | | | | | | | | |
Collapse
|
8
|
Roos WP, Kaina B. DNA damage-induced cell death by apoptosis. Trends Mol Med 2006; 12:440-50. [PMID: 16899408 DOI: 10.1016/j.molmed.2006.07.007] [Citation(s) in RCA: 1097] [Impact Index Per Article: 60.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2005] [Revised: 07/06/2006] [Accepted: 07/28/2006] [Indexed: 12/29/2022]
Abstract
Following the induction of DNA damage, a prominent route of cell inactivation is apoptosis. During the last ten years, specific DNA lesions that trigger apoptosis have been identified. These include O6-methylguanine, base N-alkylations, bulky DNA adducts, DNA cross-links and DNA double-strand breaks (DSBs). Repair of these lesions are important in preventing apoptosis. An exception is O6-methylguanine-thymine lesions, which require mismatch repair for triggering apoptosis. Apoptosis induced by many chemical genotoxins is the consequence of blockage of DNA replication, which leads to collapse of replication forks and DSB formation. These DSBs are thought to be crucial downstream apoptosis-triggering lesions. DSBs are detected by ATM (ataxia telangiectasia mutated) and ATR (ataxia telangiectasia and Rad3 related) proteins, which signal downstream to CHK1, CHK2 (checkpoint kinases) and p53. p53 induces transcriptional activation of pro-apoptotic factors such as FAS, PUMA and BAX. Many tumors harbor mutations in p53. There are p53 backup systems that involve CHK1 and/or CHK2-driven E2F1 activation and p73 upregulation, which in turn transcribes BAX, PUMA and NOXA. Another trigger of apoptosis upon DNA damage is the inhibition of RNA synthesis, which leads to a decline in the level of critical gene products such as MKP1 (mitogen-activated protein kinase phosphatase). This causes sustained activation of JNK (Jun kinase) and, finally, AP-1, which stimulates death-receptor activation. DNA damage-triggered signaling and execution of apoptosis is cell-type- and genotoxin-specific depending on the p53 (p63 and p73) status, death-receptor responsiveness, MAP-kinase activation and, most importantly, DNA repair capacity. Because most clinical anti-cancer drugs target DNA, increasing knowledge on DNA damage-triggered signaling leading to cell death is expected to provide new strategies for therapeutic interventions.
Collapse
Affiliation(s)
- Wynand P Roos
- Department of Toxicology, University of Mainz, Obere Zahlbacher Strasse 67, D-55131 Mainz, Germany
| | | |
Collapse
|
9
|
Gudkov AV, Komarova EA. Prospective therapeutic applications of p53 inhibitors. Biochem Biophys Res Commun 2005; 331:726-36. [PMID: 15865929 DOI: 10.1016/j.bbrc.2005.03.153] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2005] [Indexed: 10/25/2022]
Abstract
p53, in addition to being a key cancer preventive factor, is also a determinant of cancer treatment side effects causing excessive apoptotic death in several normal tissues during cancer therapy. p53 inhibitory strategy has been suggested to protect normal tissues from chemo- and radiotherapy, and to treat other pathologies associated with stress-mediated activation of p53. This strategy was validated by isolation and testing of small molecule p53 inhibitor pifithrin-alpha that demonstrated broad tissue protecting capacity. However, in some normal tissues and tumors p53 plays protective role by inducing growth arrest and preventing cells from premature entrance into mitosis and death from mitotic catastrophe. Inhibition of this function of p53 can sensitize tumor cells to chemo- and radiotherapy, thus opening new potential application of p53 inhibitors and justifying the need in pharmacological agents targeting specifically either pro-apoptotic or growth arrest functions of p53.
Collapse
Affiliation(s)
- Andrei V Gudkov
- Department of Molecular Genetics, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH 44195, USA.
| | | |
Collapse
|
10
|
Mozdarani H, Mansouri Z, Haeri SA. Cytogenetic radiosensitivity of g0-lymphocytes of breast and esophageal cancer patients as determined by micronucleus assay. JOURNAL OF RADIATION RESEARCH 2005; 46:111-116. [PMID: 15802866 DOI: 10.1269/jrr.46.111] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Enhanced chromosomal radiosensitivity is a feature of many cancer predisposition conditions, indicative of the important role of chromosomal alterations in carcinogenesis. In this study the cytokinesis-blocked micronucleous assay was used to compare the radiosensitivity of blood lymphocytes obtained from Iranian breast or esophageal cancer patients (n = 50, n = 16; respectively) with that of control individuals (n = 40). For each sample, one thousand binucleate lymphocytes were analyzed before and after in vitro exposure to 3 Gy of gamma rays. The radiation-induced frequency of micronucleus was significantly higher in the breast cancer group (261/1,000 binucleated cells) than in esophageal cancer group (241/1,000 binucleated cells, P < 0.01) or in the control group (240/1,000 binucleated cells, P < 0.01). The results indicate that breast cancer patients are more radiosensitive compared to normal healthy individuals or esophageal cancer patients. Increased radiosensitivity could be due to defects in DNA repair genes involved in breast cancer formation. Since patients with esophageal cancer did not show elevated radiosensitivity, it is assumed that the contribution of radiosensitivity-related genes to the development of esophageal cancer may be smaller than the contribution of those genes to breast cancer.
Collapse
Affiliation(s)
- Hossein Mozdarani
- Dept. of Medical Genetics, School of Medical Sciences, Tarbiat Modarres University, Tehran, Iran.
| | | | | |
Collapse
|
11
|
Abstract
Ionizing radiation (IR) has proven to be a powerful medical treatment in the fight against cancer. Rational and effective use of its killing power depends on understanding IR-mediated responses at the molecular, cellular and tissue levels. Tumour cells frequently acquire defects in the molecular regulatory mechanisms of the response to IR, which sensitizes them to radiation therapy. One of the key molecules involved in a cell's response to IR is p53. Understanding these mechanisms indicates new rational approaches to improving cancer treatment by IR.
Collapse
Affiliation(s)
- Andrei V Gudkov
- Department of Molecular Biology, NC20, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, Ohio 44195, USA.
| | | |
Collapse
|
12
|
van Buul PPW, van Duijn-Goedhart A. Enhanced recovery of radiation-induced translocations from spermatogonial stem cells of p53 null mice. Mutat Res 2002; 508:29-32. [PMID: 12379458 DOI: 10.1016/s0027-5107(02)00137-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
X-ray-induced (4Gy) chromosomal translocations were studied in mouse spermatogonial stem cells with different p53 status by meiotic analysis at the spermatocyte stage, many cell generations after the moment irradiation. The results show enhanced recovery of translocations from p53 -/- mice relative to +/- and +/+ littermates. The enhanced recovery is probably due to an altered cell cycle distribution of the stem cells in the -/- mice leading to less radioresistant G(0)-G(1) transition cells, rather than differences in apoptotic response. Experiments with the poly(ADP-ribose)polymerase inhibitor 3-aminobenzamide (3-AB) indicate that, in contrast to the situation in +/+ mice, no sensitization in the p53-deficient mice occurred for both testis weight loss and the recovery of induced translocations. This result also points to the presence of less radioresistant stem cells in the testis of p53 null mice.
Collapse
Affiliation(s)
- Paul P W van Buul
- Sylvius Laboratory, Department of Radiation Genetics and Chemical Mutagenesis-MGC, Leiden University Medical Center, Wassenaarseweg 72, 2333 AL Leiden, The Netherlands.
| | | |
Collapse
|
13
|
Boyle JM, Spreadborough AR, Greaves MJ, Birch JM, Varley JM, Scott D. Delayed chromosome changes in gamma-irradiated normal and Li-Fraumeni fibroblasts. Radiat Res 2002; 157:158-65. [PMID: 11835679 DOI: 10.1667/0033-7587(2002)157[0158:dccigi]2.0.co;2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Knockout mice with only one Trp53 allele (+/- genotype) are highly susceptible to radiation-induced cancers, possibly through numerical chromosome changes. Patients with the Li-Fraumeni syndrome, having heterozygous TP53 germline mutations (+/mut genotype), are also susceptible to spontaneous and radiogenic cancers. We have investigated the susceptibility of six Li-Fraumeni syndrome +/mut and six normal fibroblast strains to induced numerical and unstable structural aberrations at six population doublings after exposure to 3 or 6 Gy gamma rays. Four of the irradiated Li-Fraumeni syndrome strains showed small increases in both aberration types, similar to those seen in the normal strains. In two irradiated Li-Fraumeni syndrome strains, there were high levels of induced structural changes, and one of these showed a modest increase in hyperploidy. We suggest that enhanced sensitivity to delayed radiation-induced chromosome changes in Li-Fraumeni syndrome cells requires other genetic alterations in addition to TP53 heterozygosity, apparently in contrast to the situation in Trp53 heterozygous null mice. If such additional alterations occur in vivo in Li-Fraumeni syndrome patients, they may predispose them to radiogenic cancers, mainly through enhanced structural rather than numerical chromosome changes. Our findings raise questions about the validity of quantitative extrapolation of cytogenetic data from Trp53-defective mice to radiogenic cancer risk in humans.
Collapse
Affiliation(s)
- J M Boyle
- CRC Cancer Genetics Group, Paterson Institute for Cancer Research, Christie Hospital NHS Trust, Manchester M20 9BX, United Kingdom
| | | | | | | | | | | |
Collapse
|
14
|
Komarova EA, Gudkov AV. Chemoprotection from p53-dependent apoptosis: potential clinical applications of the p53 inhibitors. Biochem Pharmacol 2001; 62:657-67. [PMID: 11556286 DOI: 10.1016/s0006-2952(01)00733-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The p53 tumor suppressor pathway is a key mediator of stress response that protects the organism from accumulating genetically altered and potentially cancerous cells by inducing growth arrest or apoptosis in damaged cells. However, under certain stressful conditions, p53 activity can result in massive apoptosis in sensitive tissues, leading to severe pathological consequences for the organism. One such situation is anticancer therapy that is often associated with general genotoxic stress, leading to p53-dependent apoptosis in the epithelia of the digestive tract and in the hematopoietic system. A chemical inhibitor of p53, capable of suppressing p53-mediated apoptosis, was shown to protect mice from lethal doses of gamma-radiation, making pharmacological suppression of p53 a perspective therapeutic approach to reduce the side-effects of cancer treatment. There are other situations, besides anti-cancer therapy, when humans are exposed to stressful conditions known to involve p53 activation, which, in extreme cases, could result in the development of life-threatening diseases. Here we review the experimental evidence on the role of p53 in tissue injuries associated with hypoxia (heart and brain ischemias) and hyperthermia (fever and burns), comparing these pathologies with the consequences of genotoxic stress of cancer treatment. The accumulated information points to the involvement of p53 in the generation of the pathological outcome of the above stresses, making them potential targets for the therapeutic application of p53 inhibitors.
Collapse
Affiliation(s)
- E A Komarova
- Department of Molecular Genetics, College of Medicine, University of Illinois at Chicago, 60607, USA
| | | |
Collapse
|
15
|
Boyle JM, Spreadborough A, Greaves MJ, Birch JM, Varley JM, Scott D. The relationship between radiation-induced G(1)arrest and chromosome aberrations in Li-Fraumeni fibroblasts with or without germline TP53 mutations. Br J Cancer 2001; 85:293-6. [PMID: 11461092 PMCID: PMC2364041 DOI: 10.1054/bjoc.2001.1896] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We previously showed that cultured fibroblasts from patients with the cancer-prone Li-Fraumeni (LF) syndrome, having heterozygous germline TP53 mutations, sustain less ionizing radiation-induced permanent G(1)arrest than normal fibroblasts. In contrast, fibroblast strains from LF patients without TP53 mutations showed normal G(1)arrest. We have now investigated the relationship between the extent of G(1)arrest and the level of structural chromosome damage (mainly dicentrics, rings and acentric fragments) in cells at their first mitosis after G(1)irradiation, in 9 LF strains with TP53 mutations, 6 without TP53 mutations and 7 normal strains. Average levels of damage in the mutant strains were 50% higher than in normals, whereas in non-mutant LF strains they were 100% higher. DNA double strand breaks (dsb) are known to act as a signal for p53-dependent G(1)arrest and to be the lesions from which chromosome aberrations arise. These results suggest that a minimal level of dsb is required before the signal for arrest is activated and that p53-defective cells have a higher signal threshold than p53-proficient cells. Dsb that do not cause G(1)blockage can progress to mitosis and appear as simple deletions or interact to form exchange aberrations. The elevated levels in the non-mutant strains may arise from defects in the extent or accuracy of dsb repair. In LF cells with or without TP53 mutations, the reduced capacity to eliminate or repair chromosomal damage of the type induced by ionising radiation, may contribute to cancer predisposition in this syndrome.
Collapse
Affiliation(s)
- J M Boyle
- CRC Department of Cancer Genetics, Paterson Institute for Cancer Research, CRC Christie Research Centre, Manchester, UK
| | | | | | | | | | | |
Collapse
|
16
|
Hendry JH. Genomic instability: potential contributions to tumour and normal tissue response, and second tumours, after radiotherapy. Radiother Oncol 2001; 59:117-26. [PMID: 11325439 DOI: 10.1016/s0167-8140(01)00285-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
PURPOSE Induced genomic instability generally refers to a type of damage which is transmissible down cell generations, and which results in a persistently enhanced frequency of de novo mutations, chromosomal abnormalities or lethality in a significant fraction of the descendant cell population. The potential contribution of induced genomic instability to tumour and normal tissue response, and second tumours, after radiotherapy, is explored. RESULTS The phenomenon of spontaneous genomic instability is well known in some rare genetic diseases (e.g. Gorlin's syndrome), and there is evidence in such cases that it can lead to a greater propensity for carcinogenesis (with shortened latency) which is enhanced after irradiation. It is unclear what role induced genomic instability plays in the response of normal individuals, but persistent chromosomal instability has been detected in vivo in lymphocytes and keratinocytes from irradiated normal individuals. Such induced genomic instability might play some role in tumour response in a subset of tumours with specific defects in damage response genes, but again its contribution to radiocurability in the majority of cancer patients is unclear. In normal tissues, genomic instability induced in wild-type cells leading to delayed cell death might contribute to more severe or prolonged early reactions as a consequence of increased cell loss, a longer time required for recovery, and greater residual injury. In tumours, induced genomic instability reflected in delayed reductions in clonogenic capacity might contribute to the radiosensitivity of primary tumours, and also to a lower incidence, longer latency and slower growth rate of recurrences and metastases. CONCLUSIONS The evidence which is reviewed shows that there is little information at present to support these propositions, but what exists is consistent with their expectations. Also, it is not yet clear to what extent mutations associated with genomic instability, particularly gene polymorphisms, or other low penetrant gene mutations, contribute to the recognized spectrum of normal tissue radiosensitivity amongst cancer patients, or in the general population. Tests for such genetic modifications may help in the search for more accurate prognostic markers of response, which hopefully could be used in addition to other strategies to further improve the outcome for cancer patients given radiotherapy.
Collapse
Affiliation(s)
- J H Hendry
- CRC Experimental Radiation Oncology Group, Paterson Institute for Cancer Research, Christie Hospital NHS Trust, M20 4BX, Manchester, UK
| |
Collapse
|
17
|
Abstract
Deterministic effects are distinguished from stochastic effects for radiation protection purposes by the following characteristics: both incidence and severity increase as a function of dose after a threshold dose is reached. Cell killing is central to all deterministic effects with the exception of radiation-induced cataracts. The understanding of radiation-induced killing of cells has increased greatly in the last decade with an extraordinarily intense interest in apoptosis. Programmed cell death has long been known to developmental biologists and the importance of cell death has been recognized and quantified by tumor biologists and students of cell kinetics but the coining of a new name and the increase of understanding of the molecular aspects of cell death has stimulated interest. Some cells appear to be very sensitive to radiation and undergo apoptosis, whereas others such as fibroblasts do not with equal frequency. This characteristic, like many others, underlines the genetic differences among cell types. We are reaching a time that there are techniques and the knowledge to apply them to clinical and radiation protection problems. In radiotherapy, success depends on the differential effect between tumor and normal tissues that is obtained. To design the optimum therapy, a profile of both the tumor cells and the cells of the normal tissues that may be at risk would help. The profile would characterize the radiosensitivity and the underlying factors, which could help in the choice of adjunct therapy for tumor and normal tissue. Fibrosis, a common unwanted late effect, appears to be influenced by genetic factors, at least in experimental animals. Techniques are available for treating people as individuals more than ever before, and that must be a good thing to do. Protection against deterministic effects would seem an easy matter but we are uncomfortably ignorant of the precise effect of protracted low-dose irradiation on tissues, such as the bone marrow and the testis, important features of risk in space. Entering the new century, it may be timely to classify radiation effects, as Radiation Effects Research Foundation (RERF) has done, into cancer, genetic effects, and noncancer effects. The recognition in the atomic-bomb survivors of noncancer effects at doses on the order of 0.5 Sv (half the dose level considered a threshold in earlier studies) should stimulate interest in deterministic effects.
Collapse
Affiliation(s)
- R J Fry
- Life Sciences Division, Oak Ridge National Laboratory, TN 37830, USA
| |
Collapse
|
18
|
Harada S, Sato R, Nakamura R, Oikawa H, Oikawa H, Ohgi S, Tamakawa Y, Yanagisawa T. The correlation between spontaneous and radiation-induced apoptosis in T3B bladder cancer (histological grade G3), and the precedence between the two kinds of apoptosis for predicting clinical prognosis. Int J Radiat Oncol Biol Phys 2000; 48:1059-67. [PMID: 11072163 DOI: 10.1016/s0360-3016(00)00675-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
PURPOSE The correlation between the frequency of spontaneous and radiation-induced apoptosis, and the precedence between those for predicting prognosis were studied at clinical level. METHODS AND MATERIALS Twenty-one patients (mean age, 65.8 years; 16 men and 5 women) with bladder cancer (transitional cell carcinoma Grade 3, T3bN0M0, Stage IIIb) underwent intraoperative radiotherapy: single 30-Gy 12-MV electron beam irradiation to bladder, followed by total cystectomy 6 h after irradiation. The specimens of pretreatment and irradiated bladder cancer were assayed for apoptosis, using TUNEL staining with counter staining of hematoxylin. The apoptotic index (AI) was calculated by dividing the number of apoptotic cells by the total number of cells and multiplying by 100. The Pearson's linear fitting was used to test the correlation between spontaneous and radiation-induced apoptosis. The Kaplan-Meier product-limit estimation was used for overall survival (OS) and freedom from recurrence (FFR). The precedence between spontaneous and radiation-induced apoptosis for predicting the clinical prognosis was estimated using the proportional hazard regression. RESULTS The mean AI of spontaneous and radiation-induced apoptosis was 1.18 +/- 0.16 and 2.63 +/- 0.45, respectively, which was significantly different. There was strong correlation between spontaneous and radiation-induced apoptosis (r(2) = 0.864, adjusted r(2) = 0.857). Radiation-induced apoptosis was estimated by equation: y (radiation-induced apoptosis) = 2.67 x (spontaneous apoptosis) -0.52. However, the proportional hazard regression test indicated that only spontaneous apoptosis was significant for predicting OS and FFR (&z.sfnc;t&z.sfnc; > 0.2), but radiation-induced apoptosis was not. CONCLUSION Estimating AI in radiation-induced apoptosis from AI in spontaneous apoptosis is possible. However, spontaneous apoptosis is more accurate in predicting clinical prognosis.
Collapse
Affiliation(s)
- S Harada
- Department of Radiology, Stereotactic Radiation Therapy (SRT) Laboratory, Iwate Medical University, Morioka, Iwate, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Barber JB, West CM, Kiltie AE, Roberts SA, Scott D. Detection of individual differences in radiation-induced apoptosis of peripheral blood lymphocytes in normal individuals, ataxia telangiectasia homozygotes and heterozygotes, and breast cancer patients after radiotherapy. Radiat Res 2000; 153:570-8. [PMID: 10790278 DOI: 10.1667/0033-7587(2000)153[0570:doidir]2.0.co;2] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Quantification of radiation-induced apoptosis in peripheral blood lymphocytes (PBLs) has been proposed as a possible screening test for cancer-prone individuals and also for the prediction of normal tissue responses after radiotherapy. We have used the TUNEL assay (terminal transferase nick-end labeling) 24 h after irradiation with 4 Gy at high dose rate to assess interindividual differences in radiation-induced apoptosis between (1) a panel of normal individuals, (2) ataxia telangiectasia (AT) homozygotes and heterozygotes, and (3) breast cancer patients who had received radiotherapy 8-13 years ago, including a number of patients who had suffered adverse responses to radiation. With this protocol, we show clear differences in radiation-induced apoptosis between individuals, and good reproducibility in the assay. In agreement with previous reports using EBV-transformed lymphoblasts, we show a very poor induction of apoptosis in AT homozygotes and a reduced level in AT heterozygotes compared to normal individuals. A similar reduced level compared to normal individuals was seen in the breast cancer patients. Despite a wide range of values in the breast cancer patients and good reproducibility on repeat samples, there was no correlation of rates of apoptosis with the severity of breast fibrosis, retraction or telangiectasia. The reduced rate of apoptosis observed in the breast cancer cases may be associated with genetic predisposition to breast cancer; however, we conclude that assays of lymphocyte apoptosis are unlikely to be of use in predicting normal tissue tolerance to radiotherapy.
Collapse
Affiliation(s)
- J B Barber
- CRC Section of Molecular Genetics, Paterson Institute for Cancer Research, Christie CRC Research Centre, Manchester M20 9BX, United Kingdom
| | | | | | | | | |
Collapse
|
20
|
Chang PY, Torous D, Lutze-Mann L, Winegar R. Impact of p53 status on heavy-ion radiation-induced micronuclei in circulating erythrocytes. Mutat Res 2000; 466:87-96. [PMID: 10751730 DOI: 10.1016/s1383-5718(00)00007-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Transgenic mice that differed in their p53 genetic status were exposed to an acute dose of highly charged and energetic (HZE) iron particle radiation. Micronuclei (MN) in two distinct populations of circulating peripheral blood erythrocytes, the immature reticulocytes (RETs) and the mature normochromatic erythrocytes (NCEs), were measured using a simple and efficient flow cytometric procedure. Our results show significant elevation in the frequency of micronucleated RETs (%MN-RETs) at 2 and 3 days post-radiation. At 3 days post-irradiation, the magnitude of the radiation-induced MN-RET was 2.3-fold higher in the irradiated p53 wild-type animals compared to the unirradiated controls, 2.5-fold higher in the p53 hemizygotes and 4.3-fold higher in the p53 nullizygotes. The persistence of this radiation-induced elevation of MN-RETs is dependent on the p53 genetic background of the animal. In the p53 wild-type and p53 hemizygotes, %MN-RETs returned to control levels by 9 days post-radiation. However, elevated levels of %MN-RETs in p53 nullizygous mice persisted beyond 56 days post-radiation. We also observed elevated MN-NCEs in the peripheral circulation after radiation, but the changes in radiation-induced levels of MN-NCEs appear dampened compared to those of the MN-RETs for all three strains of animals. These results suggest that the lack of p53 gene function may play a role in the iron particle radiation-induced genomic instability in stem cell populations in the hematopoietic system.
Collapse
Affiliation(s)
- P Y Chang
- PN147, SRI International, 333 Ravenswood Ave., Menlo Park, CA 94025, USA.
| | | | | | | |
Collapse
|
21
|
Hendry JH, West CM. Apoptosis and mitotic cell death: their relative contributions to normal-tissue and tumour radiation response. Int J Radiat Biol 1997; 71:709-19. [PMID: 9246185 DOI: 10.1080/095530097143716] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The target-cell theory of tissue responses is reviewed with reference to the radiosensitivity of proposed target cells in bone marrow, intestine, epidermis, and spermatogenesis. The difficulties in precisely identifying target cells using histological/cell marker criteria, and hence determining the role of their mode of death in tissue responses, are being circumvented to some extent by the recent use of mice deficient in gene products required for radiation-induced apoptosis. In this case cell death results from 'mitotic cell death' and e.g. in the case of p53, any remaining p53-independent apoptosis. In the p53 null mouse, cell survival levels are increased in bone marrow and intestine but decreased in the testis. Different interpretations, based on the lack of p53-dependent apoptosis or the lack of a permanently induced G1-arrest in the case of marrow fibroblasts, can be applied to the results for different cell types. Hence both apoptosis and mitotic cell death can variously be involved as contributing to target-cell sensitivity and hence to early reactions in these tissues after irradiation. It is still unclear whether, or how, the mode of cell death (apoptotic versus mitotic) determines the radiosensitivity and response of tumours. In experimental tumours, the levels of radiation-induced apoptosis have been shown to correlate both with the in vivo response to radiation and the degree of spontaneous apoptosis in the tumours. Measurements of spontaneous apoptosis in human tumours, however, have yielded conflicting data with high apoptotic levels significantly correlating with both good and poor prognosis in different studies. There is one report of a lack of relationship between intrinsic radiosensitivity and spontaneous apoptosis in cervical cancers. In contrast several studies have reported correlations between apoptosis levels and the degree of tumour cell proliferation. Tumour hypoxia has also been shown to increase apoptosis. These data suggest that tumour apoptosis may be a reflection of intrinsic radiosensitivity, tumour cell proliferation and tumour hypoxia. Its relative importance will probably be tumour type, size and stage related.
Collapse
Affiliation(s)
- J H Hendry
- CRC Department of Experimental Radiation Oncology, Paterson Institute for Cancer Research, Christie Hospital (NHS) Trust, Manchester, UK
| | | |
Collapse
|