1
|
Birhanu T, Adiko T, Duraisamy R. Phytochemical Screening and Multivariate Analysis on Physicochemical and Nutraceutical Value of Kocho from False Banana (Enset). INTERNATIONAL JOURNAL OF FOOD SCIENCE 2023; 2023:6666635. [PMID: 36936353 PMCID: PMC10019968 DOI: 10.1155/2023/6666635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 03/11/2023]
Abstract
Enset (Ensete ventricosum) is one of Ethiopia's most important food crops. The objective of the present study is to evaluate (using multivariate analysis) the effect of fermentation time, varietal differences, and treatment with gammicho on the physicochemical and nutraceuticals of kocho obtained from false banana in highly cultivated areas such as Disa Kera and Koysha Gorta of Dawro zone, Loma Woreda, South Nations' Nationalities People Regions, Ethiopia. The analyses were carried out for fresh and fermented (with and without local starter, gammicho) enset kocho varieties (Meazia and Katania) harvested in two locations. Statistical analysis of the acquired data was performed using Minitab software version 19. It was discovered that each factor influenced significantly (p ≤ 0.05) the qualities of kocho independently and with interaction. After four months of fermentation with gammicho, various parameters such as fat (1.69 to 0.62%), fiber (11.46 to 2.79%), pH (6.50 to 3.00), and moisture were dramatically decreased (9.34 to 2.8%). On the other hand, some dietary elements in both kinds were reduced with increasing fermentation time, including ash (2.07 to 3.57%), protein (3.08 to 5.52%), and carbs (71.87 to 84.55%). The results of this study suggest that Meazia has superior physicochemical and nutritional qualities over Katania.
Collapse
Affiliation(s)
- Tewodros Birhanu
- Department of Chemistry, College of Natural Sciences, Arba Minch University, SNNPR, Ethiopia
| | - Tesfaye Adiko
- Department of Chemistry, College of Natural Sciences, Arba Minch University, SNNPR, Ethiopia
| | - Ramesh Duraisamy
- Department of Chemistry, College of Natural Sciences, Arba Minch University, SNNPR, Ethiopia
| |
Collapse
|
2
|
Abstract
Carbohydrate recognition is crucial for biological processes ranging from development to immune system function to host-pathogen interactions. The proteins that bind glycans are faced with a daunting task: to coax these hydrophilic species out of water and into a binding site. Here, we examine the forces underlying glycan recognition by proteins. Our previous bioinformatic study of glycan-binding sites indicated that the most overrepresented side chains are electron-rich aromatic residues, including tyrosine and tryptophan. These findings point to the importance of CH-π interactions for glycan binding. Studies of CH-π interactions show a strong dependence on the presence of an electron-rich π system, and the data indicate binding is enhanced by complementary electronic interactions between the electron-rich aromatic ring and the partial positive charge of the carbohydrate C-H protons. This electronic dependence means that carbohydrate residues with multiple aligned highly polarized C-H bonds, such as β-galactose, form strong CH-π interactions, whereas less polarized residues such as α-mannose do not. This information can guide the design of proteins to recognize sugars and the generation of ligands for proteins, small molecules, or catalysts that bind sugars.
Collapse
Affiliation(s)
- Laura L. Kiessling
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Roger C. Diehl
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
3
|
Patriarca EJ, Cermola F, D’Aniello C, Fico A, Guardiola O, De Cesare D, Minchiotti G. The Multifaceted Roles of Proline in Cell Behavior. Front Cell Dev Biol 2021; 9:728576. [PMID: 34458276 PMCID: PMC8397452 DOI: 10.3389/fcell.2021.728576] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 07/23/2021] [Indexed: 12/13/2022] Open
Abstract
Herein, we review the multifaceted roles of proline in cell biology. This peculiar cyclic imino acid is: (i) A main precursor of extracellular collagens (the most abundant human proteins), antimicrobial peptides (involved in innate immunity), salivary proteins (astringency, teeth health) and cornifins (skin permeability); (ii) an energy source for pathogenic bacteria, protozoan parasites, and metastatic cancer cells, which engage in extracellular-protein degradation to invade their host; (iii) an antistress molecule (an osmolyte and chemical chaperone) helpful against various potential harms (UV radiation, drought/salinity, heavy metals, reactive oxygen species); (iv) a neural metabotoxin associated with schizophrenia; (v) a modulator of cell signaling pathways such as the amino acid stress response and extracellular signal-related kinase pathway; (vi) an epigenetic modifier able to promote DNA and histone hypermethylation; (vii) an inducer of proliferation of stem and tumor cells; and (viii) a modulator of cell morphology and migration/invasiveness. We highlight how proline metabolism impacts beneficial tissue regeneration, but also contributes to the progression of devastating pathologies such as fibrosis and metastatic cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Gabriella Minchiotti
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics “A. Buzzati Traverso”, Consiglio Nazionale delle Ricerche, Naples, Italy
| |
Collapse
|
4
|
Silva J, Ferraz R, Dupree P, Showalter AM, Coimbra S. Three Decades of Advances in Arabinogalactan-Protein Biosynthesis. FRONTIERS IN PLANT SCIENCE 2020; 11:610377. [PMID: 33384708 PMCID: PMC7769824 DOI: 10.3389/fpls.2020.610377] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/23/2020] [Indexed: 05/18/2023]
Abstract
Arabinogalactan-proteins (AGPs) are a large, complex, and highly diverse class of heavily glycosylated proteins that belong to the family of cell wall hydroxyproline-rich glycoproteins. Approximately 90% of the molecules consist of arabinogalactan polysaccharides, which are composed of arabinose and galactose as major sugars and minor sugars such as glucuronic acid, fucose, and rhamnose. About half of the AGP family members contain a glycosylphosphatidylinositol (GPI) lipid anchor, which allows for an association with the outer leaflet of the plasma membrane. The mysterious AGP family has captivated the attention of plant biologists for several decades. This diverse family of glycoproteins is widely distributed in the plant kingdom, including many algae, where they play fundamental roles in growth and development processes. The journey of AGP biosynthesis begins with the assembly of amino acids into peptide chains of proteins. An N-terminal signal peptide directs AGPs toward the endoplasmic reticulum, where proline hydroxylation occurs and a GPI anchor may be added. GPI-anchored AGPs, as well as unanchored AGPs, are then transferred to the Golgi apparatus, where extensive glycosylation occurs by the action of a variety glycosyltransferase enzymes. Following glycosylation, AGPs are transported by secretory vesicles to the cell wall or to the extracellular face of the plasma membrane (in the case of GPI-anchored AGPs). GPI-anchored proteins can be released from the plasma membrane into the cell wall by phospholipases. In this review, we present an overview of the accumulated knowledge on AGP biosynthesis over the past three decades. Particular emphasis is placed on the glycosylation of AGPs as the sugar moiety is essential to their function. Recent genetics and genomics approaches have significantly contributed to a broader knowledge of AGP biosynthesis. However, many questions remain to be elucidated in the decades ahead.
Collapse
Affiliation(s)
- Jessy Silva
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
- LAQV Requimte, Sustainable Chemistry, Universidade do Porto, Porto, Portugal
| | - Ricardo Ferraz
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
- LAQV Requimte, Sustainable Chemistry, Universidade do Porto, Porto, Portugal
| | - Paul Dupree
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Allan M. Showalter
- Department of Environmental and Plant Biology, Molecular and Cellular Biology Program, Ohio University, Athens, OH, United States
| | - Sílvia Coimbra
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
- LAQV Requimte, Sustainable Chemistry, Universidade do Porto, Porto, Portugal
| |
Collapse
|
5
|
Rivero Arze A, Manier N, Chatel A, Mouneyrac C. Characterization of the nano-bio interaction between metallic oxide nanomaterials and freshwater microalgae using flow cytometry. Nanotoxicology 2020; 14:1082-1095. [PMID: 32810409 DOI: 10.1080/17435390.2020.1808106] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Since nanomaterials (NMs) are particulate contaminants, their first contact with organisms is a physical encounter ruled by physic-chemical processes that can determinate the potential NMs accumulation, toxicity, and trophic transfer. Freshwater ecosystems often become a final depository for NMs, so they can get in contact with the biota, especially primary organisms as algae. There are almost none comparative studies of this interaction using various NMs in the same conditions. This work identifies, analyzes, and compares the algae-NMs interaction by flow cytometry after a short-term contact test in which three freshwater algae (Raphidocelis subcapitata, Desmodesmus subspicatus, and Chlorella vulgaris) interact individually with a set of twelve metallic oxide NMs. Dose-response profiles and differences in the algae-NMs interaction were found according to each algae species (C. vulgaris had the most affinity, starting the interaction from 0.5 mg/L and D. subspicatus had the less affinity starting at 5 mg/L). Flow cytometry results were confirmed by optical microscopy. Some NMs characteristics were identified as key-factors that govern the algae-NMs interaction: NMs composition (no interaction for SiO2 NMs), surface electric charge (higher interaction for the positively charged NMs and lower interaction for the negatively charged ones) and crystalline form (for TiO2 NMs). The presented method can be useful for a rapid determination of the interaction between free cells organisms as microalgae and (nano)particulate substances.
Collapse
Affiliation(s)
- Andrea Rivero Arze
- French National Institute for Industrial Environment and Risks (INERIS), Parc Technologique ALATA, Verneuil en Halatte, France
| | - Nicolas Manier
- French National Institute for Industrial Environment and Risks (INERIS), Parc Technologique ALATA, Verneuil en Halatte, France
| | - Amélie Chatel
- Catholic University of the West (UCO), Laboratoire Mer, Molécules, Santé (MMS, EA 2160), Angers, France
| | - Catherine Mouneyrac
- Catholic University of the West (UCO), Laboratoire Mer, Molécules, Santé (MMS, EA 2160), Angers, France
| |
Collapse
|
6
|
Mayfield AB, Metternich JB, Trotta AH, Jacobsen EN. Stereospecific Furanosylations Catalyzed by Bis-thiourea Hydrogen-Bond Donors. J Am Chem Soc 2020; 142:4061-4069. [PMID: 32013410 DOI: 10.1021/jacs.0c00335] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We report a new method for stereoselective O-furanosylation reactions promoted by a precisely tailored bis-thiourea hydrogen-bond-donor catalyst. Furanosyl donors outfitted with an anomeric dialkylphosphate leaving group undergo substitution with high anomeric selectivity, providing access to the challenging 1,2-cis substitution pattern with a range of alcohol acceptors. A variety of stereochemically distinct, benzyl-protected glycosyl donors were engaged successfully as substrates. Mechanistic studies support a stereospecific mechanism in which rate-determining substitution occurs from a catalyst-donor resting-state complex.
Collapse
Affiliation(s)
- Andrew B Mayfield
- Department of Chemistry & Chemical Biology , Harvard University , Cambridge , Massachusetts 02138 , United States
| | - Jan B Metternich
- Department of Chemistry & Chemical Biology , Harvard University , Cambridge , Massachusetts 02138 , United States
| | - Adam H Trotta
- Department of Chemistry & Chemical Biology , Harvard University , Cambridge , Massachusetts 02138 , United States
| | - Eric N Jacobsen
- Department of Chemistry & Chemical Biology , Harvard University , Cambridge , Massachusetts 02138 , United States
| |
Collapse
|
7
|
Nawaz G, Han Y, Usman B, Liu F, Qin B, Li R. Knockout of OsPRP1, a gene encoding proline-rich protein, confers enhanced cold sensitivity in rice ( Oryza sativa L.) at the seedling stage. 3 Biotech 2019; 9:254. [PMID: 31192079 DOI: 10.1007/s13205-019-1787-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 05/31/2019] [Indexed: 01/24/2023] Open
Abstract
Proline-rich proteins (PRPs) play multiple physiological and biochemical roles in plant growth and stress response. In this study, we reported that the knockout of OsPRP1 induced cold sensitivity in rice. Mutant plants were generated by CRISPR/Cas9 technology to investigate the role of OsPRP1 in cold stress and 26 mutant plants were obtained in T0 generation with the mutation rate of 85% including 15% bi-allelic, 53.3% homozygous, and 16.7% heterozygous and 16 T-DNA-free lines in T1 generation. The conserved amino acid sequence was changed and the expression level of OsPRP1 was reduced in mutant plants. The OsPRP1 mutant plants displayed more sensitivity to cold stress and showed low survival rate with decreased root biomass than wild-type (WT) and homozygous mutant line with large fragment deletion was more sensitive to low temperature. Mutant lines accumulated less antioxidant enzyme activity and lower levels of proline, chlorophyll, abscisic acid (ABA), and ascorbic acid (AsA) content relative to WT under low-temperature stress. The changes of antioxidant enzymes were examined in the leaves and roots with exogenous salicylic acid (SA) treatment which resulted in increased activity of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) under cold stress, while enzyme antioxidant activity was lower in untreated seedlings which showed that exogenous SA pretreatment could alleviate the low-temperature stress in rice. Furthermore, the expression of three genes encoding antioxidant enzyme activities (SOD4, POX1, and OsCAT3) was significantly down-regulated in the mutant lines as compared to WT. These results suggested that OsPRP1 enhances cold tolerance by modulating antioxidants and maintaining cross talk through signaling pathways. Therefore, OsPRP1 gene could be exploited for improving cold tolerance in rice and CRISPR/Cas9 technology is helpful to study the function of a gene by analyzing the phenotypes of knockout mutants generated.
Collapse
Affiliation(s)
- Gul Nawaz
- College of Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004 China
| | - Yue Han
- College of Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004 China
| | - Babar Usman
- College of Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004 China
| | - Fang Liu
- College of Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004 China
| | - Baoxiang Qin
- College of Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004 China
| | - Rongbai Li
- College of Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004 China
| |
Collapse
|
8
|
Tang J, Sun B, Cheng R, Shi Z, Da Luo, Liu S, Centritto M. Effects of soil nitrogen (N) deficiency on photosynthetic N-use efficiency in N-fixing and non-N-fixing tree seedlings in subtropical China. Sci Rep 2019; 9:4604. [PMID: 30872731 PMCID: PMC6418086 DOI: 10.1038/s41598-019-41035-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 01/17/2019] [Indexed: 11/11/2022] Open
Abstract
Soil nitrogen (N) deficiencies can affect the photosynthetic N-use efficiency (PNUE), mesophyll conductance (gm), and leaf N allocation. However, lack of information about how these physiological characteristics in N-fixing trees could be affected by soil N deficiency and the difference between N-fixing and non-N-fixing trees. In this study, we chose seedlings of two N-fixing (Dalbergia odorifera and Erythrophleum fordii) and two non-N-fixing trees (Castanopsis hystrix and Betula alnoides) as study objects, and we conducted a pot experiment with three levels of soil N treatments (high nitrogen, set as Control; medium nitrogen, MN; and low nitrogen, LN). Our results showed that soil N deficiency significantly decreased the leaf N concentration and photosynthesis ability of the two non-N-fixing trees, but it had less influence on two N-fixing trees. The LN treatment had lower gm in D. odorifera and lower leaf N allocated to Rubisco (PR), leaf N allocated to bioenergetics (PB), and gm in B. alnoides, eventually resulting in low PNUE values. Our findings suggested that the D. odorifera and E. fordii seedlings could grow well in N-deficient soil, and adding N may increase the growth rates of B. alnoides and C. hystrix seedlings and promote the growth of artificial forests.
Collapse
Affiliation(s)
- Jingchao Tang
- Key Laboratory on Forest Ecology and Environmental Sciences of State Forestry Administration, Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, 100091, China.,School of Environmental and Municipal Engineering, Qingdao Technological University, Qingdao, 266033, China
| | - Baodi Sun
- School of Environmental and Municipal Engineering, Qingdao Technological University, Qingdao, 266033, China
| | - Ruimei Cheng
- Key Laboratory on Forest Ecology and Environmental Sciences of State Forestry Administration, Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, 100091, China.,Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Zuomin Shi
- Key Laboratory on Forest Ecology and Environmental Sciences of State Forestry Administration, Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, 100091, China. .,Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China. .,Tree and Timber Institute, National Research Council of Italy, Via Madonna del Piano 10, 50019, Sesto Fiorentino (FI), Italy.
| | - Da Luo
- Key Laboratory on Forest Ecology and Environmental Sciences of State Forestry Administration, Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, 100091, China.,Research Institute of Economic Forestry, Xinjiang Academy of Forestry Science, Urumqi, 830000, China
| | - Shirong Liu
- Key Laboratory on Forest Ecology and Environmental Sciences of State Forestry Administration, Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, 100091, China
| | - Mauro Centritto
- Tree and Timber Institute, National Research Council of Italy, Via Madonna del Piano 10, 50019, Sesto Fiorentino (FI), Italy
| |
Collapse
|
9
|
In silico Identification of Resistance and Defense Related Genes for Bacterial Leaf Blight (BLB) in Rice. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2018. [DOI: 10.22207/jpam.12.4.22] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
10
|
|
11
|
Szatmari A, Ott PG, Varga GJ, Besenyei E, Czelleng A, Klement Z, Bozsó Z. Characterisation of basal resistance (BR) by expression patterns of newly isolated representative genes in tobacco. PLANT CELL REPORTS 2006; 25:728-40. [PMID: 16456648 DOI: 10.1007/s00299-005-0110-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2005] [Revised: 11/25/2005] [Accepted: 12/14/2005] [Indexed: 05/06/2023]
Abstract
Increasing evidence indicates that plants, like animals, use basal resistance (BR), a component of the innate immune system, to defend themselves against foreign organisms. Contrary to the hypersensitive reaction (HR)-type cell death, recognition in the case of BR is unspecific, as intruders are recognised based on their common molecular patterns. Induction of BR is not associated with visible symptoms, in contrast to the HR-type cell death. To analyse the early events of BR in tobacco plants we have carried out a subtractive hybridisation between leaves treated with the HR-negative mutant strain Pseudomonas syringae pv. syringae 61 hrcC and non-treated control leaves. Random sequencing from the 304 EBR clones yielded 20 unique EST-s. Real-time PCR has proved that 8 out of 10 clones are activated during BR. Six of these EST-s were further analyzed. Gene expression patterns in a time course showed early peaks of most selected genes at 3-12 h after inoculation (hpi), which coincided with the development-time of BR. Upon treatments with different types of bacteria we found that incompatible pathogens, their hrp mutants, as well as non-pathogens induce high levels of expression while virulent pathogens induce only a limited gene-expression. Plant signal molecules like salicylic acid, methyl jasmonate, ethylene and spermine, known to be involved in plant defense were not able to induce the investigated genes, therefore, an unknown signalling mechanism is expected to operate in BR. In summary, we have identified representative genes associated with BR and have established important features of BR by analysing gene-expression patterns.
Collapse
Affiliation(s)
- Agnes Szatmari
- Plant Protection Institute, Hungarian Academy of Sciences, Herman O. u. 15., 1022, Budapest, Hungary.
| | | | | | | | | | | | | |
Collapse
|
12
|
Cellular Aspects of Rust Infection Structure Differentiation. DEVELOPMENTS IN PLANT PATHOLOGY 1996. [DOI: 10.1007/978-94-009-0189-6_8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
13
|
Voigt J, Wrann D, Vogeler HP, König WA, Mix M. Hydroxyproline-containing and glycine-rich cell wall polypeptides are widespread in the green algae. Microbiol Res 1994. [DOI: 10.1016/s0944-5013(11)80062-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|