1
|
Hýsková V, Bělonožníková K, Doričová V, Kavan D, Gillarová S, Henke S, Synková H, Ryšlavá H, Čeřovská N. Effects of heat treatment on metabolism of tobacco plants infected with Potato virus Y. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23 Suppl 1:131-141. [PMID: 33417742 DOI: 10.1111/plb.13234] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/05/2021] [Indexed: 06/12/2023]
Abstract
Many factors affect successful virus propagation and plant defence responses. Heat shock protein (Hsp) expression after heat shock plays an ambiguous role in viral infection. On the one hand, Hsp70 participates in plant defence response; on the other hand, Hsp70 could interact with viral proteins and facilitate virus propagation. Here, we studied metabolic adaptations of Nicotiana tabacum L. subjected to heat shock (42 °C, 2 h) before or after inoculating the plants with Potato virus Y (potyvirus). RT-qPCR and ELISA were used for potyvirus quantification. Hsp70 and Hsp90 isoforms were analysed by Western blotting. Salicylic, quinic and chlorogenic acid content was determined by LC-MS. The activity of Hatch-Slack enzymes (as markers of potyviral infection in tobacco) and glycosidases was assayed. Application of heat shock before or after inoculation showed accelerated potyviral propagation in comparison with only inoculated plants. Plants exposed to heat shock and concurrently inoculated showed higher potyviral content, higher amount of Hsp70, together with late decline of quinic acid content and low chlorogenic acid content. Spread of potyviral infection correlated with enhanced salicylic acid content and activities of enzymes of the Hatch-Slack cycle, α- and β-galactosidase, α-mannosidase, α-glucosidase and β-N-acetylhexosaminidase. Heat shock proteins accelerate potyviral propagation. The lower weight cytosolic and mitochondrial Hsp70 (~50-75 kDa) persist throughout the viral infection. Also, the plant defense response results in increase of salicylic and chlorogenic acids but decrease of quinic acid content.
Collapse
Affiliation(s)
- V Hýsková
- Department of Biochemistry, Faculty of Science, Charles University, Prague 2, Czech Republic
| | - K Bělonožníková
- Department of Biochemistry, Faculty of Science, Charles University, Prague 2, Czech Republic
| | - V Doričová
- Department of Biochemistry, Faculty of Science, Charles University, Prague 2, Czech Republic
| | - D Kavan
- Department of Biochemistry, Faculty of Science, Charles University, Prague 2, Czech Republic
| | - S Gillarová
- Department of Carbohydrates and Cereals, University of Chemistry and Technology, Prague 6, Czech Republic
| | - S Henke
- Department of Carbohydrates and Cereals, University of Chemistry and Technology, Prague 6, Czech Republic
| | - H Synková
- Institute of Experimental Botany, Academy of Sciences of the CR, Praha 6, Czech Republic
| | - H Ryšlavá
- Department of Biochemistry, Faculty of Science, Charles University, Prague 2, Czech Republic
| | - N Čeřovská
- Institute of Experimental Botany, Academy of Sciences of the CR, Praha 6, Czech Republic
| |
Collapse
|
2
|
Staehr P, Löttgert T, Christmann A, Krueger S, Rosar C, Rolčík J, Novák O, Strnad M, Bell K, Weber APM, Flügge UI, Häusler RE. Reticulate leaves and stunted roots are independent phenotypes pointing at opposite roles of the phosphoenolpyruvate/phosphate translocator defective in cue1 in the plastids of both organs. FRONTIERS IN PLANT SCIENCE 2014; 5:126. [PMID: 24782872 PMCID: PMC3986533 DOI: 10.3389/fpls.2014.00126] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 03/17/2014] [Indexed: 05/17/2023]
Abstract
Phosphoenolpyruvate (PEP) serves not only as a high energy carbon compound in glycolysis, but it acts also as precursor for plastidial anabolic sequences like the shikimate pathway, which produces aromatic amino acids (AAA) and subsequently secondary plant products. After conversion to pyruvate, PEP can also enter de novo fatty acid biosynthesis, the synthesis of branched-chain amino acids, and the non-mevalonate way of isoprenoid production. As PEP cannot be generated by glycolysis in chloroplasts and a variety of non-green plastids, it has to be imported from the cytosol by a phosphate translocator (PT) specific for PEP (PPT). A loss of function of PPT1 in Arabidopsis thaliana results in the chlorophyll a/b binding protein underexpressed1 (cue1) mutant, which is characterized by reticulate leaves and stunted roots. Here we dissect the shoot- and root phenotypes, and also address the question whether or not long distance signaling by metabolites is involved in the perturbed mesophyll development of cue1. Reverse grafting experiments showed that the shoot- and root phenotypes develop independently from each other, ruling out long distance metabolite signaling. The leaf phenotype could be transiently modified even in mature leaves, e.g. by an inducible PPT1RNAi approach or by feeding AAA, the cytokinin trans-zeatin (tZ), or the putative signaling molecule dehydrodiconiferyl alcohol glucoside (DCG). Hormones, such as auxins, abscisic acid, gibberellic acid, ethylene, methyl jasmonate, and salicylic acid did not rescue the cue1 leaf phenotype. The low cell density1 (lcd1) mutant shares the reticulate leaf-, but not the stunted root phenotype with cue1. It could neither be rescued by AAA nor by tZ. In contrast, tZ and AAA further inhibited root growth both in cue1 and wild-type plants. Based on our results, we propose a model that PPT1 acts as a net importer of PEP into chloroplast, but as an overflow valve and hence exporter in root plastids.
Collapse
Affiliation(s)
- Pia Staehr
- Department of Botany II, Cologne Biocenter, University of CologneCologne, Germany
- Lophius BiosciencesRegensburg, Germany
| | - Tanja Löttgert
- Department of Botany II, Cologne Biocenter, University of CologneCologne, Germany
- Quintiles GmbHNeu-Isenburg, Germany
| | - Alexander Christmann
- Lehrstuhl für Botanik, Wissenschaftszentrum Weihenstephan, Technische Universität MünchenMunich, Germany
| | - Stephan Krueger
- Department of Botany II, Cologne Biocenter, University of CologneCologne, Germany
| | - Christian Rosar
- Institut für Biochemie der Pflanzen, Heinrich-Heine-Universität DüsseldorfDüsseldorf, Germany
| | - Jakub Rolčík
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Palacký UniversityOlumouc, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Palacký UniversityOlumouc, Czech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Palacký UniversityOlumouc, Czech Republic
| | - Kirsten Bell
- Department of Botany II, Cologne Biocenter, University of CologneCologne, Germany
| | - Andreas P. M. Weber
- Institut für Biochemie der Pflanzen, Heinrich-Heine-Universität DüsseldorfDüsseldorf, Germany
- Cluster of Excellence on Plant SciencesDüsseldorf, Germany
| | - Ulf-Ingo Flügge
- Department of Botany II, Cologne Biocenter, University of CologneCologne, Germany
- Cluster of Excellence on Plant SciencesDüsseldorf, Germany
| | - Rainer E. Häusler
- Department of Botany II, Cologne Biocenter, University of CologneCologne, Germany
- *Correspondence: Rainer E. Häusler, Department of Botany II, Cologne Biocenter, University of Cologne, Zülpicherstr. 47b, 50674 Cologne, Germany e-mail:
| |
Collapse
|